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Abstract 

Background:  Non-mass enhancement (NME) is a diagnostic dilemma and highly reliant on the experience of the 
radiologists. Texture analysis (TA) could serve as an objective method to quantify lesion characteristics. However, 
it remains unclear what role TA plays in a predictive model based on routine MRI characteristics. The purpose of 
this study was to explore the value of TA in distinguishing between benign and malignant NME in premenopausal 
women.

Methods:  Women in whom NME was histologically proven (n = 147) were enrolled (benign: 58; malignant: 89) was 
retrospective. Then, 102 and 45 patients were classified as the training and validation groups, respectively. Scanning 
sequences included Fat-suppressed T2-weighted and fat-suppressed contrast-enhanced T1-weighted which were 
acquired on a 1.5T MRI system. Clinical and routine MR characteristics (CRMC) were evaluated by two radiologists 
according to the Breast Imaging and Reporting and Data system (2013). Texture features were extracted from all 
post-contrast sequences in the training group. The combination model was built and then assessed in the validation 
group. Pearson’s chi-square test and Mann–Whitney U test were used to compare categorical variables and continu-
ous variables, respectively. Logistic regression analysis and receiver operating characteristic curve were employed to 
assess the diagnostic performance of CRMC, TA, and their combination model in NME diagnosis.

Results:  The combination model showed superior diagnostic performance in differentiating between benign and 
malignant NME compared to that of CRMC or TA alone (AUC, 0.887 vs 0.832 vs 0.74). Moreover, compared to CRMC, 
the model showed high specificity (72.5% vs 80%). The results obtained in the validation group confirmed the model 
was promising.

Conclusions:  With the combined use of TA and CRMC could afford an improved diagnostic performance in differen-
tiating between benign and malignant NME.
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Background
According to the Breast Imaging-Reporting and Data 
System (BI-RADS) magnetic resonance imaging (MRI) 
lexicon (2013), non-mass enhancement (NME) is defined 
as a special MRI enhancement mode, which is different 
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from the surrounding enhanced breast parenchyma. 
It has no space occupation effect and typically contains 
scattered adipose and glandular tissues [1, 2]. NME is 
often encountered on MRI screening. It might appear 
in benign breast lesions, such as focal adenosis or fibro-
cystic and inflammatory changes and can also manifest 
in malignant lesions, such as lobular carcinoma, diffuse 
invasive breast cancer, invasive ductal carcinoma, ductal 
carcinoma in situ (DCIS), and occasionally, some special 
types of breast cancers [3–5].

Distinguishing between benign and malignant NME is 
a challenge in breast MRI-based diagnosis. Since biopsy 
guided by MRI is not popular, over or delayed surgery is 
frequent [6, 7]. Previous studies have shown that specific 
morphological MRI features and kinetic curve patterns of 
NME could offer some guidance [8, 9]. However, in daily 
clinical practice, the use of these methods is considered 
rather limited and controversial. Recent studies have 
claimed that MRI feature reports have significant inter-
observer variability and a lack of quantitative indicators 
and repeatability [10]. Moreover, breast tissue affected by 
hormone effects would add to the difficulty of diagnosis 
of NME, especially in premenopausal women [11].

Texture analysis (TA) uses a computer-assisted 
approach to analyze the statistical difference in the grey-
level pixel intensity in extracted medical images, thereby 
providing an objective way to quantify tumor charac-
teristics and growth patterns [12, 13], which is not fea-
sible in traditional radiology evaluations. TA based on 
breast MRI has shown great potential in terms of offering 
molecular biology information. It has been used as a “dig-
ital biopsy” to distinguish between malignant tumor and 
benign lesions [14], to predict outcomes for patients [14], 
and to assess treatment responses [15]. For lesions pre-
senting as NME, it remains unclear what role TA plays in 
a predictive model based on routine MRI characteristics. 
The purpose of this study, therefore, was to explore the 
value of TA in distinguishing between benign and malig-
nant NME in premenopausal women.

Methods
Study population
We searched all breast MRI examination reports in our 
radiology information systems from January 2015 to 
March 2019 and selected “NME” as the retrieval key-
word. MRI data for 394 female patients were found. 
Two hundred and ninety-three of the patients met the 
following criteria: (1) NME confirmed by pathological 
analysis; (2) MRI performed within 1  week before the 
surgery and during 7–15 days of the patients’ menstrual 
cycle to decrease the false-positive results provided by 
background enhancement (BPE) [16]; and (3) define the 
shortest part of its measuring diameter is greater than 

0.5 cm, such that the possible adverse effects on the tex-
ture features extracted from DICOM data were mini-
mized. The exclusion criteria were as follows: (1) severe 
motion artifacts in the contrast-enhanced images or the 
use of different 1.5T machines for scanning (n = 31); 
(2) a history of treatment for breast cancer, i.e., surgery, 
biopsy, radiotherapy, or chemotherapy (n = 76); (3) a his-
tory of hormone therapy (n = 13); and (4) NME and mass 
enhancement both existed on the ipsilateral breast simul-
taneously (n = 26). Finally, 147 patients were included in 
this retrospective study. Among these patients, 58 had 
benign lesions while 89 had malignant lesions. Figure  1 
shows a flow chart of the inclusion and exclusion criteria 
for this study. Table 1 summarizes the histological types 
of these two groups of lesions.

MRI protocol
All MRI studies were conducted using 1.5T (T) dedi-
cated breast MRI system (Aurora Imaging Technol-
ogy, North Andover, MA), equipped with an integrated 
breast-specific coil. The patients were scanned in the 
prone position. Dynamic enhanced imaging included a 
total of five phases performed using a T1-weighted fat-
suppression sequence in the axial plane with TR = 29 ms, 
TE = 4.8  ms, flip angle = 45°, FOV = 36 × 36  cm, slice 
thickness = 1.12  mm, and gap = 0. A total of 160 slices 
were used to cover the entire breast. After acquiring one 
set of pre-contrast images, the contrast medium (gado-
benate diethylenetriamine pentaacetic acid, Gd-DTPA, 
Magnevist) was administered as a bolus injection (infu-
sion rate: 2 ml/s; dose: 0.2 mmol/kg per patient weight), 
followed by flushing with 20  ml of normal saline. Both 
the contrast medium and normal saline were injected 
into the vein through an automated contrast delivery 
system (Sonic Shot GX; Nemoto Kyorindo, Japan). Four 
sets of post-contrast enhanced images were obtained. 
The acquisition interval time for each was 3 min. In addi-
tion, a fat-suppressed T2-weighted sequence was per-
formed with the following parameters: TR = 6680  ms, 
TE = 5.3 ms, matrix size = 320 × 192, FOV = 36 cm, slice 
thickness = 3 mm, and gap = 0.

All images were further analyzed in using a dedicated 
workstation equipped with computer-aided detection 
for further analysis. The time-intensity curve (TIC) was 
generated by analyzing different color codes of fluid and 
edema.

Clinical and routine MRI characteristic assessment
Clinical and routine MRI characteristics (CRMC) 
were used to distinguish between benign and malig-
nant NME. The clinical variable assessed was age. 
Routine MRI characteristics were visually assessed by 
two breast radiologists (reader 1, with over 10 years of 
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experience; reader 2, with more than 13 years of expe-
rience) separately and independently. Both readers had 
access to the patients’ previous clinical and/or imaging 
information, except for the histopathological diagno-
sis, during their initial reading. The NME evaluation 
involved a comparison of both breasts to avoid false-
positive results caused by BPE. The final diagnosis was 
based on the consensus between the two radiologists.

The selection of image characteristics was based on 
the BI-RADS-MRI (2013) diagnostic guidelines, includ-
ing lesion distribution pattern (focal/linear/segment/
regional/multiple regions/diffuse) appeared or not and 
internal enhanced mode (homogeneous/heterogene-
ous/clumped/clustered ring) presence or absence. Fig-
ure  2 shown the MRI examples of these features. The 
relationship between lesion signal intensity and time 
was evaluated by TIC, which was categorized into per-
sistent, plateau, and washout patterns [2].

Fig. 1  The workflow of the inclusion and exclusion criteria of this study

Table 1  Histological types of lesions in the two groups: benign 
and malignant non-mass enhancement

Tumor group Number 
(cases)

Percentage (%)

Benign non-mass enhancement 58 39.5

 Fibrocystic changes 33 22.4

 Inflammation 20 13.6

 Mix 6 4.1

Malignant non mass enhancement 89 60.5

 Invasive ductal carcinoma 16 10.9

 Atypical ductal hyperplasia 18 12.2

 Ductal carcinoma in situ 11 7.5

 Invasive ductal carcinoma 13 8.8

 Invasive micropapillary carcinoma 3 2

 Apocrine carcinoma 1 0.7

 Mix 26 17.7
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TA
The 2nd to 5th contrast sequences were input into Mazda 
4.6 (a public software developed by the Institute of Elec-
tronics in Lodz Technical University, Poland) for TA 
[17–19]. For each case, a region of interest (ROI) was 
manually delineated by reader 1. The slice of the 2nd 
contrast phase that was selected to draw the ROI met 
the following criteria: (1) slice showing the largest cross-
section area of the NME and with no visible necrotic 
areas; and (2) selection of the largest slice when multiple 
lesions were found on one slice of the same breast. Then, 
reader 2 double-checked the ROI setting. If there was a 
disagreement on the boundary, the readers resolved it 
by discussing between themselves. The same ROI was 
placed on the same slice for the 3rd to the 5th contrast 
phases to ensure that the ROI could accurately reflect the 
change of NME grey-scale intensity in different post-con-
trast sequences caused by drug metabolism. In addition, 
to decrease the impact of image brightness and contrast 
variation on the TA results, the grey-level intensity was 
normalized within μ + 3σ (μ, mean grey value; σ, mean 
standard deviation [20].

The MaZda TA report could offer almost 300 texture 
parameters for each ROI. There are six texture feature 
categories included in this analysis: run-length matrix 
(RLM), autoregressive model (ARM), wavelet, abso-
lute gradient (GrM), histogram, and the co-occurrence 
matrix parameters (COM). Additionally, for each ROI, 
the RLM algorithm was computed in the vertical, hori-
zontal, 45-degree, and 135-degree directions, i.e., four 
times in all. The COM algorithm was derived from four 
directions (θ = 0, 45, 90, and 135), and the distance of the 
pixels ranged from 1 to 5, i.e., for each ROI, each of the 
five distances was counted separately in the four direc-
tions, making up a total of 20. As shown in Table 2 [17], 
the combined use of the feature extraction algorithms, 
including the Fisher coefficient, mutual information, clas-
sification error probability, and average correlation coeffi-
cients (POE + ACC), afforded the screening of the top 30 
texture features with the strongest ability to distinguish 

Fig. 2  The sequence of dynamic imaging performed using axial 
T1-weighted fat-suppression. a The second contrast-phase image 
shows an NME with homogeneous internal enhancement patterns 
(red irregular shape) and a linear distribution (red arrow). b The third 
contrast-phase image shows that the entire lesion enhancement was 
heterogeneous, with intermingling local, cluster-ring, and clumped 
enhancement (purple irregular shapes) and the appearance of 
segmental distribution (yellow arrow). c, d respectively show the focal 
(green irregular shape) and diffuse (green arrow) distribution patterns 
of NME in the fifth contrast-phase image. e, f Respectively show the 
regional (orange irregular shape) and multiple-region (blue arrow) 
distributions in the second contrast phase

Table 2  Texture parameters computed by MaZda

RLM, run-length matrix; ARM, Auto-regressive model; GrM, absolute gradient; COM, co-occurrence matrix parameters

Texture feature algorithm Parameters

RLM Grey-level/run-length nonuniformity, long/short run emphasis, fraction of image in runs

ARM Model parameter vector includes 4 parameters; Sigma: standard deviation of the noise

Wavelet Energy of the wavelet coefficients in subbands

GrM Kurtosis, skewness, variance, mean, percentage of pixels with a nonzero gradient

Histogram Skewness; mean; kurtosis; variance; and perc. 01%, perc. 10%, perc. 50%, perc. 90%, and perc. 99%

COM Angular second moment, correlation, contrast, sum of squares, inverse difference moment, sum 
variance, sum average, sum entropy, entropy, difference variance, difference entropy
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between benign and malignant NME. The TA workflow 
chart for NME is shown in Fig. 3.

Statistical analysis
Mann–Whitney U test was used to compare continuous 
variables. Categorical variables evaluated by Pearson’s 
chi-square test (n > 40, TRC > 5) or Yates’s correction 
for continuity (n > 40, 1 ≤ TRC < 5). Univariate logistic 
regression was performed initially on each variable, and 
the variables showing statistical significance in the uni-
variate logistic regression were further analyzed using 
multiple logistic regression to establish a discriminating 
model.

For assessing the diagnostic efficacy of each approach, 
the receiver operating characteristic (ROC) and the area 
under the curve (AUC) were evaluated. All data analy-
ses were performed on SPSS 22.0(Windows version), 
and a P value less than 0.05 was considered statistically 
significant.

Validation study
To evaluate the diagnostic performance of the com-
bined model, the data were divided into a training 
dataset of 102 cases and a validation set of 45 cases by 
simple random sampling with an approximate method in 
SPSS 22.0. The ratio of the two was 7:3. The mean ages 

of the training and validation cohorts were 38.7 + 6.8 
and 38.1 + 8.7  years, respectively. The number of cases 
of benign and malignant NME in the training data set 
were 40 and 62, respectively; the corresponding num-
bers for the validation set were 18 and 27. The holdout 
cross-validation method was used to verify the diagnos-
tic performance of the discriminating model constructed 
in multivariate logistic regression. AUROC values were 
applied as a measure of success. p < 0.05 was considered 
statistically different.

Results
CRMC
Among the 102 cases with pathologically proven NME, 
40 cases showed benign findings, and 62 cases showed 
malignancy. Patient age in cases showing benign find-
ings (36.1 ± 6.8) was lower than that in the cases showing 
malignancy (40.4 ± 6.2). The difference between the two 
groups was statistically significant (p < 0.001).

With the respect to the conventional MRI features 
of NME, a linear, multiple-region distribution and the 
washout time-intensity pattern were significantly more 
frequent in malignant lesions, whereas a distribution 
of focal areas and a plateau time-intensity pattern were 
common findings in benign lesions (p < 0.05). In con-
trast to the distribution (regional, segmental, diffuse) 

Fig. 3  Workflow for identification of benign and malignant non-mass enhancement based on texture analysis. Processes in blue boxes were 
performed in MaZda
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and internal enhancement modes, the persistence 
time-intensity patterns of NME did not differ signifi-
cantly between benign and malignant NME (p > 0.05) 
(Table 3).

Multivariate logistic regression analysis of CRMC 
showed 3 independent indicators with statistical sig-
nificance to discriminate benign and malignant NME, 
namely, age, linear distribution, and multiple-region 
distribution (p < 0.05). For ROC analysis, the AUC 
was 83.7% (CI, 0.76–0.91) and standard error was 0.04 
(p < 0.001). The sensitivity was 80.6% and the specificity 
was 72.5%.

Texture features
One, four, and eight statistically significant texture fea-
tures were selected from 2nd, 3rd, and 5th contrast 
phases respectively, and no statistically significant texture 
features were found in the 4th contrast phase (Table 4). 
Multivariate logistic regression analysis of TA found 
that three statistically significant texture features could 
discriminate benign and malignant NME, which were 
as follows: S (5, 5) Correlate (p = 0.01) from the second 
contrast phase, Perc.90% (p = 0.002), and S (4, − 4) Cor-
relate (p = 0.001) from the fifth contrast phase. For ROC 
analysis, the AUC was 74% (CI, 0.64–0.84) and standard 
error was 0.05, (p < 0.001). The sensitivity was 64.5% and 
the specificity was 70%.

Combined model
Multiple logistic regression was used to create a com-
bined model to predict malignant NME by using age, 
linear, multiple regions distribution, Perc.90%, S (5, 5) 
Correlate and S (4, − 4) Correlate, which were statistically 
significant and independent factors (p < 0.05) (Table 5).

For discriminate benign and malignant NME, the com-
bined model shown the best diagnostic efficiency, in 
comparison to the efficiencies of CRMC and TA alone. 
Its AUC was 88.7% (CI 0.83–0.95) and standard error was 
0.03 (p < 0.001). The sensitivity was 82.3% and specificity 
was 80% (Table 6, Fig. 4). 

Validation study results
The validation set included 18 benign and 27 malignant 
cases of NME, with a mean patient age of 38.1 ± 8.7 years 
(range, 16 to 52 years; p < 0.001). To verify the repeatabil-
ity of the combined model constructed by multiple logis-
tic regression, the holdout cross-validation method was 
used. Its AUROC was 81.9% (CI 0.68–0.92), sensitivity 
was 77.8%, and specificity was 72.2%, as shown in Table 6.

Discussion
In this study, we assessed the diagnostic value of texture 
features in discriminating benign and malignant NME. 
To this end, we compared three diagnostic methods: 
models using TA or CRMC alone and a model using a 
combination of these. The diagnostic efficacy obtained 

Table 3  Statistical results of clinical and routine MRI findings

*  p value, statistically significant (p < 0.05)

Clinical and routine 
MR characteristics

Benign
(n = 40)

Malignant
(n = 62)

p value

Age (years) 36.1 ± 6.8   (22–49) 40.4 ± 6.2 (25–54) < 0.001*

Distribution

 Focal area 9 (22.5%) 5 (8.1%) 0.039*

 Linear 10 (25%) 41 (66.1%) < 0.001*

 Segment 33 (82.5%) 56 (90.3%) 0.247

 Regional 23 (57.5%) 26 (41.9%) 0.125

 Multiple regions 12 (30.0%) 32 (51.6%) 0.031*

 Diffuse 3 (7.5%) 4 (6.5%) 0.838

Internal enhance-
ment

 Homogeneous 9 (22.5%) 13 (20.1%) 0.854

 Heterogeneous 31 (77.5%) 49 (79.1%) 0.854

 Clumped 32 (80.0%) 52 (83.9%) 0.617

 Clustered ring 9 (22.5%) 21 (33.9%) 0.218

TIC pattern

 Persistent 16 (40%) 22 (35.5%) 0.645

 Plateau 13 (32.5%) 6 (9.7%) 0.004*

 Washout 11 (27.5%) 34 (54.8%) 0.007*

Table 4  Statistically significant texture features in the FMC 
method of contrast phases

FMC, methods included Fisher coefficient, mutual information, classification 
error probability, and average correlation coefficients algorithms;
a  Data, the statistically significant texture features in the multiple regression 
analysis, which would be input into the combined diagnosis model to 
distinguish between benign and malignant NME

Dynamic 
enhanced 
phases

Texture 
parameters

Z value p value Algorithm 
model

2nd phase S (5,5) Correlata − 2.467 0.01 COM

3rd phase Perc.99% − 2.20 0.03 Histogram

Mean − 2.32 0.02 Histogram

Perc.50% − 2.28 0.02 Histogram

Perc.90% − 2.40 0.02 Histogram

5th phase Perc.99% − 2.29 0.02 Histogram

Perc.90%a − 2.55 0.01 Histogram

Perc.50% − 2.31 0.02 Histogram

Mean − 2.31 0.02 Histogram

Teta 3 − 2.05 0.04 ARM

S (4, − 4) Correlata − 2.41 0.02 COM

S (5, − 5) Correlat − 2.51 0.01 COM

Variance − 2.02 0.04 GRM
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with TA alone was not significantly higher than that with 
CRMC (74% vs 83.2%), but their combination resulted 
in additive effects and improved diagnostic perfor-
mance (AUC = 0.887, p < 0.05) (Table  6, Fig.  4). At the 
same time, the combined model was successfully veri-
fied as a promising diagnostic model in the validation set 
(AUC = 0.819). Our results also indicated that reducing 
the influence of BPE could improve the diagnostic speci-
ficity of CRMC, and this study yielded more information 
about the use of TA for assessment of NME in premeno-
pausal women.

Table 5  Logistic regression results of identifying benign and malignant NME in the training dataset

a  Data, features of CRMC
b  Data, texture feature from the 2nd contrast phase
c  Data, texture features from the 5th contrast phase

CRMC and texture features B value p value Odds ratio 95% confidence level

Agea 0.162 < 0.01 1.176 1.07–1.292

Multiple regions of distributiona 1.431 0.015 4.181 1.313–13.311

Lineara 2.283 < 0.01 9.81 2.959–32.521

S(5,5)Correlatb 0.697 0.034 2.009 1.053–3.832

S(4, − 4)Correlatc − 0.92 < 0.01 0.399 0.199–0.797

Perc. 90%c − 0.612 0.044 0.542 0.299–0.984

Table 6  ROC results for CRMC, TA, and combination model

AUC​
(95% CI)

Sensitivity (%) Specificity (%) p value

CRMC 83.7%
(0.76, 0.91)

80.6 72.5 < 0.01

TA 74%
(0.64, 0.84)

64.5 70 < 0.01

Combine

 Training set 88.7%
(0.83, 0.95)

82.3 80 < 0.01

 Validation set 81.9%
(0.68, 0.96)

77.8 72.2 < 0.01

Fig. 4  The ROC curves in different diagnostic methods to distinguish benign and malignant NME. a CRMC, TA, and combination diagnostic models 
in the training dataset; b the combination model in the validation data set
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The morphological features and dynamic contrast 
enhanced (DCE) parameters in benign and malignant 
NME have been studied extensively. Many investigators 
confirmed the results obtained by Tozaki et  al. for the 
NME internal enhancement and distribution patterns, 
and they suggested that most benign NMEs appeared 
with a linear distribution and homogeneous internal 
enhancement, whereas lesions exhibiting a heterogene-
ous and clustered ring internal enhancement with seg-
mental distribution were highly suggestive of malignant 
NME [21–23]. For the time-intensity curve (TIC), previ-
ous studies have demonstrated no statistically significant 
differences between benign and malignant lesions in any 
type of enhancement pattern [24]. However, the results of 
the present study were inconsistent with these findings, 
since the present study showed that a linear, segmen-
tal, and multiple-regions enhancement distribution and 
washout kinetic pattern were detected more frequently 
in malignancy, whereas a focal area-enhanced distribu-
tion with a plateau kinetic curve pattern was more likely 
to appear in benign lesions. Moreover, this study showed 
no evidence that a clumped, cluster ring with a homoge-
neous or heterogeneous structure was statistically signifi-
cant in identifying benign or malignant status. For ROC 
analysis, Shao et  al. performed a meta-analysis of diag-
nostic performance based on morphological characteris-
tics and enhanced parameters by using pooled weighted 
estimates, and their results indicated low sensitivity 
(50%) and high (80%) specificity. In contrast, the results 
of this study indicated high sensitivity (80.6%), while the 
specificity was not high (72.5%) [25].

The discrepancy might be attributed to the follow-
ing reasons. First, the inclusion criteria were different. 
The criteria for this study included measures to reduce 
the interference of BPE in NME diagnosis. Since some 
investigators believed that when BPE manifests as asym-
metric, regional, or focal distribution, it was difficult to 
distinguish BPE from NME [26–28]. Moreover, BPE 
might interfere with the delineation of tumor boundaries 
[29]. However, this major factor that affected the diag-
nostic accuracy of NME in premenopausal women was 
ignored by previous studies; Second, the interpretation of 
morphologic features  in MR images was highly depend-
ent on the radiologist’s experience level and lacked 
reproducibility. This might account for the different sen-
sitivities and specificities of NME diagnosis with routine 
MRI features.

At present, texture analysis by extracting the features 
of the particular area in an image is considered to be a 
repeatable and efficient auxiliary diagnostic method, the 
principle of which is based on the spatial distribution of 
the intensity level in each pixel [10, 13]. Unfortunately, to 
the best of our knowledge, few studies used TA in NME. 

Newell et  al. first used TA to diagnose NME, and their 
ROAUC was not high (0.76) [30]. The results of subse-
quent studies were similar, and our TA results were no 
exception, with the AUC, sensitivity, and specificity all 
lower than those with CRMC, indicating that the diag-
nostic efficiency of TA alone in NME diagnosis was not 
high. Some investigators had used TA combined with 
breast MRI morphology features to distinguish between 
phyllodes and fibroadenomas tumors, while others 
had combined TA with DWI parameters to predict the 
response to neoadjuvant chemotherapy for breast can-
cer, and their results demonstrated that combined TA 
could improve the diagnostic performance [31, 32]. On 
the basis of previous studies, we tried to use the combi-
nation of TA and CRMC in NME diagnosis. Our results 
showed that the diagnostic performance of the model 
combining TA and CRMC was greater than that achieved 
with CRMC or TA alone (AUC: 0.887 vs 0.832 vs 0.74). 
Furthermore, in comparison with CRMC, the combined 
model also showed greater specificity (72.5% vs 80%).

In addition, this study found that features from the 2nd 
and 5th contrast sequences were more meaningful in 
discriminating benign and malignant NME, which was 
consistent with previous results showing that the time to 
enhancement (TTE) and maximum slope (MS) in DCE-
MRI could distinguish benign and malignant NME. The 
pathological and pharmacokinetic mechanisms differed 
in benign and malignant lesions. Malignant tumors had 
abundant vascularity and highly permeable vessel walls 
that allowed easier transfer of the contrast agent from 
vessels to the extravascular space was easier; thus, malig-
nant lesions had shorter TTE and larger MS, while the 
benign lesions showed the opposite findings [33, 34]. 
This could explain why in the combined model, the tex-
ture features extracted from the 2nd and 5th contrast 
sequences were independently relevant to discriminate 
benign and malignant NME.

Limitations
The limitations of our studies should be noted: First, we 
used a small-sized retrospective database, which is sub-
ject to potential bias. Further studies using larger datasets 
and validating the combined model on other equipment 
should be attempted in the future. Moreover, manual ROI 
segmentation led to inevitable measurement errors; thus, 
the next step is to develop artificial intelligence tools that 
can accurately recognize these lesions.

Conclusions
The addition of TA to CRMC could improve the diagnos-
tic performance in NME, providing a noninvasive quanti-
tative approach for NME diagnosis that could distinguish 
malignant and benign lesions and decrease the excessive 
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surgery or benign NME core needle biopsy (Additional 
file 1).

Abbreviations
MRI: Magnetic resonance imaging; NME: Non-mass enhancement; TA: Texture 
analysis; CRMC: Clinical and routine MR characteristics; BI-RADS: Breast 
imaging-reporting and data system; BPE: Background enhancement; TIC: 
Time-intensity curve; ROI: Region of interest; AUC​: Area under the curve; DCE-
MRI: Dynamic contrast-enhanced magnetic resonance imaging; TTE: Time to 
enhancement; MS: Maximum slope.

Supplementary Information
The online version contains supplementary material available at https​://doi.
org/10.1186/s1288​0-021-00571​-x.

Additional file 1. Flow-chart shows the MRI scanning plan for this study. 
Process in blue-box is T1WI pre-contrast sequence and process in the 
pink-box is T1WI-pro-contrast sequence

Acknowledgements
We wish to acknowledge all the study subjects and nurses for their participa-
tion in this study.

Authors’ contributions
YT and HM: conception and manuscript writing. KMJ: guarantor of integrity of 
entire study. ZQH, ZL, CWL, HH, WT, YXL: data acquisition and interpretation. 
SXW and WT: performed the statistical analysis. All authors read the approved 
the final manuscript.

Funding
This work was funding by the Third Affiliated Hospital of Guangzhou Medical 
University Youth Research Project (Grant number 2017Q07). The funder played 
the role in collecting patients’ clinical data, processing the extracted texture 
features, and supporting professional English editing services to copyedit 
manuscript.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Ethics approval and consent to participate
This retrospective study was approved by the ethics committee of o Guang-
dong Women and children hospital. The requirement of signed patient 
informed consent was waived owing to the retrospective nature of this study.

Consent for publication
Not applicable.

Competing interests
All authors declare that they have no competing interests.

Author details
1 Department of Radiology, Guangdong Women and Children Hospital, 
No.521, Xingnan Road, Panyu District, Guangzhou 511400, China. 2 Depart-
ment of Radiology, The Third Affiliated Hospital of Guangzhou Medical 
University, Guangzhou, China. 

Received: 9 October 2020   Accepted: 21 February 2021

References
	1.	 Mercado CL. BI-RADS update. Radiol Clin North Am. 2014;52(3):481–7.

	2.	 Edwards SD, Lipson JA, Ikeda DM, Lee JM. Updates and revisions to the 
BI-RADS magnetic resonance imaging lexicon. Magn Reson Imaging Clin 
N Am. 2013;21(3):483–93.

	3.	 Giess CS, Raza S, Birdwell RL. Patterns of nonmasslike enhancement at 
screening breast MR imaging of high-risk premenopausal women. Radio-
graphics. 2013;33(5):1343–60.

	4.	 Milosevic ZC, Nadrljanski MM, Milovanovic ZM, Gusic NZ, Vucicevic 
SS, Radulovic OS. Breast dynamic contrast enhanced MRI: fibrocystic 
changes presenting as a non-mass enhancement mimicking malignancy. 
Radiol Oncol. 2017;51(2):130–6.

	5.	 Chadashvili T, Ghosh E, Fein-Zachary V, Mehta TS, Venkataraman S, Dialani 
V, Slanetz PJ. Nonmass enhancement on breast MRI: review of patterns 
with radiologic-pathologic correlation and discussion of management. 
AJR Am J Roentgenol. 2015;204(1):219–27.

	6.	 Santoso MR, Yang PC. Magnetic nanoparticles for targeting and imaging 
of stem cells in myocardial infarction. Stem Cells Int. 2016;2016:4198790.

	7.	 Dratwa C, Jalaguier-Coudray A, Thomassin-Piana J, Gonin J, Chopier J, 
Antoine M, Trop I, Darai E, Thomassin-Naggara I. Breast MR biopsy: patho-
logical and radiological correlation. Eur Radiol. 2016;26(8):2510–9.

	8.	 Gity M, Ghazi Moghadam K, Jalali AH, Shakiba M. Association of different 
MRI BIRADS descriptors with malignancy in non mass-like breast lesions. 
Iran Red Crescent Med J. 2014;16(12):e26040.

	9.	 Sakamoto N, Tozaki M, Higa K, Tsunoda Y, Ogawa T, Abe S, Ozaki S, Saka-
moto M, Tsuruhara T, Kawano N, et al. Categorization of non-mass-like 
breast lesions detected by MRI. Breast Cancer. 2008;15(3):241–6.

	10.	 Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision medicine and 
radiogenomics in breast cancer: new approaches toward diagnosis and 
treatment. Radiology. 2018;287(3):732–47.

	11.	 Giess CS, Yeh ED, Raza S, Birdwell RL. Background parenchymal enhance-
ment at breast MR imaging: normal patterns, diagnostic challenges, and 
potential for false-positive and false-negative interpretation. Radiograph-
ics. 2014;34(1):234–47.

	12.	 Marino MA, Pinker K, Leithner D, Sung J, Avendano D, Morris EA, Jochel-
son M. Contrast-enhanced mammography and radiomics analysis for 
noninvasive breast cancer characterization: initial results. Mol Imaging 
Biol. 2020;22(3):780–7.

	13.	 Holli K, Laaperi AL, Harrison L, Luukkaala T, Toivonen T, Ryymin P, 
Dastidar P, Soimakallio S, Eskola H. Characterization of breast cancer 
types by texture analysis of magnetic resonance images. Acad Radiol. 
2010;17(2):135–41.

	14.	 Chitalia RD, Kontos D. Role of texture analysis in breast MRI as a cancer 
biomarker: a review. J Magn Reson Imaging. 2019;49(4):927–38.

	15.	 Fan M, Wu G, Cheng H, Zhang J, Shao G, Li L. Radiomic analysis of DCE-
MRI for prediction of response to neoadjuvant chemotherapy in breast 
cancer patients. Eur J Radiol. 2017;94:140–7.

	16.	 Kajihara M, Goto M, Hirayama Y, Okunishi S, Kaoku S, Konishi E, Shinkura 
N. Effect of the menstrual cycle on background parenchymal enhance-
ment in breast MR imaging. Magn Reson Med Sci. 2013;12(1):39–45.

	17.	 Szczypinski PM, Strzelecki M, Materka A, Klepaczko A. MaZda—a software 
package for image texture analysis. Comput Methods Programs Biomed. 
2009;94(1):66–76.

	18.	 Materka A. Texture analysis methodologies for magnetic resonance imag-
ing. Dialogues Clin Neurosci. 2004;6(2):243–50.

	19.	 Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical 
images. Clin Radiol. 2004;59(12):1061–9.

	20.	 Waugh SA, Purdie CA, Jordan LB, Vinnicombe S, Lerski RA, Martin P, 
Thompson AM. Magnetic resonance imaging texture analysis classifica-
tion of primary breast cancer. Eur Radiol. 2016;26(2):322–30.

	21.	 Tozaki M, Fukuda K. High-spatial-resolution MRI of non-masslike breast 
lesions: interpretation model based on BI-RADS MRI descriptors. AJR Am J 
Roentgenol. 2006;187(2):330–7.

	22.	 Chen QL, Luo Z, Zheng JL, Li XD, Liu CX, Zhao YH, Gong Y. Protective 
effects of calcium on copper toxicity in Pelteobagrus fulvidraco: copper 
accumulation, enzymatic activities, histology. Ecotoxicol Environ Saf. 
2012;76(2):126–34.

	23.	 Chikarmane SA, Michaels AY, Giess CS. Revisiting nonmass enhancement 
in breast MRI: analysis of outcomes and follow-up using the updated 
BI-RADS atlas. AJR Am J Roentgenol. 2017;209(5):1178–84.

	24.	 El Khouli RH, Macura KJ, Jacobs MA, Khalil TH, Kamel IR, Dwyer A, 
Bluemke DA. Dynamic contrast-enhanced MRI of the breast: quantitative 

https://doi.org/10.1186/s12880-021-00571-x
https://doi.org/10.1186/s12880-021-00571-x


Page 10 of 10Tan et al. BMC Med Imaging           (2021) 21:48 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

method for kinetic curve type assessment. AJR Am J Roentgenol. 
2009;193(4):W295-300.

	25.	 Shao Z, Wang H, Li X, Liu P, Zhang S, Cao S. Morphological distribution 
and internal enhancement architecture of contrast-enhanced magnetic 
resonance imaging in the diagnosis of non-mass-like breast lesions: a 
meta-analysis. Breast J. 2013;19(3):259–68.

	26.	 Hegenscheid K, Schmidt CO, Seipel R, Laqua R, Ohlinger R, Hosten N, 
Puls R. Contrast enhancement kinetics of normal breast parenchyma 
in dynamic MR mammography: effects of menopausal status, oral 
contraceptives, and postmenopausal hormone therapy. Eur Radiol. 
2012;22(12):2633–40.

	27.	 DeMartini WB, Liu F, Peacock S, Eby PR, Gutierrez RL, Lehman CD. Back-
ground parenchymal enhancement on breast MRI: impact on diagnostic 
performance. AJR Am J Roentgenol. 2012;198(4):W373-380.

	28.	 Brooks JD, Sung JS, Pike MC, Orlow I, Stanczyk FZ, Bernstein JL, Morris EA. 
MRI background parenchymal enhancement, breast density and serum 
hormones in postmenopausal women. Int J Cancer. 2018;143(4):823–30.

	29.	 Amano Y, Woo J, Amano M, Yanagisawa F, Yamamoto H, Tani M. MRI 
texture analysis of background parenchymal enhancement of the breast. 
Biomed Res Int. 2017;2017:4845909.

	30.	 Newell D, Nie K, Chen JH, Hsu CC, Yu HJ, Nalcioglu O, Su MY. Selection 
of diagnostic features on breast MRI to differentiate between malignant 
and benign lesions using computer-aided diagnosis: differences in 

lesions presenting as mass and non-mass-like enhancement. Eur Radiol. 
2010;20(4):771–81.

	31.	 Mai H, Mao Y, Dong T, Tan Y, Huang X, Wu S, Huang S, Zhong X, Qiu Y, Luo 
L, et al. The utility of texture analysis based on breast magnetic resonance 
imaging in differentiating phyllodes tumors from fibroadenomas. Front 
Oncol. 2019;9:1021.

	32.	 Eun NL, Kang D, Son EJ, Park JS, Youk JH, Kim JA, Gweon HM. Texture 
analysis with 30-T MRI for association of response to neoadjuvant chemo-
therapy in breast cancer. Radiology. 2020;294(1):31–41.

	33.	 Goto M, Sakai K, Yokota H, Kiba M, Yoshida M, Imai H, Weiland E, Yokota I, 
Yamada K. Diagnostic performance of initial enhancement analysis using 
ultra-fast dynamic contrast-enhanced MRI for breast lesions. Eur Radiol. 
2019;29(3):1164–74.

	34.	 Yang X, Dong M, Li S, Chai R, Zhang Z, Li N, Zhang L. Diffusion-weighted 
imaging or dynamic contrast-enhanced curve: a retrospective analysis 
of contrast-enhanced magnetic resonance imaging-based differ-
ential diagnoses of benign and malignant breast lesions. Eur Radiol. 
2020;30:4795–805.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Additive value of texture analysis based on breast MRI for distinguishing between benign and malignant non-mass enhancement in premenopausal women
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Study population
	MRI protocol
	Clinical and routine MRI characteristic assessment
	TA
	Statistical analysis
	Validation study

	Results
	CRMC
	Texture features
	Combined model
	Validation study results

	Discussion
	Limitations

	Conclusions
	Acknowledgements
	References


