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Free-living wrist and hip accelerometry forecast cognitive
decline among older adults without dementia over 1- or 5-years
in two distinct observational cohorts
Chengjian Shi1,2, Niser Babiker 2, Jacek K. Urbanek 3, Robert L. Grossman 2,4, Megan Huisingh-Scheetz 2,6✉ and
Andrey Rzhetsky 2,5,6✉

The prevalence of major neurocognitive disorders is expected to rise over the next 3 decades as the number of adults ≥65 years old
increases. Noninvasive screening capable of flagging individuals most at risk of subsequent cognitive decline could trigger closer
monitoring and preventive strategies. In this study, we used free-living accelerometry data to forecast cognitive decline within 1- or
5-years in older adults without dementia using two cohorts. The first cohort, recruited in the south side of Chicago, wore hip
accelerometers for 7 continuous days. The second cohort, nationally recruited, wore wrist accelerometers continuously for 72 h.
Separate classifier models forecasted 1-year cognitive decline with over 85% accuracy using hip data and forecasted 5-year
cognitive decline with nearly 70% accuracy using wrist data, significant improvements compared to demographics and
comorbidities alone. The proposed models are readily translatable to clinical practices serving ageing populations.
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INTRODUCTION
Alzheimer’s disease and related major neurocognitive disorders
(ADRD) affect over 50 million people worldwide, with an increase
of 10 million new cases per year1. The ADRD disease burden is
expected to increase as the world population ages2,3. ADRD
disproportionately affects socioeconomically disadvantaged
groups and minorities4 and is associated with lower quality of
life, increased mortality, care dependence, and institutionalization.
Preservation of cognitive abilities and a positive mindset may
maintain quality of life in later years5. Few US Food and Drug
Administration (FDA) approved treatment options exist at this
time; therefore, the mainstay of current management remains on
the prevention side6. Cognitive trajectories vary widely among
older adults, with recent studies showing that different races
experience varying rates of decline7,8. Finding sensitive forecasters
of early decline could trigger more frequent monitoring and
aggressive preventative interventions, advance care planning, and
even ADRD research study eligibility9.
There is an acute need for easily deployed, noninvasive, clinical

tools to identify cognitively intact older adults most at risk of
subsequent cognitive decline. Certain clinical and environmental
factors including age, gender, education, body mass index,
neighborhood socioeconomic status, and history of stroke or
diabetes are easy to gather clinically during a visit or even during a
telephone screen10. In a meta-analysis, structural and functional
aspects of one’s social environment (including network size, social
activity, and loneliness) are also predictive of cognitive decline
among older adults11. Genetic susceptibilities, such as APOE
carrier status, can improve forecast models but are more invasive
for patients to collect12.
Wearable sensors have been gaining attention for their ability

to remotely collect free-living activity and sleep patterns and the

association of these patterns with other important age-related
conditions: frailty13–15, disability16, social disengagement17, and
death18. The relationship between free-living activity and cogni-
tive performance has been less studied. In cross-section, greater
activity volume (highest and middle tertiles of active minutes/day)
was associated with better processing speed among cognitively
intact adults at risk of mobility disability19 and steps/day were
associated with better executive functioning in healthy older
adults20. Longitudinally, cognitively intact older adults with a
higher percentage of moderate to vigorous physical activity
(MVPA) per week had a lower risk of cognitive impairment and
better maintenance of executive function and memory over an
average of 3 years21. However, these findings were not consistent
across racial/ethnic groups. A higher percent of MVPA predicted
maintenance of only memory and not executive function in
African American/Black adults, as compared to White adults21.
Few prior studies have leveraged the high-resolution nature of

accelerometer data in analyses to maximize unique pattern
recognition that may differentiate health risk across individuals,
a concept familiar to those studying precision medicine. While
accelerometry is not currently used in routine clinical care, it has
been increasingly used in major research studies to remotely
assess older adult health and poses significant advantages in the
era of telehealth22–28. Translation of accelerometry in clinical
practice has been challenged by the lack of accelerometry tools
with clear clinical applications and the inability to apply research
findings across device body locations and manufacturers.
The objective of this study was to significantly advance the prior

work on forecasting early cognitive decline among older adults
without dementia by discovering prognostic, free-living accelero-
metry patterns using 24-h data. We considered 98 accelerometry
measures, the most comprehensive set of movement-related
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measures in a study of its kind to date. With a screening clinical
application in mind, we chose a simple, binary clinical outcome
that is most relevant to triggering clinical or research decision
making: any cognitive decline versus stable or improving cogni-
tion. We further probed into the generalizability of the developed
methodology, by applying it to data from two studies that
gathered data from two different accelerometers worn at different
body locations and with different wear protocols.

RESULTS
Cohort characteristics
The characteristics of the two study cohorts are shown in Table 1.
The hip accelerometry cohort was older (mean age 73.2), had a
slightly higher baseline Montreal Cognitive Assessment (MoCA)
score (mean 25.4), and included a larger proportion of females
(80.9%) and those self-identifying as African American (81.7%)
than the wrist accelerometry cohort (mean age 70.0, mean MoCA
23.4, proportion female 59.1%, proportion African American/
Black 11.3%).

Demographic and clinical predictors of cognitive decline
As we observe in Table 2, the clinical characteristics had
somewhat limited capability to distinguish between those with
stable/improving cognition versus those with declining cognition
at 1 and 5 years in the local and national cohorts, respectively. We
provided a full dictionary of features in the Supplemental Data.

Combining demographic, clinical, and accelerometry
predictors of cognitive decline
To investigate the importance of the accelerometry activity
measures and harmonic features beyond that of the demographic
and clinical characteristics on cognitive degradation forecasting,
we trained CDPred on three different sets of measures: (1) the
CDPred basic model using demographic and clinical character-
istics; (2) the CDPred-4 model using demographic and clinical
characteristics with C4 and V4; (3) the CDPred-4+ model using
demographic and clinical characteristics, C4 and V4, plus the
harmonic features derived from accelerometry. The number of
features in each model are listed in Table 3. To summarize, we
compared three models: CDPred, CDPred-4, and CDPred-4+.
CDPred includes the baseline demographic and clinical features.
CDPred-4 model uses the baseline demographic and clinical
features and two baseline accelerometry metrics (C4 and V4).
CDPred-4+ models use the full gamut of information: the baseline

Table 1. Demographic composition of the two accelerometry cohorts.

Characteristics Hip accelerometry
cohort (N= 115)

Wrist accelerometry
cohort (N= 575)

Age (year) 73.2 (5.9) 67.0 (7.9)

Gender (female) 93 (80.9 %) 340 (59.1 %)

Race

African American/
Black

94 (81.7 %) 65 (11.3 %)

White 21 (18.3 %) 423 (73.6 %)

Hispanic None 67 (11.7 %)

Other None 20 (3.5 %)

Education

Some college or
junior college

45 (31.9 %) 211 (36.7 %)

Post-graduate 28 (24.4 %) 137 (23.8 %)

College graduate 27 (23.5 %)

High School graduate
or GED (grade 12)

11 (9.6 %) 135 (23.5 %)

Some high school
(grades 9–11)

4 (3.5 %) 92 (16.0 %)

Income ($/month)

<2000 65 (50.0 %) -

2000–3999 40 (30.8 %) -

4000–5999 16 (12.3 %) -

≥6000 9 (6.9%) -

Charlson Comorbidity
Index Score

1 (1.3) 0.9 (1.2)

MoCA (baseline) 25.4 (2.6) 23.4 (4.0)

MoCA

(Hip: 1 year; Wrist:
5 years)

25.6 (3.0) 22.6 (4.4)

Table 2. Effect size of predictors of 1- and 5-year cognitive function,
the values shown for each feature are Cohen’s D/odds ratio with 95%
confidence intervals.

Characteristics Δ+ Vs Δ− Δ+ Vs Δ−

Hip-worn (N= 115) Wrist-worn (N= 575)

Age (year)a 0.457 (0.103, 0.801) 0.284 (0.119, 0.449)

Gender (female)b 3.533 (1.223, 10.207) 0.865 (0.620, 1.207)

Raceb

African American/Black 1.124 (0.472, 2.680) 0.897 (0.741, 1.086)

White - 1.014 (0.795, 1.293)

Hispanic - 1.143 (0.873, 1.499)

Other - 1.344 (0.769, 2.345)

Educationb

Some college or junior
college

2.265 (1.092, 4.697) 0.850 (0.605, 1.195)

Post-graduate 0.973 (0.443, 2.134) 0.909 (0.619, 1.335)

College graduate 0.532 (0.233, 1.215)

High School
graduate or GED

0.437 (0.110, 1.726) 1.018 (0.652, 1.591)

Some high school
(grades 9–11)

0.821 (0.132, 5.088) 1.337 (0.908, 1.969)

Income ($/month)b

<2000 1.283 (0.641, 2.566) -

2000–3999 0.656 (0.306, 1.405) -

4000–5999 0.715 (0.244, 2.101) -

≥6000 2.653 (0.634, 11.110) -

Charlson Comorbidity
Index Scorea

0.135 (−0.213, 0.485) −0.008
(−0.172, 0.156)

MoCA (baseline)a 0.572 (0.216, 0.928) 0.418 (0.252, 0.584)

aEffect size computed by Cohen’s D method.
bEffect size computed by odds ratio.

Table 3. Number of predictors in the three hip and wrist
accelerometry models.

Model Hip-worn Wrist-worn

CDPred 7 6

CDPred-4 9 8

CDPred-4+ 105 104
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demographic and clinical features, the two baseline accelerometry
metrics, and all extracted 98 accelerometry harmonic features.

Performance of the models
The model performance metrics on the hold-out samples are
shown in Table 4. The CDPred-4+ model including all measures
predicted cognitive decline 1 year later with an accuracy of over
85% (hip accelerometry cohort) and predicted cognitive decline 5
years later with nearly 70% accuracy (wrist accelerometry cohort).
The hip-worn accelerometry confusion matrix and ROC-AUC for
the CDPred-4+ model in the hold-out sample is shown in Fig. 1.
Figure 2 shows predictors sorted by relative importance, from the
highest to lowest, excluding features with zero importance.
Similarly, we show the confusion matrix and ROC-AUC for the
CDPred-4+ model in the wrist-worn accelerometer data in Fig. 3,
and nonzero predictor relative importance sorted in descending
order in Fig. 4.

DISCUSSION
Our model significantly expands work previously published in this
space. Casanova et al. (2020) similarly used a Random Forest
Classifier to distinguish cognitive trajectories12. Three classes, low-,
medium-, and high-risk trajectories were created using a
combination of baseline and repeated cognitive performance
scores. This study found that age, gender, education, BMI, stroke,
diabetes, neighborhood socioeconomic status, and APOE carrier
status were among the top predictors of cognitive trajectories.
They did not include accelerometry assessments. We found that
the accelerometry pattern features outperformed many

demographic and clinical characteristics in predicting cognitive
decline in a community-dwelling cohort, suggesting the potential
value of noninvasive and remote accelerometry in augmenting
the clinical evaluation.
Our analyses have shown that, compared to simpler, clinical

models predicting cognitive decline (e.g., using only demographic
and clinical characteristics), our accelerometry-based classifier
model performs significantly better. This model uniquely identifies
preclinical cognitive decline among older adults without a
diagnosis of dementia over short (1-year) and longer-term
(5-year) follow-up. The model was robust to varying wear
protocols (7 days versus 72 h), device location (hip versus wrist),
and device manufacturer. In both models, many accelerometry
features were rated more ‘important’ in distinguishing those who
experienced any decline in cognition than many demographic
and clinical characteristics including age. We are hopeful that the
current level of model performance may be useful to flag older
adults most vulnerable to subsequent cognitive decline. We note
and emphasize that accelerometry currently has no diagnostic
capacity for any clinical diseases; its role in the current study is
restricted to an assessment of day-to-day movement (accelera-
tions and decelerations) which seems to reflect some level of
health, here cognitive, risk.

Limitations
This study has several limitations worth mentioning. It is not
technically possible to guarantee (or test) that there was no
overlap between the two cohorts used in this study. The NSHAP
dataset did collect zip code information on participants, but the
FACE Aging dataset did not collect any address information. Since
the FACE Aging dataset is composed of study participants residing
in the few neighborhoods surrounding the University of Chicago
and NSHAP sampled across the nation using a complex sampling
design based on census tracts, if overlap occurred, it would have
been a very small number of participants.
Another limitation of the current study is, despite the

importance of understanding ADRD for socio-demographically
disadvantaged groups, the datasets for this study were not
sufficient in size for understanding the relative predictive power of
the models for different sociodemographic groups. We did include
effect size measures for different race/ethnicities in Table 2 and
the effect size of accelerometer features on race/ethnicity in
Supplementary Table 1 as the first step in this direction. We show
ranked effect sizes of individual features in Supplemental Fig. 1.

Table 4. Predicting cognitive decline: performance of classifier
models with an increasing number of predictors.

Model Accuracy AUC (stda)

CDPred (hip device) 0.75 0.74 (0.11)

CDPred-4 (hip device) 0.78 0.75 (0.10)

CDPred-4+ (hip device) 0.84 0.86 (0.11)

CDPred (wrist device) 0.66 0.65 (0.05)

CDPred-4 (wrist device) 0.67 0.66 (0.05)

CDPred-4+ (wrist device) 0.69 0.73 (0.05)

aStandard deviation.

Fig. 1 Confusion matrix and ROC-AUC curve summarizing experiments with data recorded for the hip accelerometry cohort. The figure
shows a confusion matrix and b ROC-AUC curve for the held-out sample.
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Our forecast model was only 70–80% accurate leaving room
for improvement. It is likely that our forecast model could be
enhanced in future work to reach higher and more consistent
accuracy. This can be achieved by including additional metrics
derived from accelerometry data, possibly using additional
physiologic sensors such as heart rate monitoring to capture
richer data, and incorporating additional clinical data, such as
blood or genetic markers, family history of dementia, and current
medications.
The wrist accelerometry model did not perform as well as the

hip accelerometry model. The weaker performance of the wrist
accelerometry location might be due to the shorter wear
protocols, increased motion “noise” related to the position, and
longer follow-up cognitive assessments. Future work comparing
more similar wear protocols and devices, even if worn at different
body locations, would be of value.
Our experiments show that this predictive model can forecast

preclinical cognitive decline using data from dissimilar accelero-
metry device locations, wear protocols, follow-up times, and
unique cohorts. Hip- and wrist-worn accelerometers are subject to
unique patterns of movements in space, yet data from both
accelerometry devices improved the predictive capacity of the
respective models. The somewhat inferior performance of the wrist
accelerometry, among other factors, may be related to the shorter
wear protocol (72 h versus 7 days versus “noisy” data at the wrist)
and longer follow-up (5 years). A major challenge to accelerometry
research and clinical translation has been the reliance on a
particular device location, protocol duration, and/or proprietary
data processing software for generating accelerometry mea-
sures29,30. These limitations have stimulated movement toward
using open source programs or approaches for generating
accelerometry metrics, as we have done in this study, and
identifying methodologic approaches applicable across multiple
devices and varying wear protocols.

METHODS
Study populations
To evaluate the robustness of our proposed methodology, we used
information about two non-overlapping cohorts of community-dwelling
older adults, one cohort equipped with hip-based and another with wrist-
based accelerometers.

Hip accelerometry cohort: frailty, aging, body composition and energy
expenditure in aging (FACE aging) study. Study participants (n= 151) were
recruited from the community around the primary geriatrics practice
site for the University of Chicago located on the south side of Chicago.
The sample was limited to community-dwelling (not living in residential
care) older adults, 65 or older. Exclusion criteria included hospitalization,
surgery, or procedure within 2 months of participating in the study;
addition or change in dose of the thyroid (e.g, levothyroxine) or a diuretic
(e.g, furosemide, hydrochlorothiazide, or spironolactone) medication
within 2 months of participating in the study; use of oral steroids; use of
beta-blockers (e.g., metoprolol, atenolol, or carvedilol); persistent hyper-
glycemia greater than 250; life expectancy less than 1 year; and history of
moderate or advanced dementia or Montreal Cognitive Assessment
(MoCA) less than or equal to 18. Hospital, surgery, medication, and
hyperglycemia exclusion criteria were required to optimize resting
metabolic rate testing at baseline (data not used in this analysis). Data
collection occurred over multiple evaluations: (1) baseline survey and
physical exam in the clinic, (2) a 7-day free-living hip accelerometry
protocol immediately following the exam, (3) fasting resting metabolic rate
measurement with indirect calorimetry and DEXA scan for body
composition within 2 weeks of baseline assessment, (4) a 1-year follow-
up survey and physical exam in the clinic. We restricted the study sample
to participants with complete clinical data and one or more valid
(≥10 daytime hours) accelerometer-wear days, which left us with 115
participants eligible for our classifier development.

Hip accelerometer protocol: Hip accelerometry data were collected
from all participants at baseline. Following the baseline survey and physical
exam, an Actigraph wGT3X+ hip accelerometer was placed over the
participant’s mid, anterior right hip and secured with an elastic belt. Study
participants were asked to keep the device on their hip continuously for 7
full days (including during bathing or showering). The accelerometers

Fig. 2 Relative importance of predictive features in CDPred-4+ experiments with the hip accelerometry cohort. The features are listed in
the order of decreasing importance, from top to bottom of the graph.
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recorded data at a frequency of 30 Hz. The subsecond-level data were
extracted from the devices using the ActiLife software (version 6.0). The
low-frequency extension filter was NOT applied.

Wrist accelerometry cohort: the national social life, health, and aging
project. We used wrist accelerometry data generated by the National
Social Life, Health, and Aging Project (NSHAP) as the sample. NSHAP is a
nationally-representative, longitudinal survey study that collects extensive
information on physical, mental, cognitive, and social health in United
Study, community-dwelling older adults31. The first wave of NSHAP was in
2005–6 which included a nationally, statistically representative sample of
community-dwelling adults born between 1920–47 (aged 57–85) and
over-sampled for African-Americans, Hispanics, and males; 3377 respon-
dents participated (weighted response rate= 75.5%). Five years later
(2010–11), respondents were re-interviewed as were their cohabiting
spouse or partner, for a total n= 3377. Interviews were conducted in the
homes of each respondent by professional interviewers from NORC at the
University of Chicago. A random subset of the 2010–11 respondents were
invited to participate in a wrist accelerometry protocol, the data used in
the current analysis.

Wrist accelerometry sub-study protocol: Wrist accelerometry data were
collected from a randomly selected subset of 793 respondents in the
2010–2011 data collection wave. The 2010–2011 accelerometry protocol
has been previously described in detail28. Briefly, randomly selected
respondents in the 2010–2011 data collection wave were asked to wear an
ActiWatch Spectrum® on their non-dominant wrist continuously for 72
consecutive hours (including during bathing or swimming activities)28. The
accelerometers recorded data at a frequency of 32 Hz. Upon receiving
returned devices, data were downloaded from the device and then pre-
processed using the Actiware® software32. The maximum absolute value
was computed for each second; the sum of these absolute values was then
computed for every 15-s epoch. The ActiWatch has a galvanic heat sensor
that identifies when a device is on the wrist. All non-wear periods were
excluded (only 0.17% of epochs across all wake data were classified as non-
wear). Days with at least 10 h of daytime recording were considered “valid”;
days with less than 10 h of daytime recording were excluded. The 24-h
time interval was used to generate the wrist accelerometry features for this
analysis. The study sample was restricted to participants with complete
clinical data and ≥1 valid accelerometry wear day which left 584
participants eligible for our classifier development.

Clinical measures
Cognitive function

Hip accelerometry cohort: The Montreal Cognitive Assessment (MoCA)
was used to determine cognitive function at baseline and 1-year follow-up
for the hip accelerometry training sample. The MoCA evaluates seven
domains of cognitive function. The scale ranges from 0 to 30 with higher
scores indicating better function. Because education was included as a
covariate and our primary focus was on change in cognition, we did not
add an additional point to the MoCA score for education levels below
12 years as is clinically done33.

Wrist accelerometry cohort: In the wrist accelerometry sample, cogni-
tive function was assessed in 2010–11 and 2015–16 using the survey-
adapted Montreal Cognitive Assessment (MoCA-SA) as previously
described in detail32. MoCA scores (range 0–30) are estimated from the
18-item MoCA-SA using a linear prediction model34,35. The wrist
accelerometer data were collected in 2010–11 along with a baseline
MoCA. The MoCA was repeated in 2015–16.
In both cohorts, we calculated cognitive change as a difference in MoCA

scores between the baseline and follow-up assessments (1 year for the hip
accelerometry cohort and 5 years for the wrist accelerometry cohort):

Δ ¼ MoCAfollow�up �MoCAbaseline: (1)

Patients with deteriorating MoCA scores (Δ < 0) were assigned to the
cognitively declined group, denoted as Δ−. The remaining patients were
assigned to the group with a lack of cognitive decline, denoted as Δ+.
The ratio of Δ+/Δ− was 67/48 in hip-worn- and 279/296 in wrist-worn-
accelerometer cohorts. The range of 1-year cognitive change (hip) was −8
to 6. The range of 5-year cognitive change (wrist) was −14.9 to 14.9.

Covariates. The covariates were measured similarly across cohorts.
Hip accelerometry cohort: In the hip accelerometry cohort, age, race,

gender (female vs. male), education (high school≥ vs. < high school
graduate), and monthly income category ($0 < 2000, $2000–3999,
$4000–5999, and $6000+) were recorded through self-reported measures.
Options for the race included Black or African American and Other (White,
American Indian or Alaska Native, Asian Indian, Chinese, Filipino, Japanese,
Korean, Vietnamese, Other Asian, Native Hawaiian, Guamanian or
Chamorro, Samoan, Other Pacific Islander, or Other). No participants
reported Hispanic ethnicity. Information on previously diagnosed comor-
bidities (self-reported and chart review) was recorded and scored using the
Charlson Comorbidity Index and included heart attack, asthma, emphy-
sema, chronic bronchitis, a chronic obstructive pulmonary disorder,
peripheral vascular disease, liver disease, diabetes, and cancer (continuous,
range 0–30)36.

Wrist accelerometry cohort: In the wrist accelerometry cohort, age
(centered, continuous) was calculated using the reported date of birth and
interview date. Gender (female versus male), race (White/Caucasian, Black/
African American, other), and Hispanic ethnicity37. A modified Charlson
Comorbidity Index (range 0–16, continuous) was constructed using self-
reported comorbidity data in the 2010–2011 data collection wave.
Respondents were asked whether they had ever been told by a doctor
that they had any of the following conditions (number of points given in
parentheses): congestive heart failure (1), heart attack (1), coronary
procedure (1), stroke (1), diabetes (1), rheumatoid arthritis (1), asthma,
emphysema, chronic obstructive pulmonary disease, or chronic bronchitis
(1), dementia (1), non-metastatic cancer excluding skin cancer (2), or
metastatic cancer excluding skin cancer (6)38.

Accelerometer data preparation
Data were restricted to enrollees with at least one valid day. We calculated
the Euclidean norm minus one (ENMO), counts per minute (CPM), and

Fig. 3 Confusion matrix and ROC-AUC curve summarizing experiments with data recorded for the wrist accelerometry cohort. The figure
shows a confusion matrix and b ROC-AUC curve for the held-out sample.
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vector magnitude count (VMC) for each participant using the hip and wrist
data. To calculate these metrics, the accelerometry data needed to be in
the form of the vector magnitude/Euclidean norm. The subsecond-level
wrist accelerometry data were already converted to the vector magnitude/
Euclidean norm by the manufacturer’s software, 1 data point for every 15-s
epoch, where N= 24 h per day × 60min per hour × 4 samples per
minute= 5760 samples per day for wrist-worn accelerometer data.
The hip accelerometer data were in the form (x(t), y(t), z(t)), where x(t), y

(t), and z(t) are dimensionless data provided by the accelerometry device,
which are approximately proportional to the (x-, y-, and z-axis) directional
acceleration39. Time t is discrete, which for each day t runs from 1 to N,
where N= 24 h per day × 60min per hour × 60 s per minute × 30 samples

per second= 2,592,000 samples per day for hip-worn accelerometer data.
The vector magnitude/Euclidean norm r(t) was computed in the hip
accelerometry data as follows:

r tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x tð Þ2þy tð Þ2þz tð Þ2

q
; (2)

To normalize the vector magnitude/Euclidean norm r(t) to a consistent
length across both the wrist and hip accelerometry cohorts, the vector
magnitude/Euclidean norm r(t) was reshaped to a D × T matrix R= Rdt
where D represents the total number of wear days and T represents
collected samples per day. The average, normalized vector magnitude/

Fig. 4 Relative importance of predictive features in CDPred-4+ experiments with the wrist accelerometry cohort. The features are listed in
the order of decreasing importance, from top to bottom of the graph.

Fig. 5 Distribution of CPM75/VMC75 over cohorts. Hip/Wrist accelerometry cohorts distribution of CPM75/VMC75. Red dashed line represents
Q1 quantiles on inactive: [0, 25%]; Green dashed line represents Q2 quantiles on moderately active [25–50%]; Blue dashed line represents Q3
quantiles on active [50–75%], and above Q3 represents extremely active [75–100%].
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Euclidean norm r tð Þ is computed as follows:

r tð Þ ¼ 1
D

XD

d¼1

Rdt : (3)

We then used non-overlapping 1-minute, sliding windows to extract the
Euclidean norm minus one (ENMO), the counts per minute (CPM), and the
vector magnitude count (VMC), both formally defined below. The ENMO
was used to remove noise and gravitation effects from subminute and
subsecond-level data. Letting H denote the number of time measurements
in a one-minute sliding window, we can write ENMO as:

ENMO tð Þ ¼ 1
H

XH�1

h¼0

max rðt þ hÞ � 1; 0½ �: (4)

The feature CPM was further derived as:

CPM tð Þ ¼ H � ENMOðtÞ (5)

Note that H= 60 s per sliding window × 30 samples per second=
1800 samples per sliding window for hip accelerometer data and H= 60 s
per sliding window × 4 samples per minute= 4 samples per sliding
window for wrist accelerometer data.
The VMC was used to evaluate the mean amplitude deviation in the

sliding window period with size H, defined as:

VMC tð Þ ¼ 1
H

XH�1

h¼0

rðt þ hÞ � rðtÞj j; (6)

where t now varies over the minutes each day, from 1 to N, with N= 24 h
per day × 60min per hour= 1440min per day.

Accelerometry activity level measures (C4 and V4). Two categorical activity
measures that we call C4 and V4 were computed. After extracting CPM and
VMC measures from the accelerometer data, we generated the 75th
percentile for CPM and VMC data points for each participant denoted as
CPM75 and VMC75. The sample-based distribution of the CPM75 and the
VMC75 were then categorized into four levels at each quartile to create a
C4 and V4, respectively. Figure 5 shows the cohort-specific-based quartiles
for CPM75 and VMC75 labeled as: inactive [0–25%], moderately active
[25–50%], active [50–75%], and extremely active [75–100%].

Accelerometry pattern measures. After obtaining minute-level ENMO(t)
and VMC(t), we then computed 98 statistical and harmonic features. This
resulted in 105 features for those wearing the hip accelerometers (study
population N= 115) and 104 features for those wearing the wrist
accelerometers (study population N= 575). The number of features for
the wrist- and hip-worn devices differed because the income and

ethnicity/race categories in the two datasets were not identical. The
specific features for ENMO(t) and VMC(t) are listed in Table 5.
We illustrated the meaning of the individual harmonic features in Fig. 6.

While we computed a relatively large number of harmonic features, the
features belong to just a few categories: differential entropy (flatness of a
distribution), fast Fourier transform (revealing periodicity in activity), and
statistics describing shapes of a distribution, such as mean, variance,
skewness, and kurtosis.

Statistical analysis. First, we computed characteristics of the two cohorts:
means (±standard error, SE) for continuous measures and proportions
(±SE) for categorical variables. Second, to analyze the statistical
significance of the covariates for distinguishing between the two classes
(Δ−, Δ+), we evaluated the predictive importance of each of the
demographic, comorbidity, and accelerometry measure in both cohorts.
Third, we built a binary classifier called CDPred to distinguish Δ+ from Δ− in
the two cohorts using XGBoost (Extreme Gradient Boosting). To evaluate
the performance of the model in each cohort, we randomly chose 10% of
the hip accelerometry cohort and 15% of the sample from the wrist
accelerometry cohort as a hold-out sample. The CDPred hyperparameters

Table 5. Statistic and harmonic features extracted from CPM (t) and
VMC (t).

Statistical features

Mean and median

Standard deviation

Minimum and maximum

25th and 75th percentile

Skewness and kurtosis

Entropy

Beta distribution shape (α,β)

Harmonic features

Top 15 FFTa Coefficients (frequency/signal)

FFTa entropy

Periodogram frequency mean, Standard deviation

RMSb amplitude

Periodogram frequency Kurtosis and Skewness

aFast fourier transformation (FFT).
bRoot mean squared (RMS).

Midnight

Noon

Ac
tiv

ity

highest

medium

low

a Differential Entropy 

=
+

+

b FFT: Decomposing 
a Curve into 
Harmonics

positive

Smaller

Larger

highest 
positive

lower
even lower

c Skewness

negative

d Excess Kurtosis

e Amplitude

lowest
negative

zero

Fig. 6 Includes animations illustrating the entropy, skewness,
harmonics, kurtosis, and amplitude accelerometry features used
in our analysis (we did not illustrate more standard statistics, such
as mean and variance of measurements). a Differential entropy:
Differential entropy is the highest for a uniform distribution of
activity (for example, when a person stays inactive 24 h a day, so
there are no bursts of activity). When a person is more active
through the day and inactive at night, the entropy of activity drops,
because the daytime activity exceeds the night-time activity
average. b Fast Fourier transform (FFT): The fast Fourier transform
refers to the number of harmonics that can be used to describe a
curve. Any curve can be decomposed into a spectrum of harmonics.
In this case, the hypothetical activity curve shown in red is the sum
of 3 harmonics with nonzero amplitude: one with four cycles a day,
one with a single full cycle a day, and one with a two-day cycle. In
real accelerometry data, the number of accelerometry harmonics
composing a 24-h circadian pattern is typically over 15 harmonics.
c Skewness is a statistic characterizing the asymmetry of the
distribution of activity; it can be applied to entire device wear time
or to smaller intervals of accelerometry readings. d Excess kurtosis is
a statistic indicating deviation of a distribution from a normal
distribution. Kurtosis is zero for a normal distribution, positive for
distributions with heavier (than normal) tails, such as t-distribution,
and negative for distributions that have lighter tails, such as Beta
with parameters (2,2). e Amplitude: The amplitude of each harmonic
in an FFT reflects the distance between minimum and maximum
activity values. For non-essential (noise-level) harmonics in FFT, the
amplitude is close to zero.
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were fine-tuned using 5-fold cross-validation, to maximize the area under
the curve (AUC) score. We then reported the performance of each model in
terms of predicted accuracy and AUC on a hold-out sample. The feature
importance of distinguishing Δ+ and Δ− were then listed in descending
order of importance for the best-performing model in each dataset.

Ethics. The study was approved by the University of Chicago Institu-
tional Review Board (IRB # 13-0443). Study participants provided written
informed consent.

DATA AVAILABILITY
The NSHAP data are publicly available and can be obtained from the National Archive
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studies/34921) after completing a Data Use Agreement. The FACE Aging study data
are available from one of the corresponding authors (M.H.S.) upon reasonable
request and after completion of a Data Use Agreement and Institutional Review
Board assessment.
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