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Simple Summary: The new species of Nelumbo reported in this paper is the first fossil record of lotus
in Northwest China thus far, which can provide valuable information regarding the late Middle
Miocene biocoenosis composition and the paleoenvironment of the Qaidam Basin on the northern
Tibetan Plateau.

Abstract: The Neogene environment and paleovegetation of today’s semi-arid and arid Central
Asia remain elusive. Little is known about the effect of paleoclimatic change on the distribution
and ecological response mechanisms of aquatic plants, especially on the Tibetan Plateau. Here, we
report a new species of Nelumbo Adanson, including leaves, receptacles, and fruits, namely Nelumbo
delinghaensis sp. nov., from the Upper Youshashan Formation of the upper Middle Miocene in the
northern Qaidam Basin on the Tibetan Plateau. The new species comprises centrally peltate leaves
with 12–15 actinodromous primary veins and a receptacle embedded with ca. 15–30 fruits, with
an unlobed central disc. Megafossils of lotus from northwest China broaden the geographical and
stratigraphic ranges of Nelumbo. Our findings suggest that a large freshwater lake body surrounded
by temperate forests and grassland developed in the Qaidam Basin during the late Middle Miocene,
in sharp contrast to the present desert vegetation. The climate used to be sufficiently warm and moist
enough to support a forest-steppe ecosystem with abundant freshwater bodies.

Keywords: Nelumbo; Middle Miocene; paleoecology; paleoclimate; northeast Tibetan Plateau

1. Introduction

Step-wise drying in Central Asia beginning in the late Eocene has been evidenced
by extensive sedimentary records [1,2]. That aridity persists today, but its process and
underlying mechanisms have always been controversial. Initially, a magnetic study of
the Luochuan section on the Loess Plateau suggested a beginning at about 2.4 Ma [3]. In
recent years, some researchers deduced that aridity occurred in the early Miocene [4–7]
or formed in the late Oligocene [8–11], or even the Eocene [12,13]. The controversy of
the underlying mechanisms mainly regards the roles of pCO2 concentrations [14], global
cooling [1,15–17], the uplift of the Tibetan Plateau and margins associated with the India-
Asia plate collision [18–23], the retreat of the proto-Paratethys [13,24–26], and combined
effects on driving aridification.

The Qaidam Basin, the largest sedimentary basin on the northern Tibetan Plateau, has
the most continuous sedimentary records in the Cenozoic [27] and provides exceptional
insight into the history and inter-linkages between Central Asia aridification and regional
tectonism related to the topographic development of the Tibetan Plateau. Existing evidence
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of climatic ecological evolution in the Cenozoic Qaidam Basin, particularly in the Neo-
gene, is principally based on sedimentary [28–32], paleontological [10,30,33–38], or stable
isotope [39–42] records [41,43]. For example, based on the physiognomy of plant fossils,
Song et al. [44] estimate a wet temperate with a low precipitation seasonality of Qaidam in
the Early Oligocene; based on sedimentological studies, Bao et al. [45] suggest a rapidly
intensified aridity which is also indicated by mammal data [30].

Recently, during a geological survey in the Huaitoutala region in the northeastern
Qaidam Basin, numerous plant megafossils, including leaves, fruits and seeds, were collected
from the Miocene Upper Youshashan Formation (Figure 1). Aquatic plants are the dominant
group among the assemblage, unlike the other fossil flora on the plateau [30,44]. Fragmen-
tary fossil Nelumbo Adanson materials are preserved as leaves, fruits, and receptacles.

Figure 1. Geological setting of the fossil locality (modified from Li et al. [38]). (A) Maps showing
the fossil location. (B) Stratigraphic column of the studied section. This is located in the lower to
the middle part of Upper Youshashan Fm. Shown are the magnetostratigraphic correlation, the
chronology and the lithology of the studied section, as well as the chronologic and stratigraphic
position of the plant fossil locality
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Nelumbo Adanson has an evolutionary history of ca. 135 million years and is a mono-
typic genus of the Nelumbonaceae, with a critical phylogenetic position in flowering
plants [46]. It consists of two extremely similar extant species: Nelumbo nucifera Gaertn. and
Nelumbo lutea Willd. N. nucifera is distributed in East, South and Southeast Asia and North
Australia [47], with pink or white tepals, whereas N. lutea is found in Central and North
America with pale yellow tepals [36]. In addition, the central disc of N. nucifera leaves is
shallowly lobed while that of N. lutea leaves is deeply lobed, an important distinguishing
feature between the two species. The presence of stomata on the lower surface of the leaf,
seedling morphology (possessing erect stem and undeveloped taproot) [48–50] and plant
flowering, with aerial pollination and fertilization, demonstrate that Nelumbo probably
originated from terrestrial plants [51–54].

In this study, we focus on lotus remains collected from the Middle Miocene Huaitoutala
flora and their associated sedimentary environment and discuss the late Middle Miocene
paleoenvironment of the Qaidam Basin on the northern Tibetan Plateau.

2. Geological Background

The Qaidam Basin is the lowest but largest internally drained basin on the north-
eastern edge of the Tibetan Plateau, with an area of 12,000 km2. It is bounded by the
Altyn Tagh Mountain in the northwest, the Qilian Mountains in the northeast, and the
East Kunlun Mountain to the south [55] (Figure 1). The current elevation of the basin is
ca. 2800–3200 m above sea level. Divided into an arid desert basin area and the surround-
ing alpine mountainous areas, the whole area is dominated by the plateau’s continental
climate [56].

The Qaidam Basin is infilled with Cenozoic deposits with a thickness of over 15,000 m
from at least the late Eocene to the present [57,58]. Based on a comparative paleomagnetic
restudy and complemented by fossil vertebrates assemblage succession, Wang et al. [30]
subdivided the Cenozoic strata within the Qaidam Basin into six lithostratigraphic units, in
upwards order: the Lulehe Formation, Lower Ganchaigou Formation, Upper Ganchaigou
Formation, Lower Youshashan Formation, Upper Youshashan Formation, Shizigou For-
mation, and the Qigequan Formation. The fossil material studied here occurred at the
Huaitoutala town of Delingha city in Qinghai Province, China (37◦14′32′′ N, 96◦44′9′′ E,
Figure 1), buried in the mudstone of the lower to the middle part of the Upper Youshashan
Formation (Figure 1A). A high-resolution magnetostratigraphic study [59,60] constrains
the age of the fossiliferous layer as ~12.7 Ma in the late Middle Miocene (Figure 1B).

3. Materials and Methods

A total of 554 specimens were collected from the fossil site. Under the prefix DLH0001-
0554 for specimen numbers, all specimens are stored at the School of Earth Science and
Resources, Chang’an University, Xi’an, China. Approximately 200 Nelumbo specimens were
collected, including leaves, receptacles, and fruits preserved as coalified compression and
impression remains. After preparation, all fossils were examined and photographed using
a digital single-lens reflex camera (Nikon D90) and an Olympus SZ61 stereomicroscope and
edited with the help of Adobe Photoshop CC. To achieve reliable identification of the fossil
specimens, various extant species were critically examined using digital herbarium catalogs,
viz., Kew herbarium catalog (https://apps.kw.org/herbcat/gotoCiteUs.do) (accessed on 2
March 2022). Morphological descriptions of fossil leaf specimens follow the terminology
and nomenclature proposed by Ellis et al. [61].

4. Results

Order: Proteales Juss. ex Bercht. & J. Presl.1827.
Family: Nelumbonaceae A. Rich.1827.
Genus: Nelumbo Adanson. 1763.
Species: Nelumbo delinghaensis M. Y. Luo et H. Jia sp. nov.
Holotype: DLH550 (Figure 2A,B, Figure 3A–C and Figure 4A–D).

https://apps.kw.org/herbcat/gotoCiteUs.do
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Figure 2. Leaves and fruit of Nelumbo delinghaensis from the Qaidam Basin on the Tibetan Plateau.
(A) The general aspect of a leaf shows an orbicular and peltate lamina, radiating ribs (black arrow)
from the center of leaves and the point of insertion of the petiole (white arrow). DLH550. (B) The
counterpart leaf of (A) shows the position of bifurcation (white arrow) and the brochidodromous
arches (black arrow). (C) Petiole of N. delinghaensis and its scattered small prickles, scale bar = 10 mm.
(D) Another leaf shows the position of bifurcation (white arrow) and the brochidodromous arches
(black arrow). DLH554. (E) Another leaf shows the mixed tertiary venation. DLH 552. scale
bar = 10 mm.

Paratypes: DLH156A, DLH156B, DLH551, DLH552, DLH553, DLH554, DLH560
(Figure 2C–E).

Type locality: Huaitoutala Town, Delingha City, Qinghai, China.
Stratigraphy and age: Upper member of the Upper Youshashan Formation, Middle

Miocene.
Etymology: From the Delingha City where the specimens were collected.
Diagnosis: Simple, leaf centrally peltate, lamina orbiculate, margin entire or slightly

sinuous, centrally positioned petiole. Primary venation actinodromous, bifurcating at least
once and forming festooned brochidodromous arches; interior secondary veins intercalated
with the primary veins; tertiary veins emerging from the primary veins, opposite percurrent,
with sinus and straight course; quaternary venation reticulate; areolation is predominantly
six-sided; marginal ultimate venation looped. Receptacles are obconical, with globose or
elongated ovoid fruits.
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Figure 3. Enlarged part of the leaves of Figure 1 and the leaf of Nelumbo delinghaensis in situ and
its line drawing. (A) The position of the bifurcation and poorly-developed secondary veins (black
arrow). DLH550, scale bar = 5 mm. (B,C) Enlarged part of Figure 2A showing small areoles. DLH550,
scale bar = 1mm. (D) Enlarged part of Figure 2E, scale bar = 1 mm. (E) Leaf of Nelumbo delinghaensis
in situ, noting the leaf center (black arrow) and incomplete margin. (F) Interpretative outline drawing
of N. delinghaensis in situ, scale bar = 50 mm.

Description:
Leaves: Simple, leaf centrally peltate, the lamina which is not fully preserved is

rounded to orbicular, at least 16 to 60 cm in diameter (Figures 2A and 3E,F), and often falling
into the mesophyll- to macrophyll-size classes, margin entire, notched (Figure 2A). Nearly
symmetric, apex rounded, circular base angled; petiole surface spinose, approximately
13–14 mm in diameter (Figure 2C). Leaves show a funnel-shaped pattern at the junction
with the petiole, which is inserted centrally at the lamina, and the 12–15 primary veins
emerge radially from its point of insertion (Figure 2A). Each primary vein is actinodromous
at acute angles to other primary veins. The course is straight to slightly sinuous, and
the veins bifurcate once at an angle of 50–70◦, maintaining this course (Figure 2A,B,D).
They then abruptly curve to join another primary vein or a bifurcation of a primary vein
at an angle of 60–90◦, forming brochidodromous arches (Figure 2A,B,D). Some veins
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of smaller caliber, intercalated with primary veins, are interpreted as poorly developed
interior secondaries (Figures 2A and 3A). These veins have deflected attachment with
primary veins and intersect with tertiary veins. Tertiary veins emerge uniformly from the
primary veins at right to obtuse angles consistently and is mixed percurrent, with sinus
and straight course (Figure 2A,B,D,E). Quaternary venation is regular and reticulate. Apart
from brochidodromous arches formed by the primary veins, there are other festooned
arches formed by veins of lesser caliber, producing a looped ultimate marginal venation
(Figure 2A,B,D). The areoles are well developed, mostly equiaxial, 150–550 µm in diameter
and are commonly six-sided but occasionally four-, five- or seven-sided. Within the areoles,
freely ending veinlets are absent (Figure 2B,D).

Figure 4. Receptacles, fruits and petiole of Nelumbo delinghaensis sp. nov. (A) Receptacle and the point
of insertion of the stalk. DLH551, scale bar = 10 mm. (B) An individual fruit. DLH560. (C,D) Top
view of receptacles with fruits. DLH156A, scale bar = 2 mm. (E) Interpretative outline drawing of
receptacle and fruits, scale bar = 2 mm. (pm: peduncle mould; fc: fruit cavities).

Receptacles and fruits: The remains of reproductive organs consist of many impres-
sions that look inversely conical, which is an accrescent receptacle with fruits inside [62]
(Figure 4). The receptacles are 2–2.5 cm long and 1.5–2.2 cm in diameter. From the distal
flat portion of the receptacle arise 15–30 protuberances interpreted as fruits. Some occur in-
dividually (Figure 4B), but most are encircled by the thin wall of the receptacle, distributed
densely and embedded into a single cavity which represents the remaining of the floral
stigma, 2.8–3.3 mm long and 2.2–3 mm wide (Figure 4C,D). Some fruits exhibit globose or
elongate ovoid bodies, while others are rounded to oblong in planiform shape, probably on
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account of the stronger compaction. At the tips of some fruits are a small capitate persistent
stigma and a small ovate protuberance named respiratory pore (Figure 4C,D).

5. Discussion

The main characteristic features of the species Nelumbo delinghaensis, such as centrally
peltate leaves, actinodromous venation and primary vein bifurcation, mixed percurrent
tertiary venation, commonly six-sided areoles, and flat receptacles with fruits with a
respiratory pore fruit, are known in the monotypic family Nelumbonaceae. Therefore, we
can assign these leaves to the genus Nelumbo unambiguously. Many fossil leaves, fruits,
and pollen of Nelumbo have been reported from the early Cretaceous and younger deposits.
Their evolution and phytogeography have been extensively discussed [63–66].

In China, lotus had a wide distribution and diverse species from the Cretaceous to the
Miocene. To date, the fossil record of lotus extends from north to south, north to the Eocene
Dalianhe Formation and the Upper Cretaceous Yong’ancun Formation in Heilongjiang
Province [67,68], south to the Eocene Changchang Formation in Hainan Province [69,70],
and east to the Miocene Fotan Group in Fujian Province [71]. However, there were a
few reports in the western region of China, especially in the arid northwest. The present
discovery represents the most western occurrence of this genus in China and the first fossil
record of lotus in northwest China thus far (Figure 5).

5.1. Comparisons

Four extinct genera in Nelumbonaceae have been described to date, namely Nelumbites
Berry [72], Paleonelumbo Knowlton [73], Nelumbago McIver et Basinger [74] and Exnelumbites
Estrada-Ruiz, Upchurch, Wolfe and Cevallos-Ferriz [75] (Table 1). Berry [72] erected the
genus Nelumbites for the first time on the basis of fossil leaves from the Early Cretaceous
Patapsco Formation of the Potomac Group on the Atlantic Coastal Plain. Nelumbites, with
entire to crenate or crenulate margins, eccentric peltate leaves, reticulate tertiary venation,
and small size, differ from the leaves of Nelumbo delinghaensis. Knowlton [73] established
the genus Paleonelumbo on the basis of the leaves from the Late Cretaceous to Paleocene
Dawson Arkose of Colorado, USA. It is thought to be similar to extant Nelumbo and consists
of one species, P. macroloba. Paleonelumbo displays a toothed or lobed margin with glands, no
bifurcating primary veins, and orthogonal reticulate tertiary venation, while N. delinghaensis
has an entire margin with bifurcating primary veins. From the early Paleocene of the
Ravenscrag Formation, Canada, Nelumbago morphologically resembles N. delinghaensis and
extant Nelumbo but differs in having reticulate rather than percurrent tertiary and higher
order venation, predominantly quadrangular rather than hexagonal areolation, and it lacks
a central disc [74]. Later, Estrada-Ruiz et al. [75] described Exnelumbites from the Late
Cretaceous (Campanian-Maastrichtian) Olmos Formation of Coahuila, Mexico and Jose
Creek Member of the McRae Formation of south-central New Mexico, USA. Exnelumbites
displays features including a toothed glandular margin, absent disc, no bifurcating primary
venation, alternate percurrent to reticulate tertiary venation, and polygonal areolation. As
can be seen in Table 1, with the exception of the central insertion of the petiole and laminar
size, all these characters are absent from Nelumbo and N. delinghaensis.

To precisely determine the characteristics of Nelumbo-like fossil leaves, both Upchurch
et al. [63] and Estrada-Ruiz et al. [75] listed the foliar features of extant Nelumbo, and the
latter provided a more elaborate description. Afterward, Li et al. [76] made a detailed com-
parison of the two extant species of Nelumbo, not only regarding morphology but also cuticle
and epicuticular ultrastructure. Descriptions from Estrada-Ruiz et al. [75] can be briefly
summarized as follows: (1) mesophyll or macrophyll size, entire margin, peltate, orbicular
lamina, and centrally positioned petiole; (2) a bilaterally lobed central disc; (3) primary
venation is actinodromous, with 18–24 primary veins. One vein named the midvein shows
no branching, is straight and runs directly to the leaf margin, which can be used to define
the line of symmetry of the lobed central disc; other primary veins dichotomize 2–3 times
near the margin and form an inner and outer set of intramarginal loops; (4) tertiary veins,
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interconnected with primary veins, are mixed percurrent; (5) quaternary venation is mixed
percurrent; (6) areolation is isodiametric and predominantly hexagonal, with a mix of
six- and five-sided areoles; freely ending veinlets are absent. It should be pointed out
that Upchurch et al. [76] described the leaf morphology of extant Nelumbo merely based
on the species-N. lutea, but the information is still applicable because of the similarity of
the macrostructure of Nelumbo [76]. The new fossil leaves are similar to the two living
species in terms of peltate orbicular leaves, a central petiole, the number of radiating veins,
dichotomous branching, and the obconical receptacles with nut-like fruits [76–79]. The
number of primary veins [80] and arrangement of the fruits are considered diagnostic
characteristics in fossil species of Nelumbo. A detailed comparison indicates (Table 2) that
leaves of N. delinghaensis possess fewer primary veins and are smaller in size and display
poorly developed secondary veins that are absent in the leaves of extant ones. Moreover,
the fruits of N. delinghaensis are fewer in number and smaller in size in each receptacle. In
addition, the leaves of N. delinghaensis also differ from the extant ones in the central disc,
which is not lobed.

Table 1. Comparisons of leaf features between Nelumbo and the stem group of Nelumbonaceae.

Taxon
Character N. deling-

haensis
Nelumbo
(Extant) Nelumbites Paleonelumbo Nelumbago Exnelumbites

Leaf margin Entire Entire
Entire to
crenate or
crenulate

Toothed or
lobed with
gland

Entire Toothed with
gland

Central disc Present Present Absent Absent Absent Absent

Position of petiole Centrally
peltate

Centrally
peltate

Eccentrically
peltate

Centrally
peltate

Centrally
peltate

Centrally
peltate

Primary venation Bifurcated,
12–15

Bifurcated,
over 18

Distinct
midvein
No
bifurcation,
fewer than 10

No
bifurcation,
10–15

Bifurcated,
over 20

No
bifurcation,
12–13

Secondary venation Present Absent Present Present No data Present

Tertiary venation
Irregular,
mixed
percurrent

Regular,
opposite
percurrent

Irregular,
reticulate

Orthogonal
reticulate

Irregular,
orthogonal
reticulate

Irregular,
alternate
percurrent
to reticulate

Quaternary venation Regular
reticulate

mixed
percurrent Reticulate Percurrent Orthogonal

reticulate Reticulate

Areoles Predominantly
Hexagonal

Predominantly
Hexagonal Polygonal No data Commonly

quadrilateral Polygonal

Size
Mesophyll
to
macrophyll

Mesophyll
to
macrophyll

Notophyll
to microphyll Mesophyll Notophyll

to mesophyll Mesophyll
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Table 2. Morphological comparison of leaves, receptacles and fruits in Nelumbo delinghaensis and
extant species.

Organ Character N. delinghaensis N. nucifera N. lutea

Leaf

Number of primary
veins 12–15 20–25 20–25

Diameter 8–30 cm 7–85 cm 60 cm

Shape of areoles 4- to 7-sided 4- to 7-sided 4- to 7-sided

Size of areoles 150–550 µm 129–661 µm 148–634 µm

Central disc Present Present, shallowly lobed Present, deeply lobed

Highest order venation 4◦ 4◦ 4◦

Fruit
Size 2.8–3.3 mm × 2.2–3 mm 18 × 10 mm No data

Number of fruits 15–30 1–40 12–25

Receptacle
Size 2–2.5 cm × 1.8–2.3 cm 3.8–4.5 cm × 7.5–9.6 cm No data

Shape Obconical Obconical Obconical

Reference (Li et al., 2016 [46];
Fu&Wiersema, 2001 [77])

(Li et al., 2016 [46]; Hall &
Penfound, 1944 [78]; Gan-dolfo
& Cúneo, 2005 [79])

Figure 5. Location of the reported occurrences of Nelumbo in China and the present distribution of
Nelumbo in China (modified from Borsch and Barthlott, 1994 [81]).

The earliest geological records described as belonging to Nelumbo are N. lusitanica
Saporta, and N. choffati Saporta from the Albian region of Portugal, and the leaf of N. wey-
mouthi Brown reported from the Aspen Shale of southwestern Wyoming, USA [64,82,83].
Since then, more than 30 fossil species have been reported, of which 18 species are
known from the Cretaceous of Europe, Asia, North America, South America and Africa,
with the rest recorded from the Paleogene and the Neogene of Asia, Europe, and North
America [51,68]. Most species were established based on a single specimen or just a mere
fragment during the 20th century [68,70,71,79], such as N. lacunosa, N. megalopolitana and
N. minima erected for fossil receptacles [51]. Due to the lack of detailed descriptions and
comparisons of some fossils, a more thorough investigation is required to clarify the taxo-
nomic position of these fossils. Therefore, some undisputed fossil species of Nelumbo are
compared with the present specimens, including N. changchangensis, N. protospeciosa, N.
jiayinensis, N. fotanensis, N. orienlalis and N. puertae. The first four were reported from China.
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Nelumbo jiayinensis was described from the Upper Cretaceous Yong’ancun Formation,
Heilongjiang, Northeast China, the earliest known age and the most northern occurrence
of this genus in China. N. jiayinensis differs from our specimens in the size of areoles
and the mode of areole formation and lacks bifurcating primary venation [68]. Nelumbo
changchangensis was erected by He et al. [70] with a comprehensive record from the Eocene
Changchang Formation, Changchang Basin, Hainan Island, China, including rhizomes,
tubers, leaves, receptacles and fruits. The species bears similarities to N. delinghaensis in
the size and shape of areolation and laminar size, but the number of ribs, the size of fruits
and receptacles, the secondary venation, and the nature of the areoles are different. N.
protospeciosa from the Eocene Linjiang Formation of Jiangxi, China [84], was originally
described from the Aquitanian region of southern France by Saporta [85]. The primary
venation of N. protospeciosa gives rise to transverse or crooked secondary veins, as in N.
delinghaensis; however, the angles of bifurcations are much smaller than those of the present
specimens. N. fotanensis, described from the Miocene Fotan Formation of Fujian, China [71],
is characterized by having inner and outer loops near the margin formed by primary
venation, percurrent tertiary venation, no lobed central disc, and the size and shape of
areolation, fruits and receptacles. However, it differs from N. delinghaensis in the number of
primary veins, laminar size, and the angles and course of bifurcations. N. puertae, the oldest
fossil record of Nelumbo in the Southern Hemisphere, was described by Gandolfo and
Cúneo [79] from the Upper Cretaceous of Chubut Patagonia, Argentina. Both N. puertae
and N. delinghaensis have poorly developed secondary venation, but in N. delinghaensis, the
tertiary venation is mixed rather than opposite percurrent, and the quaternary venation
is reticulate rather than opposite percurrent. Laminar size and shape of the areolation of
the present specimens are similar to those of N. orientalis from the Upper Cretaceous of
Japan [80]; however, the number of radial veins and the angles of bifurcations are larger
than those in N. orientalis.

Based on the comparative analysis, the present fossil should be assigned as a new
species of Nelumbo named Nelumbo delinghaensis M. Y. Luo et H. Jia sp. nov. with almost
all the synapomorphies of extant Nelumbo. In the Miocene deposits where the new species
was discovered, Nelumbo’s organs, except flowers and rhizomes, were collected. The
combination of these organs enables a relatively whole-plant reconstruction of this new
species (Figure 6).

Figure 6. Reconstruction of Nelumbo delinghaensis sp. nov. (drawn by Junjie Wang, one of the authors
of this article).
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5.2. Paleoenvironmental Significance

The Qaidam Basin is a key area for studying uplift and environmental change of the
plateau from the continuous Cenozoic sedimentary records on the northern Tibetan Plateau.
Various types of fossils have been preserved in the strata, for example mammals [30,85–88],
insects [89], fish [35,90,91], ostracodes [92,93], spore pollen [16,37,94], plants [38,95,96] and
even trace fossils [97,98]. Previous knowledge about vegetation and the environment in the
Qaidam Basin during the Miocene has been acquired from palynological and paleontologi-
cal studies [96]. Wang et al. [30] established a faunal sequence from the early Oligocene to
the early Pliocene for the first time by extensively collecting paleozoological data in the
central and eastern parts of the basin and deduced that the eastern Qaidam Basin in the
late Middle Miocene featured a mixed habitat of open and wooded environments with
abundant freshwater streams. Palynological assemblages also show forest-steppe vegeta-
tion in the Miocene [94]. However, fossil records of plants, especially aquatic plants, are
scarce. Present aquatic plant fossils found in the strata of the Upper Youshashan Formation
from the Huaitoutala area in the northern Qaidam Basin provide valuable materials and
evidence for a comprehensive and in-depth understanding of the paleoenvironment and
paleoclimate in the basin.

As mentioned above, the genus Nelumbo comprises two modern species: N. nucifera
and N. lutea. They are now widespread in the subtropics and temperate zone of Southeast
Asia, North Australia and North America. Because of their special growth habits, both
Nelumbo species are clear indicators of non-marine freshwater aquatic environments, such
as lakes, swamps, ponds, slowly flowing streams or river margins. Nelumbo delinghaen-
sis, which bears the common characteristic of the two extant species (mentioned above),
probably lived in a similar environment. At the same time, a large body of freshwater is
also evidenced by the co-occurrence of other fossils of aquatic plants, such as Phragmites
Adans., Typha Linn., and Equisetum Linn. Trapa Linn., and aquatic animals. Biomarkers,
stable isotopes, and pollen concentration reports have also suggested that a relatively large
lake body was present in the Qaidam Basin during the middle-late Miocene [42,99,100].
The Miocene Huaitoutala flora, with many arthropod-damaged leaf fossils, grew near
the lake [38]. In addition, a forest habitat existed close to the lake, as indicated by mam-
mals (i.e., Lagomeryx Rogar and Stephanocemas Colbert) [30] with a preference for wooded
environments. Some mammals (i.e., Acerorhinus Kretzoi), insects (i.e., Aedes and Syrphus
Matsumura et Adachi) [86,89] and leaves damaged by arthropods [38] indicate the existence
of scrubland and open steppe. Based on all the evidence mentioned above, the inferred
habitat reflects a flourishing ecosystem. Fish and aquatic plants such as Nelumbo and Trapa
lived in a lake surrounded by a forest. Several plants with a swampy habit, for exam-
ple, Phragmites, Typha, and Equisetum, developed in the shallow water near the lakeshore.
Shrubs grew in semi-shade or moist, dappled sunlight in temperate forests. Evidence based
on geochemical proxies and fossils [30,39,41,45,101] also suggests a relatively warm and
humid climate during ca. 15.3–12 Ma. Therefore, the present fossils probably lived in a
lacustrine environment. The lush vegetation growing in the warm and humid temperate
climate is in sharp contrast to today’s arid desert environment.

Moreover, three types of fossil woods and new chalicothere fossils reported from the
Upper Youshashan Formation in the Nanbaxian and Quanshuiliang areas, respectively,
indicate that the temperate deciduous broad-leaved forest and grasslands mixed with wood-
land were still growing in the Qaidam Basin during the middle-late Miocene [34,96]. The
Neogene Zekog flora also points to temperate deciduous broad-leaved forest dominating
the eastern Qaidam Basin during the Miocene [102].

To summarize, the fossil lotus in the northern Qaidam Basin, together with the fos-
sil leaf assemblages and mammals, insects, and woods found within the basin, signal
that a large lake body once occurred in the Qaidam Basin and the temperate deciduous
broad-leaved forests once grew in the Qaidam Basin and adjacent regions on the northern
Tibetan Plateau in the Miocene, co-existing with grassland vegetation. The climate was
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sufficiently warm and moist enough to support a forest-steppe ecosystem with abundant
freshwater bodies.

6. Conclusions

In this paper, we described a new species, Nelumbo delinghaensis M. Y. Luo et H. Jia sp.
nov., from the late Middle Miocene Upper Youshashan Formation of Huaitoutala section,
Qinghai, Northwest China. The fossil species comprises not only vegetative organs but
also reproductive organs and possesses all the characteristics of extant Nelumbo in terms of
leaf architecture and fruit morphology. It is morphologically similar to N. nucifera. The new
species represents the westernmost occurrence of this genus in China and the first fossil
record of lotus in Northwest China, thus extending the geographical and stratigraphic
ranges of Nelumbo. Our results show that a freshwater lake body surrounded by temperate
forests and grassland once occurred in the Qaidam Basin during the late middle Miocene,
in sharp contrast to the desert vegetation that exists today.
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