
1 October 2019 | Volume 10 | Article 1009

TECHNOLOGY AND CODE

doi: 10.3389/fgene.2019.01009
published: 22 October 2019

Frontiers in Genetics | www.frontiersin.org

Measurement of Conditional 
Relatedness Between Genes Using 
Fully Convolutional Neural Network
Yan Wang 1,3, Shuangquan Zhang 1, Lili Yang 2, Sen Yang 1, Yuan Tian 3* and Qin Ma 4

1 Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer 
Science and Technology, Jilin University, Changchun, China, 2 Department of Obstetrics, The First Hospital of Jilin University, 
Changchun, China, 3 School of Artificial Intelligence, Jilin University, Changchun, China, 4 Department of Biomedical 
Informatics, College of Medicine, The Ohio State University, Columbus, OH, United States

Measuring conditional relatedness, the degree of relation between a pair of genes in a 
certain condition, is a basic but difficult task in bioinformatics, as traditional co-expression 
analysis methods rely on co-expression similarities, well known with high false positive 
rate. Complement with prior-knowledge similarities is a feasible way to tackle the 
problem. However, classical combination machine learning algorithms fail in detection 
and application of the complex mapping relations between similarities and conditional 
relatedness, so a powerful predictive model will have enormous benefit for measuring 
this kind of complex mapping relations. To this need, we propose a novel deep learning 
model of convolutional neural network with a fully connected first layer, named fully 
convolutional neural network (FCNN), to measure conditional relatedness between genes 
using both co-expression and prior-knowledge similarities. The results on validation and 
test datasets show FCNN model yields an average 3.0% and 2.7% higher accuracy 
values for identifying gene–gene interactions collected from the COXPRESdb, KEGG, 
and TRRUST databases, and a benchmark dataset of Xiao-Yong et al. research, by grid-
search 10-fold cross validation, respectively. In order to estimate the FCNN model, we 
conduct a further verification on the GeneFriends and DIP datasets, and the FCNN model 
obtains an average of 1.8% and 7.6% higher accuracy, respectively. Then the FCNN 
model is applied to construct cancer gene networks, and also calls more practical results 
than other compared models and methods. A website of the FCNN model and relevant 
datasets can be accessed from https://bmbl.bmi.osumc.edu/FCNN.

Keywords: conditional relatedness between genes, fully convolutional neural network, co-expression similarity, 
prior-knowledge similarity, gene network

INTRODUCTION

Conditional relatedness between a pair of genes is a degree of the relation between two genes in a 
certain condition, e.g. in cancer tissues or inflammation, implying the probability of these genes 
jointly involved in a biological process under such cell environment (Wang et al., 2019). It is different 
from gene–gene interaction meaning a 0/1 (non-interacting/interacting) binary relation between 
a pair of genes. Measuring such relatedness is a basic tool for understanding the biological and 
functional relations between genes in a real cell environment (Jelier et al., 2005; Mistry and Pavlidis, 
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2008). And the measured relatedness is classically used as weights 
on connections of genes for construction of gene networks in 
different environments for further biological analysis (Amrine 
et al., 2015; Li et al., 2018).

Traditionally, expression similarity as well as co-expression 
is used to measuring conditional relatedness, including Pearson 
correlation coefficient (PCC) (Eisen et al., 1998), Spearman rank 
correlation (SRC) (Kumari et al., 2012), mutual information (MI) 
(Song et al., 2012), partial Pearson correlation (PPC) (Baruch and 
Albert-László, 2013), and conditional mutual information (CMI) 
(Kim et al., 2010). PCC can express the linear relationship between 
a pair of genes, SRC and MI represent the nonlinear relationship, 
and PPC and CMI indicate the direct linear relationship and the 
direct nonlinear relationship under the condition of excluding 
other genes’ interferences, respectively. Expression similarities 
have been successfully applied in measuring conditional 
relatedness for constructing gene networks, on which Poliakov 
et al. identify disease-related metabolic pathways (Poliakov 
et al., 2014). However, when acquiring gene expression data, it 
often contains some inevitable noise, which causes errors in the 
calculation of conditional relatedness, well known as high false 
positive rate.

Another type of similarity, prior-knowledge similarity, is also 
used to measure gene–gene relatedness, based on the documented 
biological data and functional annotations in public domain, 
such as the Gene Ontology (GO) (Consortium, 2004), the KEGG 
(Kanehisa and Goto, 2000), the Reactome (de Bono et al., 2005), 
the OrthoDB (Zdobnov et al., 2016), the TRRUST (Han and Puri, 
2018), etc. It brings high accuracy (ACC) (Diebold and Mariano, 
1995), as the prior-knowledge similarity is confirmed by the 
biological experiment. But the biological experiment is usually 
conducted in a normal condition, meaning prior-knowledge 
similarity is hardly used for measuring conditional relatedness.

By the above understanding, integration of expression and 
prior-knowledge similarities is an effective way to avoid the 
shortage of using only one category of similarity to measuring 
conditional relatedness between genes, as a pair of genes with 
high expression similarity but low prior-knowledge similarity 
implies their relatedness is most likely a false prediction by 
co-expression analysis, and the two genes with low expression 
similarity but high prior-knowledge similarity implies their 
relatedness is not specific in the condition. The gene pair with 
both high expression and prior-knowledge similarities should 
be scored a high rank and recommended by a model. Wang 
et  al. proposed a support vector machine (SVM) model using 
both expression and prior-knowledge similarities to measure 
conditional relatedness between a pair of genes, and their 
computational results showed the proposed model outperforms 
the existing co-expression analysis methods and other integration 
models (Wang et al., 2019). The combination of both kinds of 
similarities has been also succeeded in other related biological 
issues, e.g., detection of protein–protein interaction (PPI) (Jing 
and Ng, 2010), measuring functional similarity of gene products 
(Mistry and Pavlidis, 2008), and identification of disease-causing 
gene (Mohammadi et al., 2011).

Because of the fast growth of the deep learning technology, 
deep learning algorithms have outperformed the state-of-the-art 

traditional machine learning algorithms in many research 
field of bioinformatics. Babak et al. adapted the deep learning 
convolutional neural network to the task of predicting sequence 
specificities and showed that they compete favorably with the 
state of the art (Babak et al., 2015), and their results show that 
their approach outperforms other state-of-the-art methods. Pan 
and Shen proposed a deep learning-based framework by using 
a novel hybrid convolutional neural network and deep belief 
network to predict the RNA-binding proteins (RBP) interaction 
sites and motifs on RNAs.They validate their method on 31 large-
scale datasets, and their experiments show that the average area 
under the curve (AUC) (Lobo et al., 2010) can be improved by 
8% compared to the best single-source-based predictor (Pan and 
Shen, 2017). Trebeschi et al. applied the deep learning methods 
to automatic localization and segmentation of rectal cancers on 
multiparametric MRI, and their results demonstrate that deep 
learning can perform accurate localization and segmentation of 
rectal cancer in multiparametric MRI in the majority of patients 
(Trebeschi et  al., 2017). Gao et al. proposed a new computational 
approach based on deep neural networks to predict tRNA gene 
sequences, and their proposed methods outperformed the 
existing methods under different metrics (Gao et al., 2019).

Motivated by the above mentioned, we develop a novel deep 
learning model of convolutional neural network (CNN) with 
a fully connected first layer, named fully convolutional neural 
network (FCNN), to measure conditional relatedness between 
genes using both expression and prior-knowledge similarities. 
The goal of our model is to keep and recommend gene pairs with 
both high expression and prior-knowledge similarities. The fully 
connected first layer makes our model extracting more useful 
information than traditional CNN and the rest CNN structure 
makes our model easier to train than all fully connected deep 
learning models. In line of the above two advantages and 
integrating of co-expression and prior-knowledge similarities, 
FCNN model calls better results than other models and methods 
for identifying gene–gene interactions and constructing cancer 
gene networks. First, the FCNN model acquires an average 3.0% 
and 2.7% higher ACC values on validation and test samples 
collected from the COXPRESdb, KEGG, and TRRUST databases 
and a benchmark dataset of Xiao-Yong et al. research (Xiao-
Yong et al., 2010). Then we perform a further verification on the 
samples from the GeneFriends and DIP databases, and the FCNN 
model obtains an average of 1.8% and 7.6% higher accuracy, 
respectively. Finally, the FCNN model is utilized to construct 
cancer gene networks, which also obtains more practical results, 
comparing with other models and methods. The source code of 
FCNN, as well as the datasets and results of this research, are 
freely available in https://bmbl.bmi.osumc.edu/FCNN.

MATERIALS AND METHODS

Dataset Collection
We take gene pairs with/without expression similarity 
(co-expression) and prior-knowledge similarity (protein–protein 
interaction, involvement in a same pathway, and transcriptional 
regulation) as samples to compose a whole dataset to make our 
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model be trained to predict gene pairs with high expression 
similarity as well as those with high prior-knowledge similarity 
at the same time, i.e., to identify gene pairs with both high 
expression and prior-knowledge similarities. Therefore, the 
dataset used for training, validation, and test consists of two 
sub-datasets, so called co-expression sub-dataset and prior-
knowledge sub-dataset.

The co-expression sub-dataset is collected from the 
COXPRESdb database (Release v7.1) (Yasunobu et al., 2015), 
where co-expressed gene pairs are sorted ascendingly by the 
mutual rank (MR) (Obayashi and Kinoshita, 2009). The smaller 
the MR value is, the higher co-expression it has. For each gene, we 
select the top 30 co-expressed genes to compose 30 co-expressed 
gene pairs from the Hsa-u.v18-10 and Mmu-u.v18-10 datasets 
in the COXPRESdb database, respectively. Then we select gene 
pairs as positive samples that they are commonly co-expressed 
in Hsa-u.v18-10 and Mmu-u.v18-10 datasets. To relieve the 
imbalanced problem between positive and negative samples, 
for each gene, we select middle 60 non-co-expressed genes to 
compose negative samples, similarly as composing the positives, 
where negative samples are the non-co-expressed gene pairs 
with PPC values around 0. There are 32,735 positive samples and 
26,782 negative samples in the sub-dataset.

The prior-knowledge sub-dataset is composed of three parts. 
A) We collect gene-pair samples from the KEGG database (Release 
Nov 1, 2018) (Kanehisa, 2002) as the first part, where positive 
samples are gene pairs composited by the genes involved in at 
least two same pathways, and the negative samples are randomly 
selected gene pairs composited by the genes never engaged in the 
same pathway, with the same number of the positives. There are 
11,526 positive samples and 11,526 negative samples in the first 
part. B) Next, for the second part, we use 15,222 gene pairs with 
PPI from a benchmark dataset of Pan et al. research (Pan et al., 
2010) as the positive samples and 21,579 gene pairs without PPI 
as the negatives. C) In terms of the third part of the sub-dataset, 
we collect 7,361 gene pairs with the transcriptional regulation 
records in the TRRUST database (Release v2) (Han et  al., 
2017) as the positive samples and 7,361 gene pairs by random 
permutation of the transcription factor and the regulated gene 
in the positive ones (Nakamura et al., 2004; De et al., 2005; Wang 
et al., 2019).

Finally, there are a total of 66,844 positive and 67,248 negative 
samples. Specially, some negative samples were obtained by 
permutation of the positives and were then selected randomly 
to ensure the same number of positives for construction of a 
model with high generalization. And to avoid the bias of random 
permutation and selection of negative samples, we conduct the 
above process 100 times, rising to 100 datasets, in each of which 
a fixed percentage of the samples are used to training, validation, 
and test, according to the detailed proportion of the sub and 
sub-sub datasets. Also, the labels for the positive gene pairs are 
marked as 1s and those for the negatives as 0s. The details of each 
sub-dataset are showcased in Table 1.

For model verification, the gene pairs downloaded from 
the GeneFriends (Release v3.1) (Sipko et al., 2015) and DIP 
(Release Feb 13, 2017) (Xenarios et al.) databases are utilized as 
samples. In the GeneFriends database, we select overall 8,675 

co-expressed gene pairs with top 20 PCC values for each gene as 
the positive samples. Because there is only a small part of genes 
that are co-expressed in the human genome, we used 8,675 gene 
pairs obtained by random permutation of the first and second 
genes in the positive gene pairs as the negative samples. Similarly, 
1,396 gene pairs with direct PPI collected from the DIP database 
are used as the positive samples. Considering gene pairs with 
real PPIs are rare in the whole human genome, the 1,396 gene 
pairs by permutation of the two genes in the positive samples 
are used as the negatives. To avoid the bias of permutation, we 
conduct the above process 100 times, rising to 100 datasets from 
the GeneFriends and DIP databases, respectively.

Gene-Pair Features Calculation
To measure conditional relatedness between a pair of genes and 
avoid the deficiencies of using a single type of feature, we use 
two kinds of features of gene pairs, including the expression 
similarities and prior-knowledge similarities.

In the former one, there are seven features, which are the average 
expression level of each gene of a gene pair, including Mean1 and 
Mean2, and five co-expression levels, including PCC, SRC, PPC, 
MI, and CMI. The expression data for calculation of expression 
similarities are collected from the GEO datasets (Barrett et al., 
2012) based on the Affymetrix Human Genome U133 Plus 2.0 
Array platform (released on Nov 2003). Then a pre-processing is 
executed, including log2 scale and quantile normalization.

The latter one contains five features such as GO similarity 
(GOsim) (Wang et al., 2007), subcellular location similarity (LCsim) 
(Yu et al., 2010), hormonology similarity (HGsim) (Chen and 
Vitkup, 2006), Reactome similarity (RCsim) (David et al., 2014), 
and transcriptional regulation similarity (FRsim) (Nagafuchi et al., 
1991). The details of these features are defined as follows. 

 
GOsim Pms g q

Pi j g G q Gi j, max log( ( , ) )
log( (g) lo, ,

=
+∈ ∈

2

gg ( ))P q  (1)

where Gi and Gj represent the GO term sets used for annotating 
gene i and j, respectively; p(g) represents the probability of a gene 
annotated by an instance of GO term g, and Pms(g,q) represents 
the minimum probability of a gene annotated by an instance of 

TABLE 1 | The structure of FCNN dataset.

Sub dataset Sub-sub dataset Type of gene pair Sample size

Co-expression Co-expression Positive 32,735
Negative 26,782

Prior-knowledge KEGG Positive 11,526
Negative 11,526

PPI Positive 15,222
Negative 21,579

TRRUST Positive 7,136
Negative 7,136

DIP DIP Positive 1,396
Negative 1,396

GeneFriends GeneFriends Positive 8,675
Negative 8,675
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a common ancestor GO term of g and q. The GO terms of genes 
used here are the biological process GO terms with experimental 
evidence downloaded from the GO database (Kumari et al., 
2012), where a GO tree is built by the relations among GO terms, 
including “is a”, “part of ”, “has part”, and “regulates”.

 
LCsimi j

i j

i j
,

|S S |
|S S |

=
∩
∪  (2)

where Si and Sj represent the subcellular sets of two proteins 
encoded by gene i and gene j, respectively. The subcellular 
information of genes is collected from the GO database.

 

HGsim
L K v v

L v v L v v
i j

i j
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,
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=
× − ×

× − × −2 2  (3)

where vi and vj represent the number of species whose genome 
contains homologous genes of gene i and j, respectively; L 
represents the total number of species; and K represents the 
number of species whose genome contains the homologous gene 
of both gene i and j.

 
RCsim

d
di j

i j
,

,= −1
max

 (4)

where di,j represents the shortest distance between gene i and 
gene j in the graph constructed by gene–gene interactions 
collected from the Reactome database (Croft et al., 2011), and 
dmax represents the shortest distance of the farthest gene pair.

FRsimi j,
,

=
1 if there is a transcriptional regulattion record

otherwise0,






 (5)

where FRsimi,j is equal to 1, if there is a transcriptional regulation 
between gene i and j recorded in the HTRIdb database (Bovolenta 
et al., 2012), and is equal to 0, otherwise. Meanwhile, all the 
databases and relevant data source used to compute these two 
kinds of gene-pair features are listed in Supplementary Table S5.

Model Construction
In the study, we design a model using CNN with a fully connected 
first layer, named FCNN to measure conditional relatedness of 
gene pairs shown as Figure 1. On one hand, the fully connected 
first layer of FCNN keeps our model from ignoring important 
feature combination. On the other hand, the CNN structure 
makes our model easy to train because of its parameter sharing 
and sparse connections. In detail, the model contains six layers. 
The first layer is a fully connected layer with 81 neurons and used 
for getting as much information as possible. The 12 features X = 
[x1,…,x12] as the inputs are fed into this layer to get the activation 
score aj 

of neural j:

 
a x bj i j i j

i

= ∗ +
=

∑ω ,
1

12

 (6)

where ωij represents the weight between the xi and neural j; and bj represents the bias. Then we reshape the output A1 = [a1,a2,…,a81] 
into a 9*9 matrix ′A1 :

 

′ =



















A
a a

a a
1

1 9

73 81



 



O  (7)

which is convenient to operate the convolution. The second layer 
is a convolutional layer using 20 convolutional kernels of size 2*2 
and stride of 1. The output of each neuron of this layer is the 

FIGURE 1 | The structure of the FCNN model.
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convolution between a kernel matrix and a part of the input. The 
result A2 of the second layer is defined as:

 A Conv A2 1= ′tanh( ( ))  (8)

where Conv(⋅) represents the convolution operation and ReLU(⋅) 
represents the rectified linear unit function. The third layer is a 
maximum pooling layer with the kernel of size 2*2 and stride of 
2, which is used to down sample and reduce the dim of input by 
selecting the maximum value in each input. The output from the 
maximum pooling is recorded as A3:

 A pool A3 2= Max_ ( )  (9)

A dropout operation is used on the third layer to randomly 
reduce a part of its output to avoid overfitting. The fourth layer is 
a convolutional layer with five kernels, and its kernel size is 2*2 
with stride 1. The fifth layer is a maximum pooling layer with 
the kernel of size 2*2 and stride of 2. The purpose of using these 
layers is to further extract the information of the input features 
and improve the accuracy of the prediction. The results A4 and A5 of the fourth and the fifth layers are defined as

 A Conv A4 3= tanh( ( ))  (10)

 A A5 4= Max_pool( )  (11)

where tanh(.) represents the hyperbolic tangent activation 
function. The last layer is a fully connected output layer with the 
predicted conditional relatedness ŷk  of sample k defined as

 ˆ ( ' )y Sigmoid W A bk f
T

f= ⋅ +5  (12)

 
Sigmoid

e x(x) = 1
1+ −  (13)

where ′A5  represents the reshaped vector of A5; Wf and bf 
represent the weight vector and the bias of the final layer, 
respectively. We apply the Binary Cross Entropy loss (BCEloss) 
as the loss function of FCNN model defined as

 BCEloss y y y yk k k k= − + − −[ log( ˆ ) ( )log( ˆ )]1 1  (14)

where yk represents ground true label 1/0 of the positive/negative 
sample k, and K represents the total number of all samples. The 
optimal algorithm is RMSPROP (Zhang et al., 2019).

Based on the CNN structure with a fully connected first layer, 
our model is trained by grid-search 10-fold cross-validation, and 
the hyper-parameters with the highest AUC value of the whole 
cross-validation are employed, including kernel size, stride, 
etc. For the detailed description of the architecture and hyper-
parameters, see Optimizing the FCNN Model section.

Experimental Design
Herein, our experiment breaks down four parts, depicted as 
Figure 2, in detail. First, gene-pair samples are collected from 

three databases and a benchmark dataset to compose the dataset 
for FCNN construction, which contains co-expression and 
prior-knowledge sub-datasets. Second, 12 gene-pair features are 
calculated, including seven expression similarities and five prior-
knowledge similarities. Third, FCNN is constructed by grid search 
in a 10-fold cross-validation process. Finally, FCNN is evaluated 
by comparing with 12 models and methods in 10-fold cross-
validation, test, verification, and construction of gene network.

The 12 compared models and methods consist by seven 
models, including logistic regression (LR), linear discriminant 
analysis (LDA), SVM, deep belief network (DBN), fully 
connected neural network (FNN), CNN, and MFR (Wang et al., 
2019), as well as five co-expression analysis methods, including 
PCC, SRC, MI, PPC, and CMI. In these models and methods, LR, 
LDA, and SVM are traditional machine learning technologies 
applied in many fields (Zhang et al., 2006; AndrewCucchiara, 
2012; Asafu-Adjei et al., 2013). 

Specifically, the SVM model is constructed with the radial basis 
kernel function. DBN is a classical deep learning generation model, 
which combines restricted Boltzmann machine (Pang et al., 2018) 
and neural network structure. Multi-Features Relatedness (MFR) is 
a SVM-based model with linear kernel function proposed recently, 
integrating both expression and prior-knowledge similarities to 
measuring conditional relatedness. And PCC, SRC, MI, PPC, and 
CMI are traditional methods for measuring conditional relatedness 
between a pair of genes.

For each model and method, we conduct 10-fold cross-
validation using 81% samples in dataset collected from the 
COXPRESdb, KEGG, and TRRUST databases and a benchmark 
dataset of Pan et al. research (Pan et al., 2010) for training, 9% 
samples for validation, and the rest 10% for test. And the results 
of validation and test are used to compare models and methods 
in terms of precision. Moreover, samples obtained from the 
GeneFriends and DIP databases are used for further verification 
to compare different models or methods in robustness. We also 
compare the practicability of models and methods in terms of 
cancer gene network construction. To compare the performance 
of each model or method, we select the receiver operating 
characteristic curve (ROC) with its AUC (Lobo et al., 2010) and 
the ACC value as the criteria.

RESULTS

Optimizing the FCNN Model
We built our parameterized FCNN model using Pytorch (Aorte 
et al., 2019). The optimal hyper-parameters are obtained from 
various combinations based on baseline parameters by grid 
search within 10-fold cross-validation. We test hyper-parameter 
combinations containing the kernel size, stride, learning rate, 
activation functions, dropout probability, etc., and get the 
experimental results of the different hyper-parameters shown 
as Table 2. Specially, the FCNN model is trained by minimizing 
the BCEloss with RMSprop optimizer (Zhao et al., 2019) in the 
light of the AUC of validation and test datasets. As shown in 
Table 2, the best hyper-parameters for combination of activation 
function, the kernel size, stride, the number of neurons in the 
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first layer, learning rate, the dropout probability, and the batch 
size is Tanh_Tanh, 2, 1, 81, 0.001, 0.1, and 250, respectively.

Table 2 reflects the experimental results of the combining 
hyper-parameters. The nine kinds of combination of three 
activation functions (ReLU, Sigmoid, and Tanh) are evaluated. 
As a result, combination of Tanh and Tanh is optimal. The 
kernel size and the stride of the FCNN model are changed 
to 2 and 3, and 1 and 2, respectively. The kernel of 2 and the 
stride of 1 are the best suitable for our approach, respectively. 
The neuron number of the first layer is changed to 5*5, 9*9, 
and 13*13, and we find 9*9 is optimal. The learning rate is 
changed to 0.0001, 0.001, and 0.01, and the learning rate of 
0.001 shows our approach obtains the best performance in 

both validation and test AUC. To avoid the overfitting, the 
dropout probability is applied in our approach, changed to 
0.1, 0.2, and 0.3. The dropout probability of 0.1 presents the 
highest AUC in training and test; meanwhile, the larger the 
dropout probability, the lower the AUCs on validate and test 
datasets. And then the batch size for the model is also changed 
to 200, 250, and 300, which shows that the batch size of 250 
gets the best performance. To sum up, the combination of the 
kernel size of 2, the stride of 1, the neuron number of 81 in the 
first layer, the learning rate of 0.01, the dropout probability of 
0.1, and the batch size of 250 is optimal. And we also list the 
optimal condition under a single hyper-parameter, based on 
our experiments.

FIGURE 2 | The flowchart of experimental design in biological pathways identification.
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Comparison With Existing Methods
The best parameters of all models are obtained by grid search within 
10-fold cross-validation, and the results of the final models with 
the best parameters are applied to compare models and methods 
in terms of precision. As shown in Figures 3A, B, most machine 
learning models perform better than the co-expression analysis 
methods, and our FCNN model has the highest AUC value of 
0.831 and ACC of 0.761 than the others. CNN model is better than 
others except for the FCNN model, with an AUC value of 0.796 
and ACC of 0.731, but the DBN model performs the worst among 
all models and methods. In the light of Figures 3C–D, the FCNN 
model obtains the highest AUC and ACC against all models and 
methods on the test dataset. And the CNN model yields higher 
AUC value of 0.799 and ACC value of 0.734, which is better than 
other models and methods besides the FCNN model.

To test the generalization and robustness of all models and 
methods on the samples obtained from the GeneFriends and 
DIP databases, all models applied on this further verification 
are trained without samples from the GeneFriends and DIP 
databases. As shown in Figures 3E–H, the result on the 
GeneFriends database reflects the robustness of models and 
methods in detecting gene–gene interactions from co-expression 
dataset, and the performance on the DIP database indicates 
generalization in identifying gene–gene interactions from the 
prior-knowledge datasets. Figures 3E–H shows that FCNN 
model obtains the third largest AUC value of 0.725 and the 
highest ACC value of 0.693 among all models and methods on 
the GeneFriends samples, and AUC and ACC values of FCNN 

model are better than others on the DIP samples, which are 0.786 
and 0.674, respectively.

To clarify the performance of the trained FCNN model on 
the co-expression, PPI, KEGG, and TRRUST sub-sub datasets, 
respectively, we applied all models and methods to these four 
sub-sub datasets and the results shown as Figure S1. According 
to Figure S1, our approach achieves the highest AUC of 0.938, 
0.578, and 0.532 on the co-expression, PPI, and TRRUST datasets, 
respectively. For the KEGG dataset, AUC of 0.628 of the FCNN 
model is a little lower than AUC of 0.63 the CNN model obtained. 
In light of the above results, it is reasonable that the AUC of 
FCNN model on the co-expression dataset is higher than on the 
prior-knowledge dataset, which reflects that our models identify 
the relationship of genes mainly depending on the co-expression 
information. And the prior-knowledge information only acts as 
an auxiliary role in the process of identifying gene relationships. 
To the best of our knowledge, the co-expression information 
can powerfully reflect the relatedness of genes in a real cell 
environment, but possibly contains some error messages. And 
the prior-knowledge information is invested to relieve these 
error messages, as the relatedness of gene pairs support by the 
prior-knowledge messages is global, meaning only a small part of 
those relatedness is activated on a certain condition. Meanwhile, 
it also implies our model is not suitable for catching the global 
relatedness of gene pairs support by the prior knowledge.

Constructing Cancer Gene Networks
Genes act as a vital role in many human diseases, most of which 
often work with each other and affect human health (Li et al., 
2018), and the weighed gene network provides an effective method 
to study the relationship between genes (Yang et al., 2014). There is 
a property of gene networks in which the genes involved in related 
biological processes are connected to each other to compose gene 
subnetworks with density inside connections and sparse outside 
connections, i.e., genes in a module should be involved in related 
biological processes (Matteo et al., 2012). Here, the purpose of 
measuring conditional relatedness between genes is to detect the 
probability of these genes jointly involving in a biological process. 
Therefore, the better conditional relatedness is measured by a 
model for constructing gene network, the more distinctive such 
property is. Inspired by the above, we use this property to compare 
each model or method in the construction of gene networks. The 
conditional relatedness in this research is utilized to construct 
cancer gene networks, where nodes indicate genes and weights 
on edges indicate relatedness. The criterion is the number of 
metabolic pathways predicted significantly influenced by increased 
serine metabolism in cancers. We choose reprogramming serine 
metabolism as it is one of the hallmarks of cancer (Yang and 
Vousden, 2016). It is reported that serine metabolism is increased 
in various cancers, especially in bladder cancer (Massari et al., 
2016), breast cancer (Locasale et al., 2011; Richard et al., 2011; Kim 
et al., 2014), colon cancer (Duthie, 2011; Jie et al., 2015; Yoon et al., 
2015), and lung cancer (Piskac-Collier et al., 2011; Denicola et al., 
2015), and supports several metabolic processes that are crucial 
for the growth and survival of cancer cells, such as DNA/RNA 
methylation (Maddocks  et  al.,  2016), glutathione biosynthesis 

TABLE 2 | Effects of the varied hyper-parameters through a 10-fold cross-
validation in terms of AUC based on the validation and test datasets.

Hyper-parameter Parameter Validation Test

Kernel size 2 0.8310 0.8321
3 0.8121 0.8172

Stride 1 0.8310 0.8321
2 0.8089 0.8156

Number of neurons 25 0.8191 0.8232
81 0.8310 0.8321
169 0.8189 0.8236

Learning rate 0.01 0.8250  0.8296
0.001 0.8310 0.8321
0.0001 0.7763 0.7802

Dropout probability 0.1 0.8310 0.8321
0.2 0.8196 0.8228
0.3 0.8180 0.8227

Batch size 200 0.8166  0.8231
250 0.8310 0.8321
300 0.8135 0.8209

Activation function ReLU_ReLU 0.8132 0.8224
ReLU_Sigmoid 0.8127 0.8210
ReLU_Tanh 0.8127 0.8242
Sigmoid_ReLU 0.8224 0.8296
Sigmoid_
Sigmoid

0.8245 0.8301

Sigmoid_Tanh 0.8271 0.8308
Tanh_ReLU 0.8253 0.8297
Tanh_Sigmoid 0.8245 0.8309
Tanh_Tanh 0.8310 0.8321

FCNN model obtains the optimal AUC value, based on the different hyper-
parameters combinations.
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FIGURE 3 | ROCs of all models and methods for identifying gene–gene interactions in the (A) validation, (C) test, (E) DIP, and (G) GeneFriends datasets. ACCs of all 
models and methods for identifying gene–gene interactions in the (B) validation, (D) test, (F) DIP, and (H) GeneFriends datasets.
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(Amelio et al., 2014), one-carbon metabolism (Yang and Vousden, 
2016), etc. We conduct enrichment analysis on gene modules 
identified to be influenced by increased serine metabolism against 
all the pathways in the KEGG database and obtain significant 
enriched metabolic pathways (q-value < 0.01) (Storey, 2003). Then 
we count the number of how many of the significant enriched 
metabolic pathways are the ones reported to be related to enhanced 
serine metabolism in cancer tissues. The number shows how well 
the genes in a module are involved in related biological processes 
and reflects how well the conditional relatedness is measured by 
different models for gene network construction.

First, we collect RNA-Seq gene expression data of four cancer 
types, including bladder urothelial carcinoma (BLCA), breast 
invasive carcinoma (BRCA), colon adenocarcinoma (COAD), 
and lung adenocarcinoma (LUAD) from the TCGA database 
(Hampton, 2006), the details of which are shown in Table 3. 
Second, up-regulated genes are identified using Limma t-test 
(Ritchie et al., 2015), with the fold-change of expression level 
in cancer versus normal tissue > 1.5 and P value < 0.05. Then 
the relatedness of each pair of up-regulated genes is calculated 
by FCNN model and 12 other models and methods. Especially, 
co-expression similarities used as features for each model 
are calculated using gene expression data in cancers. Third, 
we construct cancer gene networks, where nodes indicate 
up-regulated genes, and for each node, we link other nodes with 
the top 5 relatedness. There are a total of 13*4 gene networks for 
13 models and methods in four cancer types. Fourth, we collect 
11 enzyme-encoding genes that catalyze biological reactions 
of serine as the markers for serine metabolism, including CBS, 
CBSL, PTDSS1, PTDSS2, SDS, SDSL, SHMT1, SHMT2, SPTLC1, 
SPTLC2, SPTLC3, and SRR. The modules in each network are 
identified by fast modularity optimization algorithm (Zhang 
et al., 2009). And the modules with gene markers are defined 
as modules influenced by increased serine metabolism. We 
implement gene set enrichment analysis against KEGG pathways 
on such modules (Christina et al., 2007), by using the hyper-
geometric test, with q-value < 0.01. Finally, the metabolic 
pathways confirmed to be significantly influenced by enhanced 
serine metabolism in cancer tissues are obtained by intersecting-
enriched pathways with the ground truth (see Supplement 
Tables 1–4). As shown in Figure 4, we detect 13 significantly 
influenced pathways in FCNN-based gene network in four 
cancer types, which is the most among all models and methods.

DISCUSSION

Recent advances in deep learning and bioinformatics stimulate 
considerable interest in measuring the relatedness of genes, and 

such pursuit is necessary, which not only speeds up transition 
from machine learning methods based on measuring correlation 
to deep learning methods but also can reveal some potential 
relationship between genes.

Our approach integrates a fully connected layer and the CNN 
structure for measuring conditional relatedness between genes 
by integrating co-expression and prior-knowledge similarities. 
Meanwhile, we demonstrate that this approach is available and 
effective by experiments on different datasets. To verify our 
model, we compare the FCNN model with other seven models 
and five co-expression analysis methods in validation, test, and 
further verification. The results show that most of machine 
learning models have higher AUC and ACC values than 
co-expression analysis methods, implying a combination of both 
co-expression and prior-knowledge similarities has more obvious 
advantages in terms of measuring conditional relatedness than 
using only co-expression similarities. The FCNN model obtains 
the best performance among machine learning models, which 
proves deep-learning-based models can more effectively detect 
the complex map relations between similarities and conditional 
relatedness than traditional algorithms, such as FNN, MFR, LR, 
LDA, SVM, and so on. Especially, FCNN model successfully 
calls a better result than CNN model, which indicates the fully 
connected first layer persists in our model from ignoring useful 
combinations of features and the remaining CNN structure 
with parameter sharing and connection sparsity help our model 
to be easily trained on the medium-sized dataset. All the above 
advantages make FCNN model more practical, and as a result, it 
achieves the best performance in the construction of cancer gene 
networks. However, PPC and MI obtain higher AUC values on the 
GeneFriends samples than the FCNN model, mainly because the 
gene–gene interactions collected from the GeneFriends database 
are predicted by PCC, making PCC have a natural advantage 
comparing with other models or methods. And MI has some 
resemblance with PCC (Yan et al., 2019), which makes it gain the 
second best result on the GeneFriends dataset.

In line with the performance of the FCNN model, for the 
next step, we will collect more data, extract more features of 
gene pairs, and plan to optimize the structure of the model 

TABLE 3 | The number of samples in cancer and normal tissue.

Caner type Samples in normal tissue Samples in cancer

LUAD 515 19
COAD 285 113
BRCA 1095 41
BLCA 408 59

FIGURE 4 | Number of metabolic pathways predicted to be directly 
influenced by increased serine metabolism in four cancer types.
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to improve the performance. Meanwhile, we generate some 
of the negative datasets by random permutation following 
the way of the references, which may suffer from issue of 
neglecting tissue specificity; therefore, we will improve this 
process in our coming researches. Moreover, deep learning 
is an extremely active research community that is garnering 
more and more focus from academia, and we expect that 
deep learning models like this hybrid architecture will 
be continually explored for the purpose of measuring the 
relatedness between genes.

CONCLUSION

In conclusion, the FCNN model is a novel deep learning model of 
CNN with a fully connected first layer, combining co-expression 
and prior-knowledge similarities to measure conditional 
relatedness between genes. For benchmarking purposes, we 
compare the FCNN model to existing models and co-expression 
analysis methods; our proposed model obtains the best 
performance of identifying gene–gene interaction invalidation, 
test, and further verification. Meanwhile, we estimate the 
performance of all models and methods on the co-expression and 
prior-knowledge sub-datasets, respectively, which show that the 
FCNN model is optimal. In terms of constructing gene networks, 
the FCNN model also outperforms other compared models and 
methods and achieves more practical results.

DATA AVAILABILITY STATEMENT

The datasets and results of this study, and code of the FCNN 
model can be freely obtained from https://bmbl.bmi.osumc.edu/
FCNN for academic uses and biological analysis.

AUTHOR CONTRIBUTIONS

SZ and YT collected the data and performed the experiments. 
YW conceived the project. YW and QM designed the study. 
YT, SZ, LY, and SY wrote the manuscript. All authors read and 
approved the final manuscript for publication.

FUNDING

This research was funded by the National Natural Science Foundation 
of China (Nos. 61572227, 61872418) and the Development Project 
of Jilin Province of China (Nos. 20170203002GX, 20170520063JH, 
20180414012GH, 20190201293JC).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fgene.2019.01009/
full#supplementary-material

REFERENCES

Amelio, I., Markert, E. K., Rufini, A., Antonov, A. V., Sayan, B. S., Tucci, P., et al. 
(2014). p73 regulates serine biosynthesis in cancer. Oncogene 33 (42), 5039–
5046. doi: 10.1038/onc.2013.456

Amrine, K. C., Blanco-Ulate, B., and Cantu, D. (2015). Discovery of core biotic 
stress responsive genes in Arabidopsis by weighted gene co-expression network 
analysis. PLoS One 10 (3), e0118731. doi: 10.1371/journal.pone.0118731

AndrewCucchiara, (2012). Applied logistic regression. Technometrics 34 (3), 358–
359. doi: 10.2307/1270048

Aorte, F., Dambre, J., Bienstman, P. (2019) Highly parallel simulation and 
optimization of photonic circuits in time and frequency domain based 
on the deep-learning framework PyTorch[J]. Sci. Rep. 9 (1). doi: 10.1038/
s41598-019-42408-2

Asafu-Adjei, J. K., Sampson, A. R., Sweet, R. A., and Lewis, D. A. (2013). Adjusting 
for matching and covariates in linear discriminant analysis. Biostatistics 14 (4), 
779–791. doi: 10.1093/biostatistics/kxt017

Babak, A., Andrew, D., Weirauch, M. T., and Frey, B. J. (2015). Predicting the 
sequence specificities of DNA- and RNA-binding proteins by deep learning. 
Nat. Biotechnol. 33 (8), 831. doi: 10.1038/nbt.3300

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., 
et al. (2012). NCBI GEO: archive for functional genomics data sets—update. 
Nucleic Acids Res. 41 (D1), D991–D995. doi: 10.1093/nar/gks1193

Baruch, B., and Albert-László, B. (2013). Network link prediction by global 
silencing of indirect correlations. Nat. Biotechnol. 31 (8), 720–725. doi: 
10.1038/nbt.2601

Bovolenta, L. A., Acencio, M. L., and Lemke, N. (2012). HTRIdb: an open-
access database for experimentally verified human transcriptional regulation 
interactions. BMC Genomics 13 (1), 405. doi: 10.1186/1471-2164-13-405

Chen, L., and Vitkup, D. (2006). Predicting genes for orphan metabolic activities 
using phylogenetic profiles. Genome Biol. 7 (2), R17–R17. doi: 10.1186/
gb-2006-7-2-r17

Christina, B., Andreas, K., Jan, K., Benny, K., Nicole, C., Elnakady, Y. A., et al. 
(2007). GeneTrail–advanced gene set enrichment analysis. Nucleic Acids Res. 
35 (Web Server issue), 186–192. doi: 10.1093/nar/gkm323

Consortium, G. O. (2004). The Gene Ontology (GO) database and informatics 
resource. Nucleic Acids Res. 32 (suppl_1), D258–D261. doi: 10.1093/nar/gkh036

Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., et al. (2011). 
Reactome: a database of reactions, pathways and biological processes. Nucleic 
Acids Res. 39 (Database issue), D691. doi: 10.1093/nar/gkq1018

David, C., Antonio Fabregat, M., Robin, H., Marija, M., Joel, W., Guanming, W., 
et al. (2014). The reactome pathway knowledgebase. Nucleic Acids Res. 42 
(Database issue), 472–477. doi: 10.1093/nar/gkt1102

de Bono, B., Jassal, B., Birney, E., Schmidt, E., Joshi-Tope, G., Gopinath, G. R., et al. 
(2005). Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 
33 (suppl_1), D428–D432. doi: 10.1093/nar/gki072

De, L. U., Jensen, L. J., Fausbøll, A., Jensen, T. S., Bork, P., and Brunak, S. (2005). 
Comparison of computational methods for the identification of cell cycle-regulated 
genes. Bioinformatics 21 (7), 1164–1171. doi: 10.1093/bioinformatics/bti093

Denicola, G. M., Chen, P. H., Mullarky, E., Sudderth, J. A., Hu, Z., Wu, D., et al. 
(2015). NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat. 
Genet. 47 (12), 1475. doi: 10.1038/ng.3421

Diebold, F. X., and Mariano, R. S. (1995). Comparing predictive accuracy. J. Bus. 
Econ. Stat. 13 (1), 134–144. doi: 10.1198/073500102753410444

Duthie, S. J. (2011). Folate and cancer: how DNA damage, repair and methylation 
impact on colon carcinogenesis. J. Inherit. Metab. Dis. 34 (1), 101–109. doi: 
10.1007/s10545-010-9128-0

Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis 
and display of genome-wide expression patterns. Proc. Nat. Acad. Sci. 95 (25), 
14863–14868. doi: 10.1073/pnas.95.25.14863

Aorte, F., Dambre, J., Bienstman, P. (2019). Highly parallel simulation and 
optimization of photonic circuits in time and frequency domain based on 
the deep-learning framework PyTorch. Scientific Reports 9 (1). doi: 10.1038/
s41598-019-42408-2

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://bmbl.bmi.osumc.edu/FCNN
https://bmbl.bmi.osumc.edu/FCNN
https://www.frontiersin.org/articles/10.3389/fgene.2019.01009/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.01009/full#supplementary-material
https://doi.org/10.1038/onc.2013.456
https://doi.org/10.1371/journal.pone.0118731
https://doi.org/10.2307/1270048
http://doi.org/10.1038/s41598-019-42408-2
http://doi.org/10.1038/s41598-019-42408-2
https://doi.org/10.1093/biostatistics/kxt017
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1038/nbt.2601
https://doi.org/10.1186/1471-2164-13-405
https://doi.org/10.1186/gb-2006-7-2-r17
https://doi.org/10.1186/gb-2006-7-2-r17
https://doi.org/10.1093/nar/gkm323
https://doi.org/10.1093/nar/gkh036
https://doi.org/10.1093/nar/gkq1018
http://doi.org/10.1093/nar/gkt1102
https://doi.org/10.1093/nar/gki072
https://doi.org/10.1093/bioinformatics/bti093
https://doi.org/10.1038/ng.3421
https://doi.org/10.1198/073500102753410444
https://doi.org/10.1007/s10545-010-9128-0
https://doi.org/10.1073/pnas.95.25.14863


Measuring the Conditional Relatedness Between GenesWang et al.

11 October 2019 | Volume 10 | Article 1009Frontiers in Genetics | www.frontiersin.org

Gao, X., Wei, Z., and Hakonarson, H. (2019). tRNA-DL: a deep learning approach 
to improve tRNAscan-SE prediction results. Hum. Heredit. 83, 163–172. doi: 
10.1159/000493215

Hampton, T. (2006). Cancer genome atlas. JAMA 296 (16), 1958–1958. doi: 
10.1001/jama.296.16.1958-d

Han, H., Cho, J. W., Lee, S., Yun, A., Kim, H., Bae, D., et al. (2017). TRRUST v2: an 
expanded reference database of human and mouse transcriptional regulatory 
interactions. Nucleic Acids Res. 46 (Database issue), D380–D386. doi: 10.1093/
nar/gkx1013

Han, J., and Puri, R. K. (2018). Analysis of the cancer genome atlas (TCGA) database 
identifies an inverse relationship between interleukin-13 receptor α1 and α2 gene 
expression and poor prognosis and drug resistance in subjects with glioblastoma 
multiforme. J. Neurooncol. 136 (3), 463–474. doi: 10.1007/s11060-017-2680-9

Jelier, R., Jenster, G., Dorssers, L. C. J., van der Eijk, C. C., van Mulligen, E. M., 
Mons, B., et al. (2005). Co-occurrence based meta-analysis of scientific texts: 
retrieving biological relationships between genes. Bioinformatics 21 (9), 2049–
2058. doi: 10.1093/bioinformatics/bti268

Jie, C., Shan, W., Dali, H., Wei, D., Chao, X., and Hongliang, G. (2015). 
MicroRNA-455 inhibits proliferation and invasion of colorectal cancer by 
targeting RAF proto-oncogene serine/threonine-protein kinase. Tumour Biol. 
36 (2), 1313–1321. doi: 10.1007/s13277-014-2766-3

Jing, L., and Ng, M. K. (2010). Prior knowledge based mining functional modules 
from Yeast PPI networks with gene ontology. BMC Bioinformatics 11 (11), S3. 
doi: 10.1186/1471-2105-11-S11-S3

Kanehisa, M. (2002). The KEGG database. Novartis Found. Symp. 247 (247), 
91–103. doi: 10.1002/0470857897.ch8

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and 
genomes. Nucleic Acids Res. 28 (1), 27–30. doi: 10.1093/nar/28.1.27

Kim, D. C., Wang, X., Yang, C. R., and Gao, J. (2010). Learning biological network 
using mutual information and conditional independence. Bmc Bioinformatics 
11 (Suppl 3), S9–S9. doi: 10.1186/1471-2105-11-S3-S9

Kim, S. K., Jung, W. H., and Koo, J. S. (2014). Differential expression of enzymes 
associated with serine/glycine metabolism in different breast cancer subtypes. 
Plos One 9 (6), e101004. doi: 10.1371/journal.pone.0101004

Kumari, S., Nie, J., Chen, H.-S., Ma, H., Stewart, R., Li, X., et al. (2012). Evaluation 
of gene association methods for coexpression network construction and 
biological knowledge discovery. PloS One 7 (11), e50411. doi: 10.1371/journal.
pone.0050411

Li, J., Zhou, D., Qiu, W., Shi, Y., Yang, J.-J., Chen, S., et al. (2018). Application of 
weighted gene co-expression network analysis for data from paired design. Sci. 
Rep. 8 (1), 622. doi: 10.1038/s41598-017-18705-z

Lobo, J. M., Jiménez-Valverde, A., and Real, R. (2010). AUC: a misleading measure 
of the performance of predictive distribution models. Global Ecol. Biogeogr. 17 
(2), 145–151. doi: 10.1111/j.1466-8238.2007.00358.x

Locasale, J. W., Grassian, A. R., Tamar, M., Lyssiotis, C. A., Mattaini, K. R., Bass, 
A. J., et al. (2011). Phosphoglycerate dehydrogenase diverts glycolytic flux and 
contributes to oncogenesis. Nat. Genet. 43 (9), 869–874. doi: 10.1038/ng.890

Maddocks, O. D., Labuschagne, C. F., Adams, P. D., and Vousden, K. H. (2016). 
Serine metabolism supports the methionine cycle and DNA/RNA methylation 
through de novo ATP synthesis in cancer cells. Mol. Cell 61 (2), 1–12. doi: 
10.1016/j.molcel.2015.12.014

Massari, F., Ciccarese, C., Santoni, M., Iacovelli, R., Mazzucchelli, R., Piva, F., et al. 
(2016). Metabolic phenotype of bladder cancer. Cancer Treat. Rev. 45, 46–57. 
doi: 10.1016/j.ctrv.2016.03.005

Matteo, D. A., Vera, P., Shruti, S., and Ciccarelli, F. D. (2012). Network of cancer 
genes (NCG 3.0): integration and analysis of genetic and network properties of 
cancer genes. Nucleic Acids Res. 40 (Database issue), D978–D983. doi: 10.1093/
nar/gkr952

Mistry, M., and Pavlidis, P. (2008). Gene ontology term overlap as a measure 
of gene functional similarity. BMC Bioinformatics 9 (1), 327. doi: 
10.1186/1471-2105-9-327

Mohammadi, A., Saraee, M. H., and Salehi, M. (2011). Identification of disease-
causing genes using microarray data mining and Gene Ontology. BMC Med. 
Genomics 4 (1), 12. doi: 10.1186/1755-8794-4-12

Nagafuchi, A., Takeichi, M., and Tsukita, S. (1991). The 102 kd cadherin-associated 
protein: Similarity to vinculin and posttranscriptional regulation of expression. 
Cell 55 (5), 849–857. doi: 10.1016/0092-8674(91)90392-C

Nakamura, T., Furukawa, Y., Nakagawa, H., Tsunoda, T., Ohigashi, H., Murata, K., 
et al. (2004). Genome-wide cDNA microarray analysis of gene expression 
profiles in pancreatic cancers using populations of tumor cells and normal 
ductal epithelial cells selected for purity by laser microdissection. Oncogene 23 
(13), 2385–2400. doi: 10.1038/sj.onc.1207392

Obayashi, T., and Kinoshita, K. (2009). Rank of correlation coefficient as a 
comparable measure for biological significance of gene coexpression. DNA Res. 
16 (5), 249–260. doi: 10.1093/dnares/dsp016

Pan, X., and Shen, H. B. (2017). RNA-protein binding motifs mining with a new 
hybrid deep learning based cross-domain knowledge integration approach. 
Bmc Bioinformatics 18 (1), 136. doi: 10.1186/s12859-017-1561-8

Pan, X. Y., Zhang, Y. N., and Shen, H. B. (2010). Large-scale prediction of human 
protein–protein interactions from amino acid sequence based on latent topic 
features. J. Proteome Res. 9 (10), 4992–5001. doi: 10.1021/pr100618t

Pang, S., del Coz, J. J., Yu, Z., Luaces, O., and Diez, J., et al. (2018). Deep Learning 
and Preference Learning for Object Tracking: A Combined Approach 47 (3), 
859–876. doi: 10.1007/s11063-017-9720-5

Piskac-Collier, A. L., Claudia, M., Lopez, M. S., Andrea, C., Etzel, C. J., Greisinger, 
A. J., et al. (2011). Variants in folate pathway genes as modulators of genetic 
instability and lung cancer risk. Genes Chromosomes Cancer 50 (1), 1–12. doi: 
10.1002/gcc.20826

Poliakov, E., Managadze, D., and Rogozin, I. B. (2014). Generalized Portrait of 
cancer metabolic pathways inferred from a list of genes overexpressed in 
cancer. Genet. Res. Int. 2014 (4), 646193. doi: 10.1155/2014/646193

Richard, P., Marks, K. M., Shaul, Y. D., Pacold, M. E., Dohoon, K., Kivanç, B., et al. 
(2011). Functional genomics reveal that the serine synthesis pathway is essential 
in breast cancer. Nature 476 (7360), 346–350. doi: 10.1038/nature10350

Ritchie, M. E., Smyth, G. K., Phipson, B., Wu, D., Hu, Y., Shi, W., et al. (2015). 
limma powers differential expression analyses for RNA-sequencing and 
microarray studies. Nucleic Acids Res. 43 (7), e47–e47. doi: 10.1093/nar/
gkv007

Sipko, V. D., Thomas, C., and Jo O Pedro, D. M. E. (2015). GeneFriends: a human 
RNA-seq-based gene and transcript co-expression database. Nucleic Acids Res. 
43 (Database issue), 1124–1132. doi: 10.1093/nar/gku1042

Song, L., Langfelder, P., and Horvath, S. (2012). Comparison of co-expression 
measures: mutual information, correlation, and model based indices. BMC 
Bioinformatics 13 (1), 328–328. doi: 10.1186/1471-2105-13-328

Storey, John D. (2003). The positive false discovery rate: a Bayesian interpretation 
and the q-value. The Annals of Statistics 31 (6), 2013–2035. doi: 10.1214/
aos/1074290335

Trebeschi, S., Griethuysen, J. J. M. V., Lambregts, D. M. J., Lahaye, M. J., Parmar, 
C., Bakers, F. C. H., et al. (2017). Deep learning for fully-automated localization 
and segmentation of rectal cancer on multiparametric MR. Sci. Rep. 7 (1), 5301. 
doi: 10.1038/s41598-017-05728-9

Wang, J. Z., Zhidian, D., Rapeeporn, P., Yu, P. S., and Chin-Fu, C. (2007). A new 
method to measure the semantic similarity of GO terms. Bioinformatics 23 
(10), 1274–1281. doi: 10.1093/bioinformatics/btm087

Wang, Y., Yang, S., Zhao, J., Du, W., Liang, Y., Wang, C., et al. (2019). Using 
machine learning to measure relatedness between genes: a multi-features 
model. Sci. Rep. 9 (1), 4192. doi: 10.1038/s41598-019-40780-7

Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M., and 
Eisenberg, D. DIP: the database of interacting proteins. Nucleic Acids Res. 28 
(1), 289–291. doi: 10.1093/nar/28.1.289

Xiao-Yong, P., Ya-Nan, Z., and Hong-Bin, S. (2010). Large-scale prediction of 
human protein-protein interactions from amino acid sequence based on latent 
topic features. J. Proteome Res. 9 (10), 4992–5001. doi: 10.1021/pr100618t

Yan, W., Sen, Y., Jing, Z., Wei, D., Yanchun, L., Cankun, W., et al. (2019). Using 
machine learning to measure relatedness between genes: a Multi-Features 
Model. Sci. Rep. 9 (1), 4192. doi: 10.1038/s41598-019-40780-7

Yang, M., and Vousden, K. H. (2016). Serine and one-carbon metabolism in 
cancer. Nat. Rev. Cancer 16 (10), 650. doi: 10.1038/nrc.2016.81

Yang, Y., Han, L., Yuan, Y., Li, J., Hei, N., and Liang, H. (2014). Gene co-expression 
network analysis reveals common system-level properties of prognostic genes 
across cancer types. Nat. Commun. 5, 3231. doi: 10.1038/ncomms4231

Yasunobu, O., Yuichi, A., Takeshi, O., Shu, T., Satoshi, I., Takafumi, N., et al. 
(2015). COXPRESdb in 2015: coexpression database for animal species by 
DNA-microarray and RNAseq-based expression data with multiple quality 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1159/000493215
https://doi.org/10.1001/jama.296.16.1958-d
https://doi.org/10.1093/nar/gkx1013
https://doi.org/10.1093/nar/gkx1013
https://doi.org/10.1007/s11060-017-2680-9
https://doi.org/10.1093/bioinformatics/bti268
https://doi.org/10.1007/s13277-014-2766-3
https://doi.org/10.1186/1471-2105-11-S11-S3
https://doi.org/10.1002/0470857897.ch8
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1186/1471-2105-11-S3-S9
https://doi.org/10.1371/journal.pone.0101004
https://doi.org/10.1371/journal.pone.0050411
https://doi.org/10.1371/journal.pone.0050411
https://doi.org/10.1038/s41598-017-18705-z
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1038/ng.890
https://doi.org/10.1016/j.molcel.2015.12.014
https://doi.org/10.1016/j.ctrv.2016.03.005
https://doi.org/10.1093/nar/gkr952
https://doi.org/10.1093/nar/gkr952
https://doi.org/10.1186/1471-2105-9-327
https://doi.org/10.1186/1755-8794-4-12
https://doi.org/10.1016/0092-8674(91)90392-C
https://doi.org/10.1038/sj.onc.1207392
https://doi.org/10.1093/dnares/dsp016
https://doi.org/10.1186/s12859-017-1561-8
https://doi.org/10.1021/pr100618t
http://doi.org/10.1007/s11063-017-9720-5
https://doi.org/10.1002/gcc.20826
https://doi.org/10.1155/2014/646193
https://doi.org/10.1038/nature10350
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gku1042
https://doi.org/10.1186/1471-2105-13-328
http://doi.org/10.1214/aos/1074290335
http://doi.org/10.1214/aos/1074290335
https://doi.org/10.1038/s41598-017-05728-9
https://doi.org/10.1093/bioinformatics/btm087
https://doi.org/10.1038/s41598-019-40780-7
http://doi.org/10.1093/nar/28.1.289
https://doi.org/10.1021/pr100618t
https://doi.org/10.1038/nrc.2016.81
https://doi.org/10.1038/ncomms4231


Measuring the Conditional Relatedness Between GenesWang et al.

12 October 2019 | Volume 10 | Article 1009Frontiers in Genetics | www.frontiersin.org

assessment systems. Nucleic Acids Res. 43 (Database issue), D82. doi: 10.1093/
nar/gku1163

Yoon, S., Kim, J. G., Seo, A. N., Park, S. Y., Kim, H. J., Park, J. S., et al. (2015). 
Clinical Implication of Serine Metabolism-Associated Enzymes in Colon 
Cancer. Oncology 89 (6), 351. doi: 10.1159/000439571

Yu, C. S., Chen, Y. C., and Hwang, J. K. (2010). Prediction of protein subcellular 
localization. Proteins 64 (3), 643–651. doi: 10.1002/prot.21018

Zdobnov, E. M., Tegenfeldt, F., Kuznetsov, D., Waterhouse, R. M., Simao, F. A., 
Ioannidis, P., et al. (2016). OrthoDB v9. 1: cataloging evolutionary and 
functional annotations for animal, fungal, plant, archaeal, bacterial and viral 
orthologs. Nucleic Acids Res. 45 (D1), D744–D749. doi: 10.1093/nar/gkw1119

Zhang, X., Lu, X., Shi, Q., Xu, X. Q., Leung, H. C. E., Harris, L. N., et al. 
(2006). Recursive SVM feature selection and sample classification for mass-
spectrometry and microarray data. BMC Bioinformatics 7 (1), 1–13. doi: 
10.1186/1471-2105-7-197

Zhang, X. S., Wang, R. S., Wang, Y., Wang, J., Qiu, Y., Wang, L., et al. (2009). 
Modularity optimization in community detection of complex networks. Epl 87 
(3), 38002. doi: 10.1209/0295-5075/87/38002

Zhang, W. Y., Gu, H., Liu, C., Hong, S., Xu, W., Yang, J., et al. (2019). Convolutional 
Neural Network Based Models for Improving Super-Resolution Imaging. IEEE 
Access, 7, 43042–43051. doi: 10.1109/ACCESS.2019.2908501 

Zhao, J., Gao, Y., Yang, Z., Li, J., Feng, Y., Qin, Z., et al. (2019). Truck Traffic 
Speed Prediction under Nonrecurrent Congestion: Based on OptimizedDeep 
Learning Algorithms and GPS Data. IEEE Access, 1 -1. doi: 10.1109/
ACCESS.2018.2890414

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Wang, Zhang, Yang, Yang, Tian and Ma. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License (CC 
BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1093/nar/gku1163
https://doi.org/10.1093/nar/gku1163
https://doi.org/10.1159/000439571
https://doi.org/10.1002/prot.21018
https://doi.org/10.1093/nar/gkw1119
https://doi.org/10.1186/1471-2105-7-197
https://doi.org/10.1209/0295-5075/87/38002
http://doi.org/10.1109/ACCESS.2019.2908501
https://doi.org/10.1109/ACCESS.2018.2890414
https://doi.org/10.1109/ACCESS.2018.2890414
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Measurement of Conditional Relatedness Between Genes Using Fully Convolutional Neural Network
	Introduction
	Materials and Methods
	Dataset Collection
	Gene-Pair Features Calculation
	Model Construction
	Experimental Design

	Results
	Optimizing the FCNN Model
	Comparison With Existing Methods
	Constructing Cancer Gene Networks

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


