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Abstract: Dystrophinopathies are caused by mutations in the DMD gene. Out-of-frame deletions
represent most mutational events in severe Duchenne muscular dystrophy (DMD), while in-frame
deletions typically lead to milder Becker muscular dystrophy (BMD). Antisense oligonucleotide-
mediated exon skipping converts an out-of-frame transcript to an in-frame one, inducing a truncated
but partially functional dystrophin protein. The reading frame rule, however, has many exceptions.
We thus sought to simulate clinical outcomes of exon-skipping therapies for DMD exons from clini-
cal data of exon skip-equivalent in-frame deletions, in which the expressed quasi-dystrophins are
comparable to those resulting from exon-skipping therapies. We identified a total of 1298 unique
patients with exon skip-equivalent mutations in patient registries and the existing literature. We
classified them into skip-equivalent deletions of each exon and statistically compared the ratio of
DMD/BMD and asymptomatic individuals across the DMD gene. Our analysis identified that five
exons are associated with significantly milder phenotypes than all other exons when correspond-
ing exon skip-equivalent in-frame deletion mutations occur. Most exon skip-equivalent in-frame
deletions were associated with a significantly milder phenotype compared to corresponding exon
skip-amenable out-of-frame mutations. This study indicates the importance of genotype-phenotype
correlation studies in the rational design of exon-skipping therapies.

Keywords: dystrophinopathy; duchenne muscular dystrophy (DMD); becker muscular dystrophy
(BMD); dystrophin; reading frame rule; exon skipping; skip-equivalent deletions

1. Introduction

Dystrophinopathies are a spectrum of X-linked muscular dystrophies caused by muta-
tions in the DMD gene encoding the dystrophin protein, which helps maintain the integrity
of muscle membranes [1]. The most lethal end of this spectrum, Duchenne muscular
dystrophy (DMD), generally arises from mutations that disrupt the translational reading
frame and result in an absence of dystrophin [2]. Three other major conditions that belong
to this spectrum are Becker muscular dystrophy (BMD, a mild form of DMD), interme-
diate muscular dystrophy (IMD, an intermediate form between DMD and BMD), and
DMD-associated dilated cardiomyopathy (DCM, a type of nonischemic heart-disease) [2].

With 79 constitutive exons and (at least) seven alternatively-used exons, the DMD
gene is one of the largest known genes in the human genome [2,3]. Because of the enormous
length of the gene, it is highly vulnerable to mutations and, one out of three mutations are
de novo in nature. Besides, the presence of two mutational hotspots, encompassing exons
3–22 and exons 45–55, within the coding sequence of the gene makes it more vulnerable to
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mutations [4–6]. To date, over five thousand DMD mutations have been reported. Large
deletions involving deletion of one or more exons account for most cases (~68%), while
duplications, other small mutations, and rarely deep intronic copy number variations cause
the rest of the cases [7–9]. The major determinant of phenotypes is the reading frame rule,
i.e., the mutations giving rise to an mRNA with disrupted reading frame (out-of-frame)
result in a severe pathology, i.e., DMD. On the other hand, in-frame deletions result in
the production of truncated yet (partially) functional dystrophins, causing a mild clinical
phenotype called BMD [10]. The reading frame rule is accurately predictive in ~90% of
DMD cases; however, not as consistent for BMD cases, with prediction rates ranging from
56–91% in different cohorts [8,11].

This reading frame rule provides the rationale for a therapeutic strategy, called ther-
apeutic exon skipping using antisense oligonucleotides to transform DMD-related out-
of-frame mRNAs into in-frame ones to produce truncated dystrophin, against severe
and lethal cases of DMD. Recently, three exon-skipping oligonucleotide drugs, namely
eteplirsen, golodirsen, and viltolarsen, received accelerated approval by the U.S. Food
and Drug Administration (FDA), and a few other oligonucleotide-based drugs are in later
stages of clinical trials [12–14]. As such, antisense oligonucleotide-mediated single exon
skipping has great promise for treating DMD effectively. However, because of these drugs’
highly specific nature, they apply to only a small portion of the DMD population, e.g.,
eteplirsen, golodirsen, and viltolarsen together are applicable for a total of around 20% of
the entire DMD population in the U.S. [12,13]. Recently, skipping of multiple exons, e.g.,
exons 45–55, using mutation-tailored cocktails of antisense oligonucleotides have shown
potential for clinical application, and the applicability of such cocktail drug was shown to
reach over 65% of DMD patients with large deletions [6,15].

The reading frame rule, however, is not always an accurate predictor of clinical phe-
notypes [16]. As multiple exonic deletions are amenable to skipping of each exon, the
quasi-dystrophins resulting from the various exon skipped transcripts may vary in stability,
function, and phenotype. The DMD/BMD phenotypic ratio observed in individuals with
confirmed in-frame deletions starting and/or ending at frameshifting exons have been
examined to estimate the therapeutic outcomes from skipping several exons [17–19]. In this
study, we employed meta-analysis on the published literature and databases containing data
on the genotype-phenotype association. It provides an overview of clinical presentations in
patients with each exon ”skip-equivalent” deletion and determines the best estimate of each
exon skip-amenable mutation’s clinical outcome of exon-skipping therapies.

2. Materials and Methods
2.1. Clinical Database Search and Inclusion/Exclusion Criteria

The French UMD-DMD-France database and the eDystrophin are two online registries
for individuals and families affected by dystrophinopathies [20,21]. From 30 March 2020 to
30 July 2020, we queried these two databases for relevant cases. We excluded patients with
pending clinical phenotypes and female carriers from the analysis. If a record were present
in both databases, the data were entered only once into the data tabulation sheet.

2.2. Literature Search and Inclusion/Exclusion Criteria

To collect more data on the clinical features of genetically confirmed DMD patients,
a literature search of PubMed was conducted using the following query terms: Dys-
trophin*[Title/Abstract]) OR (Duchenne[Title/Abstract])) OR (Becker*[Title/Abstract]))
OR (muscular dystrophy[Title/Abstract]) OR (mutation[Title/Abstract])) OR (large dele-
tion[Title/Abstract])) OR (mutation spectrum[Title/Abstract])) OR (MLPA[Title/Abstract]))
OR (ligation[Title/Abstract])) OR (CGH[Title/Abstract])) OR (comparative genomic hy-
bridization[Title/Abstract])). We then also searched google scholar using an equiva-
lent query.

Two researchers (S.A. and M.H.) independently reviewed titles and abstracts of the
identified articles to determine that only relevant publications were included. Articles were
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excluded if, after review, it was evident that the article discussed a non-human disease
model, diseases other than dystrophinopathies, a non-dystrophin study, or presents a
meta-analysis. We excluded the manuscripts presenting inadequate genotype-phenotype
information or discussing only female carriers. Additionally, we excluded the studies
that were included in any of the two databases mentioned above. In addition, only
the manuscripts reporting cases of dystrophinopathies detected by multiplex ligation-
dependent probe amplification (MLPA), comparative genomic hybridization (CGH), or
equivalent diagnostic procedures were included. No restrictions were made based on
language, publication year, publication status, and the latest search date.

We identified a total of 612 unique articles by searching PubMed and Google Scholar,
out of which 12 articles were finally selected based on our exclusion criteria after the title
and abstract review. We then conducted a comprehensive review of these 12 articles to
identify individuals with genetically confirmed large deletions in dystrophin (Figure 1,
Figure S1, Table S1).
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Figure 1. Flow chart showing database screening and literature search procedure to collect patients’
clinical information with confirmed DMD large deletions. N indicates the number of individuals
present in each data source.

2.3. Data Extraction and Analysis of the Data

Two authors (S.A. and M.H.) independently reviewed the full-text versions and, if
available, the Supplementary Materials to extract clinical data of dystrophinopathy patients
with in-frame deletions from the literature. Data of patients with deletions involving exons
1 and 79 were not included as deletions of these two exons would not produce truncated
dystrophins. To assess duplicate records in multiple databases and literature, we utilized
the following strategy. One of the investigators (S.A.) compared the partially de-identified
information (identifiers, country origin, age at diagnosis, date of birth, and available
mutation information, e.g., mutation start point and end point, and type of mutation),
assuming any records with these same items represented the same patient [22,23]. Another
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author (K.R.Q.L.) scrutinized the inclusion of mutation information and the removal
of duplicate records. We categorized the clinically confirmed patients into two groups:
(i) DMD, and (ii) BMD and asymptomatic. We categorized BMD and asymptomatic
cases together because exon-skipping therapies aim to convert lethal DMD cases into
milder forms, whether BMD or asymptomatic, with in-frame deletions. In addition, those
asymptomatic cases at the time of examination could become BMD at a later age. The
asymptomatic cases, therefore, are combined with BMD in a single group.

2.4. Exon Skip-Amenable and Exon Skip-Equivalent Mutations

We defined exon skip-amenable mutation as follows; (1) for frame-shifting exons
(i.e., exons 2, 6, 7, 8, 11, 12, 17, 18, 19, 20, 21, 22, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 75, 76, and 78), we included large out-of-frame
deletion mutations that can be made in-frame by skipping of exon X as “exon X skip-
amenable mutations”. For example, exon 52 of DMD is a frameshifting exon, and skipping
of an adjacent exon, exon 51 or exon 53, theoretically restores the reading frame (exon
51 skip-amenable and exon 53 skip-amenable), (2) for non-frame-shifting exons (all other
exons between exons 2–78), we included nonsense mutations and small out-of-frame indels
in exon Y as ”exon Y skip-amenable mutations”. For example, therapeutic skipping of
exon 23 for a nonsense mutation in exon 23 would restore the reading frame, leading to
truncated dystrophin protein expression (exon 23 skip-amenable). We included patients
who naturally harbor large in-frame deletion mutations starting and/or ending at exon Z
as “exon Z skip-equivalent mutation”. Deletions starting at exon 1 and ending at exon 79
are not included.

The same overall definitions of exon skip-amenable and exon skip-equivalent muta-
tions can be applied for multi-exon regions, e.g., exons 3–9 or 45–55. Mutations (i.e., large
deletions, large duplications, small indels, and nonsense) whose disrupted reading frame
can be restored by multi-exon skipping are considered multi-exon skip-amenable. Natu-
rally, mutations involving both frame-shifting or non-frame-shifting exons are included in
our counts. Mutations partly outside of exons 3–9 and 45–55 are not included in exons 3–9
and 45–55 skip-amenable mutations, respectively (e.g., del. ex 43–45, del. ex 51–57). On the
other hand, naturally occurring mutations (e.g., in-frame large deletions of exons 3 to 9
and exons 45 to 55) that model multi-exon-skipped transcripts are considered multi-exon
skip-equivalent.

2.5. Statistical Analysis

The odds of DMD for a given exon were compared to BMD and asymptomatic pheno-
type’s odds using Fisher’s exact test. The ratios of DMD to BMD/asymptomatic phenotypes
associated with a specific mutation and all other mutations were compared using Fisher’s
exact test. The test-statistic values of multiple test comparisons were adjusted using the
Benjamini–Hochberg method to control false discovery rates [24]. To identify if there were
hotspot regions in the gene, we compared the frequency of in-frame deletions starting
and/or ending at a given exonic region and all other exons using f-statistic. Additionally,
we compared the phenotypic outcomes associated with out-of-frame mutations amenable
to exon skipping (exon skip-amenable) and exon skip-equivalent in-frame deletions of each
exon using Fisher’s exact test. Since the databases included and the manuscripts reviewed
were, in general, descriptive, case-specific or focus group studies rather than randomized
ones, we could not do a formal risk of bias assessment on the data. All data were analyzed
in Microsoft Excel (Office 365, 2019).

3. Results
3.1. Patient Pool and Deletional Patterns

The UMD-DMD France and eDystrophin databases contain clinical data of 681 and
781 individuals, respectively, with confirmed clinical outcomes with in-frame exon dele-
tions within dystrophin. Data of 595 individuals (29 DMD, 556 BMD, and 10 asymptomatic
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individuals) was included in both databases. In addition, our literature search identified
clinical data of 431 unique patients with in-frame deletions. The final patient pool we
analyzed for clinical information contained information of 1298 individuals with con-
firmed clinical outcomes resulting from genetically diagnosed dystrophinopathy, including
277 (21.34%) individuals with DMD and 1021 (78.66%) with milder BMD (n = 976) or
asymptomatic phenotypes (n = 45) (Figure S2A). There was a significant difference in the ra-
tio of DMD to BMD and asymptomatic phenotypes between the records obtained from the
two databases and literature searching (eDystrophin vs. literature search: p-value < 0.0001,
95% CI = 27.60–37.79; UMD-DMD France database vs. literature search: p-value < 0.001,
95% CI = 30.49–40.55; UMD-DMD France database vs. eDystrophin: p-value = 0.0519,
95% CI = −0.034–5.65) (Figure S2A).

Theoretically, there are 1408 potential large in-frame deletions possible across the
DMD gene (Table S2). Our patient pool represented 180 (12.78%) of these potential
in-frame deletions (Figure S2B). Of these theoretically possible large in-frame deletions,
∆ 45–47 (n = 317, 23 DMD) and ∆ 45–48 (n = 205, 19 DMD) were the most common
deletional patterns reported among the patients. Two deletional hotspots were identified
between exons 3 and 13, and 44 and 55, as 15.58% and 74.46% deletions started and/or
ended within these two regions (p-value < 0.0001, for both regions) (Figures S2C and S3).

3.2. More BMD and Asymptomatic Phenotypes Were Associated with In-Frame Deletions

Large in-frame deletions were associated with 9.73%, 6.90%, and 42.46% cases with a
severe DMD phenotype in the eDystrophin, UMD-DMD France databases, and the litera-
ture (Figures S4–S6). Overall, the reading frame rule was predictive for nearly 78.54% of
the cases with large in-frame deletions (Figure 2A). However, exclusive of the literature’s
records, the prediction rate was 88.95% (Figures S4–S6). We identified 19 exons in-frame
deletions, resulting in a significantly severer phenotype than average (Figure 2A,B). Ad-
ditionally, in-frame deletions starting and/or ending at five exons, including exon 4, 45,
47, 48, and 55, are deemed to result in milder phenotypes (Figure 2A). In addition, we
observed a lower incidence of DMD phenotype associated with in-frame deletions starting
and/or ending at exons encoding the dystrophin protein’s central rod domain (Figure S7).
On the other hand, in-frame deletions starting and/or ending at the extreme ends of the
protein was associated with more DMD phenotype (Figure S7).

3.3. Distribution of Phenotypes for Exon Skip-Amenable Mutations to Each Exon

We then intended to look at the clinical phenotypes associated with out-of-frame
mutations that can be converted to in-frame by therapeutic skipping of one (or more)
exons, i.e., skip-amenable mutations, using the patient data collected from the UMD-DMD
France Knowledgebase. We determined the ratio of individuals with severe and milder
phenotypes associated with exon skip-amenable mutations. Collectively, our analysis
identified a total of 1149 individuals with single exon skip-amenable mutations, including
1120 (97.476%) patients with a severe phenotype, i.e., DMD (Figure 3).
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Figure 2. Clinical phenotypes of exon skip-equivalent in-frame DMD exon deletions. (A) Association between in-frame
deletions starting and/or ending at each exon (exon skip-equivalent) and consequent phenotypes. Phenotypic ratios
associated with in-frame deletions starting and/or ending at a given exon and all other exons were compared using Fisher’s
exact test. n indicates the number of individuals with DMD (red) and milder (blue; BMD and asymptomatic) phenotypes.
Green and red color indicate a significantly lower and higher incidence of DMD phenotype for a given exon, respectively, as
compared to the overall incidence rate. p = p-value, as calculated by Fisher’s exact test; p* = Benjamini–Hochberg adjusted
p-value. (B) Heatmap showing the relative severity of the consequence of in-frame deletions starting and/or ending at
specific exons.
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3.4. Comparison of Phenotypes of In-Frame Exon Skip-Equivalent and Out-of-Frame Exon
Skip-Amenable Mutations

To simulate the clinical phenotype before and after exon-skipping therapy, we looked at
the differences in phenotypic outcomes of in-frame exon skip-equivalent and out-of-frame
exon skip-amenable mutations for each exon using the data present in the UMD-DMD France
Knowledgebase. Our analysis identified 21 exons at which in-frame deletions start and/or end
(exon skip-equivalent mutations) were associated with a significantly lower DMD incidence
compared to corresponding exon skip-amenable mutations (Figure 4A,B). Additionally, exons
3–9 and exons 45–55 skip equivalent deletions were associated with a significantly lower
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incidence of a severe phenotype compared to exons 3–9 and exons 45–55 skip-amenable
mutations (p-value < 0.0001).
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Figure 4. Comparison of clinical phenotypes associated with out-of-frame mutations amenable to exon skipping in UMD-
DMD database and in-frame exon skip-equivalent deletions of each exon to simulate the effects of exon-skipping therapies.
(A) Phenotypic outcomes associated with mutations amenable to exon skipping and exon skip-equivalent in-frame deletions
of each exon and their consequent phenotypes. n indicates the number of individuals with DMD (red) and milder (blue;
BMD and asymptomatic) phenotypes. Asterisks indicate that exon skip-equivalent in-frame deletions are associated with a
significantly milder phenotype compared to corresponding exon skip-amenable out-of-frame mutations. We compared the
incidence of DMD associated with exon skip-equivalent (or group of exons, e.g., exons 3–9, and exons 45–55) and mutations
amenable to skipping each exon (or group of exons, e.g., exons 3–9, and exons 45–55). The statistical significance was
calculated using Fisher’s exact test. (B) Heatmap showing the relative severity of the consequence of exon skip-equivalent
in-frame deletions and exon skip-amenable mutations. * p < 0.05, ** p < 0.01, *** p < 0.001
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4. Discussion

The FDA approvals of eteplirsen, viltolarsen, and golodirsen are an inspiring devel-
opment in treating DMD, although these drugs cumulatively can only be administered
to approximately 20% of the total DMD population who are specifically amenable to
exon 51 and exon 53 skipping [12,25,26]. Besides, the development of antisense thera-
pies to skip additional exons could theoretically help to treat up to ~80% of individuals
living with DMD [16,27]. Currently, clinical trials to evaluate exon 44, 45, 51, and 53
skipping antisense drugs are underway (clinicaltrials.gov: NCT02530905, NCT04179409,
NCT02667483, NCT02500381, NCT04433234, NCT04129294). Besides, the development
of mutation-tailored cocktail antisense drugs applicable for treating a large portion of the
DMD population carrying out-of-frame deletions also showed potential [15,28].

This study focused on the phenotypes associated with large deletions involving one
or more exons to result in in-frame transcripts. While 1408 large in-frame deletion patterns
are theoretically possible within the DMD gene, this study identified only 180 (12.78%) of
them in individuals in the searched sources of clinical data (Figure S2B and Table S1). The
absence of clinical data on individuals with the remaining deletions, perhaps due to the
deletions’ extreme rarity or that the associated phenotypes are asymptomatic or very mild,
that the mutations remain undetected and unreported.

The clinical data on individuals with large in-frame deletions in DMD present that
nearly 80% (78.54%) have milder BMD or asymptomatic phenotypes (Figure S2A and Figure
2A). Nearly 1 out of 5 individuals (21.46%) developed severe phenotype, i.e., DMD, despite
their predicted in-frame deletions. Interestingly, the occurrence of severe phenotype was
over four-times higher among the individuals constituted from the literature (Figure S2A).
This indicates the potential presence of reporting bias in the clinical reports [29]. To note,
in the aggregate of the data collected from the two databases but without those obtained
from the literature, 11.05% of individuals with in-frame large deletions developed severe
phenotype, which is comparable with the numbers indicated by previous reports (Figures
S5 and S6) [7,8,10,20,30].

A previous report studying the clinical phenotypes of DMD exon 51 skip-equivalent
deletions identified 12% of patients had severe phenotypes despite their predicted in-frame
deletions [31]. The individuals with DMD phenotype with in-frame deletions indicate
the need for subtle knowledge of the reading-frame rule for dystrophinopathies. It also
reflects the complex biology of dystrophinopathies and an array of different factors may
influence the ultimate clinical phenotype. These factors may include but are not limited to
the inherent leakiness of splicing seen in some exons, the effect of predicted frame-altering
mutations on splicing signals, and the stability and tertiary structure of the resultant
protein [16,32–34].

Irrespective of the data source, deletions starting and/or ending at some exons were
associated with a more severe phenotype (Figure 2 and Figures S2–S6). Additionally, in-
frame deletions starting and/or ending within the exons 3–13 hotspot region was associated
with an elevated frequency of a severe phenotype, while those starting and/or ending
within exons 44–55 region resulted in a significantly lower incidence rate for a DMD
phenotype (Figure S2C and Figure 2). An explanation for why the occurrence of a severe
phenotype is associated with these deletions is currently unclear. One possible reasoning
could be that these deletions, although been predicted as in-frame, result in a less stable
or non-functional protein, as a part of N-terminal hotspot encodes for the actin-binding
domain. However, the deletion of certain exons involved with coding for portions of the
central rod domain may have a less significant impact on skeletal muscle pathology [35],
which is what is reflected in this study. Given the retrospective and meta-analytic nature
of this study, we did not have access to do any muscle tissue biopsy to investigate the
actual cause beneath the elevated frequency of severe phenotype associated with these
deletions, and it would also be beyond the scope of this study. Further assessment in
clinical status and muscle tissue analysis may help conclude the factors behind the findings
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of a severe phenotype associated with these exons, which could be interesting and may
provide essential insights for therapeutic development.

Importantly, this study identified five exons, including exons 4, 45, 47, 48, and 55, at
the start and/or end of in-frame deletions associated with a significantly lower frequency
of a DMD phenotype than average (Figure 2A). A previous study of 4894 patients with
in-frame and out-of-frame large deletions from the TREAT-NMD DMD Global database
listed the top ten skippable DMD exons, including exons 8, 43, 44, 45, 50, 51, 52, 53, and
55, that would apply to the largest group of patients with DMD [7]. Our study identified
that individuals with large in-frame deletions starting and/or ending at many of these
exons had a significantly lower frequency of developing a severe phenotype than those
having a mutation amenable to skipping those exons (Figures 2 and 4). It also suggests
that the skipping of exons 3 to 9 and 45 to 55 could be promising targets for treating DMD
(p-value < 0.0001).

Among the exons we identified as associated with a significantly lower incidence
of DMD, exon 45 is already being thoroughly studied as a target for the development of
exon-skipping therapies [16,36]. Casimersen, an antisense drug of phosphorodiamidate
morpholino chemistry to treat DMD amenable to exon 45 skipping, has recently been
accepted and placed under priority review by the FDA [37,38]. The other five exons are
also deemed promising therapeutic targets of exon skipping, although some of them are
not applicable to many patients.

While the present study included a reasonably comprehensive dataset, it has several
limitations. First, a significant limitation is that the specific deletional patterns between
DMD patients eligible for exon skipping with out-of-frame deletions and in-frame deletions
of exon skip-equivalent deletion mutations are not always comparable. This is particularly
the case for exon 44 skipping. Over two-thirds of the (67.89%) out-of-frame deletions
amenable to exon 44 skipping start at exon 45, whereas ~98% of the in-frame deletions
(exon 44 skip-equivalent) end at exon 44 (Figure S8). Second, the effects of in-frame
deletions at the DNA level are not necessarily equivalent to the effects at the RNA level
in antisense-treated cells. For example, in a DMD dog model, skipping of exon 8 using
an antisense morpholino led to spontaneous skipping of exon 9 in addition to exon 8 [28].
As such, the effects of exon 8 skipping might be more relevant to exon 9 skip-equivalent
in-frame deletion rather than exon 8 skip-equivalent in-frame deletion. Third, among the
literature included, some studies only enrolled patients diagnosed with either DMD or
BMD, potentially influencing the results. Fourth, some studies did not interrogate all DMD
exons, leaving the possibility that, although unlikely, the patients may have harbored a
second mutation. Fifth, the exceedingly high proportion of the DMD phenotype in the
literature also raises the concern that there could be some reporting biases in play. Lastly,
other factors, including the variability of antisense oligonucleotide-mediated exon skipping
efficacy for different exons, also need to be considered to design exon-skipping therapy.
Hence, these potential limitations should be considered with care when interpreting the
data presented in this study.

5. Conclusions

This study highlights the genotype-phenotype association among individuals with
large in-frame deletions starting and/or ending at different exons in DMD. While most exon
skip-equivalent in-frame deletions are associated with a significantly milder phenotype
compared to corresponding exon skip-amenable out-of-frame mutations, we identified
several exon skip-equivalent in-frame deletions that are the most promising therapeutic
targets. However, the phenotypic variability in individuals with specific in-frame exon
deletions found in this study is suggestive of the issue that the response to exon-skipping
therapy could be variable and may be impacted by multiple factors. This study largely
indicates that genotype-phenotype correlation analysis can significantly contribute to the
rational design of exon-skipping therapies; however, hints at the necessity of continued
evaluation of genetic and other modifiers.
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