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ABSTRACT 

Understanding the cellular mechanisms of novel immunotherapy agents in the human tumor 

microenvironment (TME) is critical to their clinical success.  We examined GITR and TIGIT 

immunotherapy in gastric and colon cancer patients using ex vivo slice tumor slice cultures 

derived from cancer surgical resections.  This primary culture system maintains the original 

TME in a near-native state.  We applied paired single-cell RNA and TCR sequencing to identify 

cell type specific transcriptional reprogramming.  The GITR agonist was limited to increasing 

effector gene expression only in cytotoxic CD8 T cells.  The TIGIT antagonist increased TCR 

signaling and activated both cytotoxic and dysfunctional CD8 T cells, including clonotypes 

indicative of potential tumor antigen reactivity.  The TIGIT antagonist also activated T follicular 

helper-like cells and dendritic cells, and reduced markers of immunosuppression in regulatory T 

cells.  Overall, we identified cellular mechanisms of action of these two immunotherapy targets 

in the patients’ TME.  
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The success of checkpoint blockade for cancer immunotherapy has spurred on the 

development of new immune-related therapeutic targets.  To understand the mechanistic effects 

of these immunotherapy agents in cancer, one must evaluate their impact on the diverse cell 

types that are present within the tumor microenvironment (TME).  Cell culture systems of T cell 

exhaustion and mouse cancer models are commonly used to evaluate immunotherapy agents.  

However, neither of these experimental approaches replicate the cellular diversity found in the 

native TME within patients’ malignancies (1). 

 

In patient tumors, the native TME has a wide array of cell types including T cells, fibroblasts, 

macrophages, etc.  Moreover, many cell types within the native TME have specific functional 

phenotypes that are a challenge to replicate within vitro systems.  For example, TME-based 

CD8 T cells exhibit  naïve, cytotoxic or exhausted functional phenotypes (2).  These cellular 

phenotypic ‘states’ have a profound impact on response to an immuno-perturbation.  Thus, 

there are significant advantages for using experimental methods that fully represent the TME 

cellular complexity, identify the different cell types and determine their functional states.  For 

example, a recent study assessed the cellular effects of PD-1 blockade on ex vivo fragment 

cultures of patient tumor specimens (3).  Early ex vivo cytokine and chemokine responses at 48 

hours correlated with clinical response.  Thus, using primary tissue cultures has utility for 

evaluating cellular responses in the TME to understand immunotherapy effects. 

 

A method for preserving cellular composition of cancers involves tumor slice cultures (TSCs) 

(4).  Tumors originating from surgical resections are rapidly processed into thin slices and then 

placed in culture media.  The tissue sections’ thickness is in the range of several hundred 

microns which enables rapid diffusion of media, oxygen and other molecules.  This primary 

tissue culture approach has been well-established in preserving the cellular TME of original 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.13.532299doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.13.532299
http://creativecommons.org/licenses/by-nc-nd/4.0/


tumor (4-7).  While TSCs have been used to evaluate the effects of chemotherapy agents in 

primary tumors specimens (8-10), only a limited number of recent studies have leveraged them 

to determine the consequences of immunotherapies such as anti-PD-1, anti-TIM-3, anti-IL-10 

and CAR-T cells (11, 12). 

 

There are additional challenges for evaluating the impact of targeting specific immune blockade 

molecules.  Conventional experimental methods do not provide the resolution to identify the 

complex features of individual TME cells.  Many studies use fluorescent antibody staining 

approaches to identify specific cells, either through flow cytometry or microscopy.  However, 

these methods capture a limited number of pre-defined molecular features among the affected 

cells.  Another experimental approach involves using conventional RNA-seq to identify gene 

expression changes in the TME.  However, standard RNA-seq requires processing the tissues 

in bulk and lacks the discrimination of assigning gene expression to individual cell types present 

in the TME.  More recently, single-cell RNA sequencing (scRNA-seq) has provided an unbiased 

assessment of individual cell’s transcriptional changes.  Single cell gene expression defines 

specific cell types or functional states.  Single cell genomic methods have provided valuable 

information about how specific cell types respond to PD-1 blockade using longitudinal pre and 

on treatment patient biopsies (13, 14). 

 

To address the challenges of studying the effects of candidate immunotherapies in the native 

TME, we used an integrative approach.  It combines the TSC experimental model with single-

cell genomics.  We determined how specific antibodies targeting immune checkpoints or co-

stimulatory molecules altered the immune and other cell types present in the native TME from 

gastrointestinal cancers.  To evaluate the cellular effects, we used single cell RNA sequencing 

(scRNA-seq) and single-cell TCR sequencing (scTCR-seq).  Across a series of TSCs derived 
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from colorectal and gastric carcinomas, we determined the cellular response of specific immune 

perturbations, namely antibodies targeting specific checkpoints or co-stimulatory molecules.  

Single cell gene expression provided a readout to determine how specific TME cell 

subpopulations were affected by these perturbations. 

 

We tested two antibodies targeting GITR and TIGIT.  Antibodies targeting GITR and TIGIT are 

both being actively evaluated in various clinical trials for cancer (20). GITR is a co-stimulatory T 

cell receptor (15).  TIGIT is a co-inhibitory receptor, which binds with ligands from the 

PVR/NECTIN family and reduces the costimulatory function of the CD226 receptor (16).  

Previously, we identified both these targets in a single cell genomic analysis of gastric cancers’ 

TME (GC) (17).  These targets were over-expressed in both exhausted CD8 T cells and 

regulatory T cells (Tregs) in the TME but not in paired normal gastric tissue.  Similar findings 

have been reported in colorectal cancer (CRC) (18) and several solid tumors (19).   

 

We evaluated GITR and TIGIT target expression in a series of colorectal and gastric cancers 

using multiplex immunofluorescence (mIF).  We also confirmed the expression of GITR and 

TIGIT across a scRNA-seq dataset from 217 patients that included colorectal cancers as well as 

12 other tumor types (21).  We also confirmed the expression of these targets from our 

previously published GC dataset (17). 

 

We determined that GITR agonist antibody had only a limited cellular effect which was primarily 

restricted to cytotoxic effector CD8 T cells.  In contrast, when we tested a TIGIT antagonistic 

antibody on TSCs from the same set of cancers, we observed increased TCR signaling and 

activation in both cytotoxic and dysfunctional CD8 T cells, including in expanded clonotypes.  
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Moreover, using the TIGIT antagonist antibody, we observed activated follicular helper-like 

(TFh-like) cells and a reduction in the immunosuppressive phenotype of Tregs and dendritic 

cells (DCs).  These results demonstrated how single cell genomics combined with TSCs can be 

applied to primary gastrointestinal cancers to identify the heterogenous cellular responses to 

GITR stimulation and TIGIT inhibition. 

 

RESULTS 

Experimental approach and study design 

We obtained ten surgical resections of CRCs or GCs from seven different patients (Table 1).  

The tissue samples included seven resections of primary CRC from seven individual patients.  

From one patient with GC, we obtained three independent resections – one from the primary 

tumor and two from metastases to the peritoneum which is an organ that lines the abdominal 

cavity. 

 

The samples underwent rapid processing following surgical resection (Methods).  From each 

tumor, we split the tissue, using one portion to generate single cells suspensions and scRNA-

seq and scTCR libraries for sequencing (Fig. 1A, Methods).  The tissues that were processed 

immediately into single cell libraries provide a baseline of the cellular composition of the tumor.  

We refer to this baseline as the T0 time point.  The other portion were used for TSC culturing.  

These results were used for determining cellular changes that may occur during the TSC 

culturing. 

 

For experimental testing of each cancer’s TME, we generated ex vivo tumor slice-cultures 

(TSCs) from the resections.  There were four different conditions.  The TSCs were treated with 
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either i) isotype control antibody (‘ctrl’), ii) T-cell activator PMA/Ionomycin (‘PMAIono’), iii) GITR 

agonist antibody (‘GITR’) or iv) TIGIT antagonist antibody (‘TIGIT’).  After 24 hours of treatment, 

the cells were harvested and then processed for scRNA-seq and scTCR-seq.  The number of 

experimental conditions tested per sample depended on the available size of each resection.  

All ten samples had adequate tissues for a baseline T0 and control samples for scRNA-seq.  

We conducted scRNA-seq on PMA/Ionomycin treatment from eight samples, GITR agonist 

treatment from nine samples and TIGIT antagonist treatment from five samples (Table 1).  

Quality control measures including filtering cells for mitochondrial genes indicative of cell death 

(22) and doublet identification (23).  Following filtering, our final analysis included a total of 

236,483 single cells with an average of 5,630 cells per sample (Supplemental Table 1). 

 

Baseline immune cell characteristics of the TME from primary gastrointestinal tumors 

We determined the baseline cellular composition of the T0 samples (Fig. 1B).  Batch effects 

were reduced using the Harmony algorithm (24).  Specific cell type clusters were composed of 

different samples, indicating the elimination of batch effects (Fig. 1C).  Using the scRNA-seq 

data, we made cell type assignments based on canonical marker genes (Methods).  Overall, 

we identified tumor epithelium (EPCAM, TFF3), macrophages (CD68, CD14), DCs (HLA-DRA), 

mast cells (KIT, TPSB2), fibroblasts (COL1A1, DCN), endothelial (VWF, PLVAP) and B/plasma 

(MS4A1, CD79A) , T and NK cells (Fig. 1C, 1D). 

 

We characterized the T and NK functional cell states using a method called cell reference 

mapping.  This method uses an established reference from a pan-cancer tumor immune cell 

atlas (21) and the SingleR algorithm (25).  Each cell’s gene expression is matched to a given 

reference cell type.  This approach provides an unbiased identification of cell subtypes without 

applying cell clustering methods.  For these results, we denote the cell type and functional state 
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by listing prominent examples among the associated gene expression markers.  We identified 

different T cell subtypes including CD4/CD8 naïve cells (CCR7, SELL, LEF1, TCF7) (Fig. 1C, 

1D).  Among the CD8 T cells, we identified cytotoxic CD8 expressing effector cytokines (GZMK, 

GZMA, PRF1, NKG7) with low expression of immune checkpoints.  Dysfunctional CD8 T cells 

(LAG3, TIGIT, PDCD1, HAVCR2, CTLA4, CXCL13) were also observed.  These exhausted 

CD8 T cells have increased immune checkpoint expression (2).  Dysfunctional CD8 T cells had 

a subset of proliferating cells noted by expression of the marker gene MKI67.  Proliferating 

dysfunctional CD8 T cells have been linked to early dysfunction in a clonal tumor-reactive 

population (26). 

 

We identified CD4 TFh-like (CXCL13) and regulatory T (Treg) cells (FOXP3, IL2RA).  TFh-like 

cells have been linked to anti-tumor immunity by promoting CD8 and B cell activity (2, 27).  In 

contrast, Treg cells are immunosuppressive and limit anti-tumor activity through specific effects 

on cytotoxic CD8 T cells, dendritic cells and macrophages (28).  As corroborated by other 

studies (26), we observed proliferative subsets among the TFh-like and Treg cells.  These 

proliferative subsets may reflect a TME response to local tumor antigens (2).  These cell types 

were identified across all patients in varying proportions (Supplemental Fig. 1A).  In summary, 

across all tissue samples, the TME in the baseline T0 resections contained diverse functional T 

cell states with anti-tumor (cytotoxic CD8, dysfunctional CD8, TFh-like) and immunosuppressive 

(Treg) properties. 

 

Baseline T cell receptor clonality in the primary tumor TME 

To assess clonality of the T cells in the cancer’s TME at the baseline state, we performed 

scTCR-seq on the baseline T0 samples.  We identified TCR chains from an average of 43% of 

the T cells with matching single cell gene expression (range 30% - 78%).  Next, we determined 
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whether there was evidence of TCR clonotype being highly represented within a given sample 

(18).  This overrepresentation is termed as being “an expansion” for a given T cell clonotype.  

Moreover, one can assign specific clonotypes to different cell states (i.e., Tregs, Tfh, etc.). 

 

To conduct this analysis, the frequency of individual clonotypes was calculated using the 

Shannon entropy score – this metric quantifies T cell clonotype expansion with a value range of 

0 to 1, with 1 indicating high clonality.  Cytotoxic and dysfunctional CD8 T cells showed 

significantly high expansion index of TCR clones (Fig. 1E).  High clonality and expansion may 

be an indicator of tumor-antigen driven expansion in the TME (18).  Next, we examined the 

frequency distribution of CD8 T cell clonotypes across samples (Fig. 1F).  Single cell clonotypes 

represented the majority of TCRs, indicating a lack of expansion among these cells.  Across the 

samples, between 29 to 90% of the total clonotypes were detected in more than one cell, 

indicating expansion.  This analysis identified TCR sequences of expanded clones that may be 

potentially tumor-reactive in each sample at baseline.  Overall, we identified TCR sequences 

that belonged to expanded clonotypes in infiltrating CD8 T cells in the baseline tumors. 

 

GITR and TIGIT gene and protein expression in the baseline TME 

We evaluated the gene expression of the immunotherapy targets TNFRSF18 (encoding protein 

GITR) and TIGIT among gastrointestinal cancers at the baseline state.  In both CRCs and GC 

tumors, the dysfunctional CD8, TFh-like and Treg cells had the highest levels TNFRSF18 

expression (Fig. 2A, 2B).  The complementary ligand, TNFSF18, encoding the protein GITRL, 

was expressed by fibroblasts, DCs and macrophages in CRC.  TIGIT expression was highest in 

cytotoxic CD8, dysfunctional CD8, TFh-like and Treg cells.  The genes PVR and NECTIN2, 

which encode for TIGIT ligands, were expressed by tumor epithelial, endothelial, fibroblasts, 

macrophages and DCs in the TME.  These expression patterns are along the lines of other 
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reports (29, 30).  Overall, this result indicated that among all samples, the TME cells expressed 

genes required for GITR and TIGIT receptor-ligand signaling. 

 

We also measured the expression of GITR and TIGIT proteins in these baseline tumor tissues 

(T0 resections) using multiplexed immunofluorescence staining.  We stained the tumors using 

two independent antibody panels containing CD8, FOXP3 and TIGIT or CD8, FOXP3 and GITR 

respectively (Fig. 2C, D).  We performed image analysis using a multiplex classifier for 

detecting single stain or double stain positive cells as described previously (17).  From all 

samples, an average of 37.4% of total CD8 positive cells expressed TIGIT.  An average of 

53.68% of total FOXP3 positive cells were TIGIT positive (Supplemental Fig. 1B, C).  Similarly, 

42.46% of CD8 cells expressed GITR (Supplemental Fig. 1D, E).  Among the FOXP3 cells, 

74.5% expressed GITR.  These results confirmed that among our tumor samples, CD8 T cells 

and Tregs expressed the TIGIT and GITR protein. 

 

Overall, these results indicated that expression of our target receptors and their ligands was 

prevalent in the TME of the harvested cancers.  Targeting these receptors has the potential to 

modify the function of anti-tumor T cell subsets such as cytotoxic CD8, dysfunctional CD8 and 

TFh-like cells, as well as immunosuppressive Tregs. 

 

Expression of TIGIT and GITR in colorectal and other cancer types 

To determine the expression of these two targets among an independent and expanded set of 

colorectal, gastric and other tumor types, we analyzed gene expression among a data set of 13 

different cancer types (21).  Importantly, this dataset included 25 independent CRCs.  Other 

cancer types included breast carcinomas (BC), basal cell and squamous cell carcinomas 
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(BCC), endometrial adeno- (EA) and renal cell carcinomas (RCC), intrahepatic 

cholangiocarcinoma (ICC), hepatocellular carcinomas (HCC), pancreatic ductal 

adenocarcinomas (PDAC), ovarian cancers (OC), non-small-cell lung cancers (NSCLC), and 

cutaneous (CM) and uveal (UM) melanomas.  For gastric cancer, we evaluated our previously 

published dataset of seven GC samples (17).  High TNFRSF18 and TIGIT expression was 

detected in dysfunctional and cytotoxic CD8 T, TFh-like, Treg and proliferating cells (Fig. 2E-G).  

Overall, this result confirmed the expression of these targets in additional CRC and GC tumors.  

These targets are also expressed in a wide variety of solid tumor types. 

 

Primary tissue slice cultures maintain the native TME composition of gastrointestinal 

cancers 

As noted previously, tissue slice cultures have been demonstrated to maintain a high degree of 

tissue viability, cellular diversity, and cellular transcriptional profiles (6, 10).  We confirmed that 

the TSCs cultured for 24 hours maintained the cellular characteristics similar to the baseline 

state of the TME (i.e., T0 cell conditions at time of resection).  As noted previously, other groups 

have used short culture periods to maintain the cellular diversity found in the native TME (4-7).  

First, we evaluated the TSC cellularity using hematoxylin and eosin (H&E) staining of the 

cultures.  This result showed that cell morphology remained intact with little evidence of necrosis 

or other signs of overt cell death (Supplemental Fig. 1F). 

 

Next, we evaluated the single cell gene expression across the two conditions for all samples 

which included: i) the baseline T0; ii) TSC post-24 hour incubation with isotype control antibody; 

(Fig. 3A).  We corrected the data for experimental batch but not for the experimental condition, 

using the Harmony algorithm (24).  Cells belonging to the baseline T0 tissue and control 

clustered together in the Uniform manifold approximation and projection (UMAP).  This result 
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indicated that the cells had similar gene expression profiles.  We calculated the Adjusted Rand 

Index (ARI) to determine the variation in gene expression between the baseline and control 

culture.  Cluster labels compared to the experimental condition had a low ARI value of 0.009 

which indicated that clustering was due to the cells having similar gene expression 

characteristics and not driven by the T0 or TSC experimental condition. 

 

We annotated cell types for each cluster using marker gene expression as previously described.  

The TSC samples contained all cell lineages compared to the matched baseline T0 samples.  

These cell types included tumor epithelial, macrophages and dendritic cells, T, NK, B or plasma 

lymphocytes, mast cells, fibroblasts, and endothelial cells (Fig. 3B).  The relative proportion of 

all cell lineages was also maintained in the TSCs compared to the baseline tumor tissue (Fig. 

3C). 

 

We identified marker genes for each cell lineage in the baseline T0 samples (Seurat Wilcoxon 

test, log fold change >= 0.25, adjusted p <= 0.05).  We compared the average gene expression 

of these marker genes in each respective cell lineage in T0 to TSCs.  Expression was highly 

correlated across all cell types (Fig. 3D) (Pearson correlation >=0.75, p <= 2.63E-67).  Hence, 

the TSCs maintained the cellular heterogeneity and cell states that were present in the original 

tumor. 

 

General stimulation of T cells and other cell types in the TSC TME 

To demonstrate that the TSC cells were functionally responsive, we used a stimulus with 

phorbol ester 12-myrisate 13-acetate and the calcium ionophore ionomycin (PMA/Ionomycin).  

In combination, these compounds stimulate downstream pathways associated with T cell 
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activation (31).  We integrated data from all experiments and performed cell type identification 

using marker based and SingleR assignments (Methods).  We evaluated specific subsets of 

cells from samples treated with ctrl and each respective perturbation.  To account for inter-

patient variability in differential expression (DE) analysis, we utilized model-based analysis of 

single-cell transcriptomics (MAST) (32) incorporating sample as a random effect in the model 

(33).  A threshold of log fold change of 0.25 and false discovery rate (FDR) p < 0.05 was used 

to identify significantly DE genes. 

 

From the TSCs exposed to PMA/Ionomycin, we detected differentially expressed genes 

associated with activation in CD8 T cells (CD69, CRTAM) (Fig. 4A), TFh-like cells (Fig. 4B) 

(CD69, CD40LG, IL2RA) and Tregs (CTLA4, TNFRSF4, TNFRSF9, IL2RA) (Fig. 4C).  All cell 

types also responded with increased expression of NR4A and EGR family genes which are 

associated with signaling of the nuclear factor of activated T cells (NFAT).  This pathway is 

associated with T cell activation and anergy following stimulation (34).  In CD8 T and TFh-like 

cells, we also identified increased expression of several effector cytokines and chemokines 

including CCL4, CCL3, IFNG, TNF, etc. relative to control.  At the pathway level, we confirmed a 

significant increase in NF-KB signaling and calcium ion response pathway activity in CD8 T cells 

(Fig. 4D, E).  Both pathways are known mediators of effects of PMA/Ionomycin (31).  Across all 

the tumors, CD8 T cells consistently responded to PMA/Ionomycin stimulation as indicated by a 

significant increase in NF-KB activity (Fig.4F). 

 

 

The tumor epithelial cells showed significant increases in interferon (IFN) gamma response - 

signaling across all tumor samples (Fig. 4G).  This indicated that increased IFN from activated T 

cells was able to affect neighboring tumor cells, reflecting the preserved intercellular networking 
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in TSCs.  Overall, these experiments with PMA/Ionomycin confirmed that the TSC cells were 

functional and demonstrated intercellular interworking among the cells in the TSCs. 

 

GITR activation had limited and heterogenous effects on CD8 T cell cytotoxicity 

We evaluated the effects of the GITR agonist on the TSCs.  For CD8 T cells, the only gene 

which showed differential expression across all nine tumors was CCL4.  This gene had a fold 

change of >0.25 upon GITR agonist treatment (MAST DE) (Fig. 5A).  Other significantly 

increased genes with lower fold changes (>0.15, FDR < 0.05) included cytokines CCL4L2, 

GZMA, GNLY, CCL3 and PRF1 (Supplemental Table 2).  Thus, GITR agonist exposure had 

limited effects on gene expression across the tumors. 

 

We evaluated the effect of GITR agonist on the expression of a CD8 T cell cytotoxic gene 

expression signature that has been previously reported (35, 36) (Supplemental Table 3, Fig. 

5B).  Significant increases in cytotoxic gene signature expression were observed in four (CRC-

1, GC-1-3, CRC-5, CRC-7) out of nine tumors.  Hence, the GITR agonist showed interpatient 

variability in terms of a gene expression response. 

 

Dysfunctional CD8 T cells were indicators of no response to the GITR agonist 

We investigated the differences in transcriptional responsiveness to GITR agonist.  GITR 

agonist exposure led to only a limited increase in cytotoxic effectors for only a subset of the 

tumors.  We grouped tumors as transcriptional responsive (TR) when they responded with an 

increase in cytotoxic effector gene expression upon treatment (GC-1-3, CRC-1, CRC-5, CRC-

7).  Tumors lacking this response were identified as transcriptional non-responsive (TNR) (GC1-

1, GC-1-2, CRC-3, CRC-2, CRC-6).  We compared the baseline CD8 T cells (T0) in the TNR 
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versus TR samples.  We used differential abundance (DA) analysis (37) to identify cell 

populations with significantly different distributions based on the CD8 T cells’ gene expression.  

We identified cells in the UMAP representation that were significantly associated with either 

TNR or TR status (Fig. 5C) (Wilcoxon p <= 0.065) and identified differentially expressed genes 

between the two. 

 

The TNR associated cells had significantly increased expression (Seurat Wilcoxon adjusted p < 

0.05, log fold change >= 0.25) of CD8 T cell dysfunction markers including CXCL13, TIGIT, 

LAG3 and RBPJ (19) (Fig. 5D).  Additionally, these cells had increased expression of effectors 

including the granzyme family genes.  These cells also had increased expression of HSP family 

genes that have been linked to exhaustion (38).  Also, we evaluated a gene signature for CD8 T 

cell dysfunction that has previously been described (26) (Supplemental Table 3).  TNR 

associated cells had significantly higher levels of dysfunction (Fig. 5E).  This result indicated 

that CD8 T cells with this dysfunctional phenotype do not respond to GITR agonist. 

 

To test this association between a lack of transcriptional response in dysfunctional CD8 T cells, 

we examined ex vivo responses among CD8 T cell subsets across all tumors (Fig. 5F).  

Increased effector gene signature upon treatment was restricted to cytotoxic CD8 T cells.  In 

dysfunctional cells, GITR agonist reduced effector gene expression.  Hence, GITR agonist only 

stimulated effector cytotoxic cells.  However, in exhausted dysfunctional cells this stimulation 

reduced the cytotoxic potential. 
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Among TFh-like cells, the GITR agonist led to a significant increase in gene expression of only 

three genes (S100A4, MT-CO1, MT-ND1).  No significant changes were detected in Tregs and 

NK cells.  These results indicated a limited effect of GITR agonist in the TME (Fig.5G). 

 

TIGIT inhibition activated CD8 T cells in the TME 

Next, we evaluated the effects of the TIGIT antagonist on the TSCs of five tumors (CRC-4, 

CRC-5, CRC-7, GC-1-2, GC-1-3).  After TIGIT antagonist exposure, CD8 T cells showed 

increased expression of several cytotoxic effector genes (Supplemental Table 4, Fig.6A).  

These genes included IL32, the granzyme family genes, PRF1, NKG7, CCL5 and CCL4.  We 

identified increased expression of genes involved in actin cytoskeleton remodeling including 

PFN1, COTL1 and CORO1A.  The CD3D and CD3DE genes increased upon TIGIT inhibition.  

These genes are components of TCRs.  Overall, TIGIT inhibition increased TCR signaling and 

activation of CD8 T cells. 

 

We evaluated the effect of TIGIT antagonist among the different CD8 cell subtypes (i.e., cell 

states) by quantifying TCR signaling and T cell activation pathways.  We observed significantly 

increased TCR signaling and T cell activation in both cytotoxic and dysfunctional CD8 T cells 

(Fig. 6B, C).  This result indicated that TIGIT inhibition is capable of reinvigorating dysfunctional 

exhausted cells.  In contrast, the GITR agonist reduced the cytotoxicity of dysfunctional cells. 

 

TIGIT inhibition activated specific CD8 clonotypes 

TIGIT inhibition had specific effects on certain CD8 TCR clonotypes.  From the baseline tumor 

tissue (T0), we identified TCR clonotypes in CD8 T cells across patients as previously 

described.  Clonotypes that were present in more than one cell were indicative of potential 
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tumor reactivity (Fig. 1E) (2).  We used these TCR clonotypes from the baseline to identify how 

the CD8 T cells with the same clonotype responded to TIGIT antibody versus the control in the 

TSCs.  In three tumors, we recovered 14-28% of these clonotypes in both the ctrl and TIGIT 

conditions, allowing us to examine the effect of treatment in these cells.  TIGIT inhibition 

successfully increased TCR signaling among these clones (Fig. 6D).  This result indicated that 

TIGIT treatment can specifically increase the activation of potential anti-tumor clonotypes. 

 

TIGIT inhibition generates a variable cellular response in a metastatic gastric cancer 

Using these gene signatures of TCR signaling or T cell activation, we examined tumor-specific 

responses to TIGIT inhibition.  The CD8 T cells from all tumors responded with a significant 

increase in either one or both processes of TCR signaling and T cell activation upon treatment 

(Fig. 6 E, F).  We validated the significant increase in expression of downstream cytotoxic 

effector GZMB using RNA in situ hybridization (RNA-ISH) in tumors CRC-5 and GC-1-3 

(Supplemental Fig. 2A, B).  Hence, TIGIT inhibition activated local infiltrating CD8 T cells in the 

TME across all tumors. 

 

A notable response pattern was observed for tumors GC-1-2 and GC-1-3 (Fig. 6 E, F).  The 

GC-1 tumors samples represented patient matched pairs of peritoneal metastases (Table 1).  

Interestingly, there was a variation in the response among these two metastases.  Compared to 

GC-1-3, tumor GC-1-2 had a lower increase in the extent of T cell activation and responded with 

a decrease in TCR signaling upon treatment (Fig. 6E, F).  This indicated a reduced 

responsiveness to TIGIT inhibition in CD8 T cells in GC-1-2 compared to GC-1-3. 
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To determine the factors leading to variation in transcriptional response from two metastatic 

tumors, we examined differences in their baseline T0 CD8 phenotypes.  GC-1-2 CD8 T cells 

had significantly higher expression of GZMK (Fig. 6G) associated with effector memory CD8 

cells (2)  and RGS1 associated with pre-exhausted and exhausted CD8 T cells (39).  The 

reduced responsive cells also had upregulated TXNIP, which has been demonstrated to reduce 

effector functions in CD8 T cells in viral infection (40).  Conversely, GC-1-3 had increased 

expression of metallothionein genes MT1E, MT1X and MT2A.  In a recent study, metallothionein 

family genes were demonstrated to link levels of CD8 activation and dysfunction to modulate 

their effector capacity (41).  In summary, we identified that TIGIT inhibition had different effects 

across two metastatic gastric cancers from the same patient.  Variation in TIGIT response was 

associated with genes that modulate effector, activation, and dysfunctional phenotypes among 

CD8 T cells. 

 

TIGIT inhibition activated TFh-like cells in the TME 

TIGIT inhibition led to activation of TFh-like cells, a cellular effect that has not been described 

previously.  Differential expression analysis identified the upregulation of ACTB, PFN1, S100A4, 

S100A6 and TAGLN2 that are involved in T cell activation (42) (Supplemental Table 5, Fig. 

7A).  These cells also upregulated IL32 expression, a cytokine with potential proinflammatory 

effects.  Expression of IL32 in the TME has been associated with response to PD-1 inhibition 

(43).  Importantly, TIGIT inhibition led to the increased expression of CXCL13.  TFh-like cells 

which express CXCL13 may be associated with B cell response and generation of tertiary 

lymphoid structures (44).  These features mediate an effective immune response against a 

tumor.  These effects were confirmed at the pathway level where TIGIT antagonist treatment led 

to a significant increase in the T cell activation ontology program (Fig. 7B).  This effect was 

observed in four (CRC-4, CRC-5, GC-1-2, GC-1-3) out of five patients (Fig. 7C). 
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Increased TFh-like cells have been demonstrated to predict response to and are proposed to be 

a target of PD-1 immunotherapy (45, 46).  However, the effects of targeting these cells in the 

human TME have remained unknown.  We demonstrated that TIGIT antagonist activated these 

cells in the local TME.  This represented an important cellular mediator of response to TIGIT 

inhibition that can generate an inflammatory anti-tumor TME. 

 

TIGIT inhibition’s effects on other cell types in the TME 

The TIGIT antibody had notable effects among the Treg cells (Supplemental Table 6).  We 

observed an increase in CST7, which is associated with TCR signaling (47), and CD7 linked to 

a mature Treg phenotype (48).  However, this was accompanied by a reduction in CTLA4 and 

TNFRSF4 expression.  A reduction in expression in either of these two genes was seen in all 

patients (Fig. 7D).  Both these molecules are key regulators of an immunosuppressive Treg 

phenotype (49).  This indicated modest effects of TIGIT inhibition on Tregs with a reduction in 

immunosuppressive phenotype. 

 

TIGIT inhibition impact on DCs included a significant increase in expression of CCL17 and 

MARCKSL1 - these genes are indicators of DC activation and a maturation phenotype (50).  

Accompanying this activated DC phenotype, was a significant increase in IL32 expression 

(Supplemental Table 7, Fig. 7E).  DCs which express IL32 can activate T cell responses in the 

TME (51).  Conversely IL2RA, which is associated with an immunosuppressive DC phenotype 

(52), was reduced with TIGIT inhibition.  TIGIT antagonist thus led to activation of DCs in the 

TME.  This result has potential implications in improving antigen presentation and T cell priming 

to orchestrate an anti-tumor response in the TME. 
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Exposure to the TIGIT antagonist did not lead to any gene expression changes among NK cells.  

Finally, we examined the effects in tumor epithelial cells.  TIGIT treatment led to an increase in 

IFN response signature among four (CRC-4, CRC-5, CRC-7, GC-1-2) out of five tumors (Fig. 

7F).  Overall, these results indicated that the proinflammatory effects modulated by TIGIT in 

various cell types in the TME translated into initial favorable transcriptional responses at 24 

hours in tumor epithelial cells.  This included activation of both cytotoxic and dysfunctional CD8 

T, TFh-like cells and DCs together with a reduced immunosuppressive phenotype in Tregs, 

which can promote a favorable inflammatory TME (Fig. 7G). 

 

DISCUSSION 

Many immunotherapy agents and combinations are being studied in clinical trials, often with 

disappointing results (53).  It is important to determine the cellular basis for how these agents 

work in a dynamic and complex TME.  An analysis of the TME and its response to these agents 

is critical to prioritize targets, identify mechanisms of resistance and design rational treatment 

combinations.  Our experimental design combined a robust culture system that preserves the 

original TME together with single-cell readouts that provide granular insights into the 

mechanism of action of perturbations.  This identified heterogenous cellular and patient 

responses to GITR and TIGIT immunotherapy in the TME of GC and CRC.  

 

Despite promising results from T cell culture, mouse, and primate models, GITR agonists have 

shown no meaningful clinical responses in recent clinical trials (54-58).  Our results 

demonstrated that GITR agonist has limited activity in the TME, restricted to cytotoxic CD8 T 

cells that lack exhaustion features.  Moreover, dysfunctional cells had a decrease in cytotoxic 
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activity upon GITR stimulation.  Given that PD-1 inhibitors act to re-invigorate exhausted CD8 T 

cells, our finding raises the possibility that combining them with GITR agonists might antagonize 

this effect.  We also saw no effects on Treg reprogramming in the TME with GITR agonist.  In 

clinical trials, GITR agonist mediated depletion of Tregs in the peripheral blood or TME has 

been observed only in some patients (58). 

 

Compared to GITR agonist, we saw widespread effects in different cell types in the TME with 

TIGIT inhibition.  This included activation of CD8 T cells and TFh-like cells. Both these 

components can mediate anti-tumor immunity.  Our observation that TIGIT inhibition can 

increase TCR signaling in expanded CD8 clonotypes suggests that tumor antigen specific T 

cells could potentially be reinvigorated with treatment.  Early reports have demonstrated some 

clinical responses with TIGIT monotherapy or in combination with PD-1 (59).  However, these 

responses are likely to be restricted to only a subset of patients (60).  We did observe variation 

in the extent of transcriptional responses in CD8 T cells in our samples, which was associated 

with differential baseline expression of GZMK, RSG1, TXNIP and metallothionein family genes.  

An expanded study with greater number of samples and mechanistic studies will allow us to 

examine these correlates of response to TIGIT inhibition. 

 

TSCs remain viable for 1-2 weeks in culture (5).  We evaluated the short-term perturbation 

effects after exposure to specific antibodies.  This feature enables culture in media free from 

cytokines such as IL-2 that are routinely used in maintaining T cells in culture for longer 

duration. As we have demonstrated previously, IL-2 can reprogram transcriptional T cell states 

(61). Our approach allows the evaluation of cell states in the original TME.  Most studies of 

immunotherapy agents lack this feature. 
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A limitation of TSCs is that they allow interrogation only of the local TME, but not of peripheral 

and lymph node immune responses.  These elements are also important players in the clinical 

response to immunotherapy (62).  Short term readouts also do not capture remodeling of the 

TME that could occur over longer duration.  However, a recent study demonstrated that short 

term fragment culture responses to PD-1 were corelated with long term clinical responses (3).  

While it only assesses the local TME response, our experimental strategy fills an important gap 

in preclinical studies.   

 

Overall, our study identified cellular mechanisms of action of GITR and TIGIT immunotherapy in 

the TME of patients.  Future studies testing combination therapies with PD-1, targeting 

macrophages and fibroblasts in the TME and examining the clinical predictive value of ex vivo 

responses will further improve clinical translation. 

 

ONLINE METHODS 

Sample acquisition 

This study was conducted in compliance with the Helsinki Declaration.  All patients were 

enrolled according to a study protocol approved by the Stanford University School of Medicine 

Institutional Review Board (IRB-44036).  Written informed consent was obtained from all 

patients.  All samples were surgical tumor resections.  Clinical pathology report that was 

generated at the time of the resection was reviewed for all samples. 

 

Tissue processing 

Tissues were collected in plain RPMI on ice immediately after resection and dissected with iris 

scissors.  From the original T0 surgical resections, a portion was fixed for histopathology, a 
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portion was subjected to dissociation and the remainder was used to generate tumor slice 

cultures. 

 

Ex vivo tumor slice cultures (TSCs) 

A VF-310-0Z Compresstome tissue slicer and its accessories (Precisionary, Greenville, NC, 

USA) were used to generate tissue slices from a piece of the resection.  Tissue sample was 

glued onto the specimen tube base using All Purpose Krazy Glue (Elmer’s Products, Inc., 

Westerville, OH, USA).  The 3% agarose solution was prepared by diluting UltraPure Low 

Melting Point Agarose (ThermoFisher Scientific) in water followed by heating in a microwave 

and cooling for around three minutes at room temperature.  The tissue sample was retracted 

into the specimen tube and covered with agarose solution.  Agarose was solidified by placing 

pre-chilled chilling block supplied by manufacturer over the specimen tube.  Specimen tube was 

assembled onto compresstome as per manufacturer’s instructions and cold PBS was used as a 

solution in the buffer tank.  Slices were generated using advance setting of 3, oscillation of 5 

and thickness of 400 μm.  Slices were placed onto a 0.4 μm pore size Millicell Cell Culture 

Insert (Sigma-Aldrich, St. Louis, MO, USA) that was then placed into a 35-mm dish 

(ThermoFisher Scientific).  The media volume included 1.5 ml that was placed into the 

surrounding dish and 0.5 ml placed onto the slices followed by culture in a cell culture incubator.  

Media was composed of RPMI, 10% FBS, 1% Antibiotic-Antimycotic (ThermoFisher Scientific).  

Perturbations were added to the media once at the beginning of culture. 2 μg/ml IgG1 Fc (BPS 

Bioscience, catalog #71456) was used as control.  Treatment conditions included 2 μg/ml GITR 

agonist (BPS Bioscience, catalog #79053), 2 μg/ml TIGIT antagonist (BPS Bioscience, catalog 

#71340) or 6 μg/ml eBioscience Cell Stimulation Cocktail (500X) (ThermoFisher Scientific).  At 

24 hours, TSCs were subjected to fixation for histology and dissociation. 
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Histopathology 

Tissue was fixed in 10% formalin for approximately 24 hours at room temperature.  Paraffin 

embedding and hematoxylin and eosin staining was conducted by the Human Pathology 

Histology Services core facility at Stanford University.  Whole slide images were obtained using 

Aperio AT2 whole slide scanner (Leica Biosystems Inc., IL, USA).  Tissue fixation was not 

performed for T0 sample CRC-3 due to inadequate material. 

 

Single-cell dissociation 

Tissue dissociation was conducted using a combination of enzymatic and mechanical 

dissociation using a gentleMACS Octo Dissociator (Miltenyi Biotec) as described previously 

(63).  Cells were cryofrozen using 10% DMSO in 90% FBS (ThermoFisher Scientific, Waltham, 

MA) in a CoolCell freezing container (Larkspur, CA) at -80 ºC for 24-72 hours followed by 

storage in liquid nitrogen.  For scRNA-seq, cryofrozen cells were rapidly thawed in a bead bath 

at 37 ºC, washed twice in RPMI + 10% FBS, and filtered successively through 70 μm and 40 μm 

filters (Flowmi, Bel-Art SP Scienceware, Wayne, NJ).  Live cell counts were obtained using 1:1 

trypan blue dilution.  Cells were concentrated between 500-1500 live cells/μl. 

 

Single-cell RNA sequencing 

The scRNA-seq libraries were generated from cell suspensions using Chromium Next GEM 

Single Cell 5’ version 1.1 (samples CRC-1, CRC-2, GC1-1, GC-1-2, GC-1-3) or version 2 

(samples CRC-3, CRC-4, CRC-5, CRC-6, CRC-7) (10X Genomics, Pleasanton, CA, USA) as 

per manufacturer’s protocol.  All libraries from a patient were prepared in the same experimental 

batch.  Ten thousand cells were targeted with 14 PCR cycles for cDNA and library amplification.  
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Chromium Single Cell V(D)J Human T Cell Enrichment Kit was used to prepare TCR libraries 

from single-cell cDNA as per manufacturer’s protocol.  A 1% or 2% E-Gel (ThermoFisher 

Scientific, Waltham, MA, USA) was used for quality control evaluation of intermediate products 

and sequencing libraries.  Qubit (Thermofisher Scientific) was used to quantify the libraries as 

per the manufacturer’s protocol. Libraries were sequenced on Illumina sequencers (Illumina, 

San Diego, CA). 

 

Data processing of scRNA-seq 

Cell Ranger (10x Genomics) version 3.1.0 or 5.0.0 ‘mkfastq’ command was used for NextGEM 

version 1.1 and version 2 libraries respectively to generate Fastq files. Cell Ranger version 3.1.0 

‘count’ was used with default parameters and alignment to GRCh38 to generate a matrix of 

unique molecular identifier (UMI) counts per gene and associated cell barcode.  Cell Ranger 

version 6.0.0 ‘vdj’ command was used to perform sequence assembly and clonotype calling of 

TCR libraries with alignment to the prebuilt Cell Ranger V(D)J reference version 5.0.0 for 

GRCh38. 

 

Clustering individual datasets 

We constructed Seurat objects from each sample using Seurat (version 4.0.1) (64, 65).  We 

applied quality control filters to remove cells that expressed fewer than 200 genes, had greater 

than 30% mitochondrial genes or had UMI counts greater than 8000 as an indicator of cell 

doublets.  We removed genes that were detected in less than 3 cells.  We normalized data 

using ‘SCTransform’ and used first 20 principal components with a resolution of 0.8 for 

clustering.  We then removed computationally identified doublets from each dataset using 

DoubletFinder (version 2.0.3) (23).  The ‘pN’ value was set to default value of 0.25 as the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.13.532299doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.13.532299
http://creativecommons.org/licenses/by-nc-nd/4.0/


proportion of artificial doublets.  The ‘nExP’ was set to expected doublet rate according to 

Chromium Single Cell 3’ version 2 reagents kit user guide (10x Genomics).  These parameters 

were used as input to the ‘doubletFinder_v3’ function with number of principal components set 

to 20 to identify doublet cells. 

 

Batch-corrected integrated scRNA-seq analysis 

Individual Seurat objects were merged and normalized using ‘SCTransform’ (64, 65).  To 

eliminate potential batch effects, we integrated all datasets using the Harmony algorithm 

(version 0.1.0) (24) using patient as the grouping variable in the ‘RunHarmony’ function.  

Harmony reduction was used in both ‘RunUMAP’ and ‘FindNeighbors’ functions for clustering.  

The first 20 principal components and a resolution of 2 was used for clustering.  The data from 

the ‘RNA’ assay was used for all further downstream analysis with other packages, gene level 

visualization or differential expression analysis.  The data was normalized to the logarithmic 

scale and the effects of variation in sequencing depth were regressed out by including 

‘nCount_RNA’ as a parameter in the ‘ScaleData’ function. 

 

Cell lineage identification and reclustering of integrated scRNA-seq data 

From the batch-corrected Seurat object, cell lineages were identified based on marker gene 

expression.  Clusters lacking marker genes but with high expression of mitochondrial or heat 

shock protein family genes, and those expressing markers of more than one lineage indicative 

of doublets were filtered from the downstream analysis (19).  We performed a secondary 

clustering analysis of each lineage with integration across patients using Harmony and a cluster 

resolution of 1.  Any clusters identified as belonging to another cell lineage were united with 

their lineage counterparts for a second clustering run.  This yielded final lineage-specific re-
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clustering results. In integrated analysis of T0 samples, a single proliferative cluster with both B 

and T cells was gated for T cells based on the expression of normalized counts for CD3D or 

CD3E > 0. 

 

Clusters containing T and NK cells were subjected to further cell type identification.  To ensure 

elimination of B-T doublets, we filtered cells expressing immunoglobulin genes as described 

previously (19).  Immunoglobulin gene expression was quantified using Seurat 

‘AddModuleScore’ function and cells with expression score >0 were filtered.  T and NK cell 

lineages were identified by reference mapping to the single-cell Tumor infiltrating immune cell 

atlas (21).  Seurat object and metadata for the atlas was obtained from 

10.5281/zenodo.4263972 and filtered for cells belonging to T and NK cell lineages.  Counts 

from the reference atlas were normalized to the logarithmic scale and used as a reference for 

automated annotation per cell using SingleR (version 1.14.1) (25).  Raw counts were used to 

annotate test datasets.  Labels were predicted for each cell in the test dataset using the 

‘SingleR’ function to calculate the Spearman correlation for 50 marker genes for the reference 

dataset identified with Wilcoxon Rank Sum test.  Following automated label assignment using 

this method, we confirmed results by examining marker gene expression.  Cell labels were then 

reannotated in case of misassignment in keeping with current recommended best practices 

(66).  T helper cells were renamed as TFh-like cells.  Cytotoxic and effector memory CD8 were 

renamed as cytotoxic CD8 T cells.  Pre-exhausted and terminally exhausted cells were 

renamed as dysfunctional CD8 T cells.  Naive-memory CD4 T cells were grouped together with 

naïve cells.  Transitional memory cells were regrouped with TFh-like cells and Th17 were 

regrouped with cytotoxic CD8 T cells based on marker gene expression.  We identified any 

dysfunctional CD8 cells misidentified as TFh-like cells based on normalized expression of CD8A 

or CD8B > 0.  Finally proliferating cells belonged to multiple lineages and were identified using 
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gating for lineage specific counts.  Dysfunctional CD8 T cells were classified based on 

expression of CD8A or CD8B > 0 followed by Tregs with FOXP3 >0 with the remainder as TFh-

like cells.  A final round of harmonized clustering was performed on control and individual 

treatment comparisons for lineage of interest.  For example – CD8 T cells from ctrl and TIGIT 

conditions. 

 

Differential expression 

Differential expression analysis between control and treated cells was conducted using model-

based analysis of single-cell transcriptomics (MAST) (32) (version 1.18.0) on genes expressed 

in greater than 10 percent cells using log normalized data.  The number of detected genes were 

recalculated after filtering. MAST hurdle model was modelled for the treatment condition and 

adjusted for the number of detected genes.  To account for inter-patient variability, we 

incorporated sample as a random effect in the linear mixed model.  This was implemented using 

the ‘zlm’ function in MAST with ‘glmer’ as the method and ‘ebayes’ set to false.  A threshold of 

log fold change of 0.25 and false discovery rate (FDR) p < 0.05 was used to identify significant 

DE genes.  In cases where we examined differences between groups of cells without modelling 

interpatient variability, we used the ‘FindAllMarkers’ or ‘FindMarkers’ Seurat functions for 

differential expression using Wilcoxon rank sum test.  These instances are identified in the 

manuscript text. Parameters provided for these functions were as follows: genes detected in at 

least 25% cells and differential expression threshold of 0.25 log fold change.  Significant genes 

were determined with p < 0.05 following Bonferroni correction. 

 

Pathway analysis 
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Gene sets of interest were obtained from MSigDB Human Collections (67) using package 

msigdbr (version 7.5.1).  These included ‘BIOCARTA_NFKB_PATHWAY’ and 

‘REACTOME_TCR_SIGNALING’ from curated gene sets, 

‘GO_CELLULAR_RESPONSE_TO_CALCIUM_ION’ and ‘GOBP_T_CELL_ACTIVATION’ from 

biological process gene ontology, ‘HALLMARK_INTERFERON_GAMMA_RESPONSE’ from 

Hallmark gene sets.  Additional gene sets for cytotoxic effector gene signature (35, 36) and CD8 

dysfunction (26) were compiled from literature (Supplemental Table 3).  We used the 

‘AddModuleScore’ function in Seurat to calculate the expression of a gene set of interest in each 

cell using default parameters.  Expression between categories was compared using unpaired t-

test.  Effect size was estimated using Cohen’s d measure with equal variance and Hedge’s 

correction implemented in rstatix (version 0.7.0). 

 

Differential abundance analysis 

We detected cells with differential abundance between conditions using DA-seq version 1.0.0 

(37).  All steps from the vignette were performed on harmonized cell embeddings with a 

resolution of 0.01 in the function ‘getDAregions’ 

 

TCR analysis 

Filtered Cell Ranger V(D)J outputs indicative of productive TCR chains detected in high-

confidence cells were used.  Only the TRB chain was used in downstream analysis to define 

clonotype of a cell.  In cases of multiple TRB sequences detected per cell, we retained the 

sequence with higher UMI count as described previously (19).  In rare instances with ties for 

UMI count, we retained both sequences per cell.  Expansion index in cell types using Shannon 

entropy was calculated with R package Startrac (version 0.1.0) (18). 
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Target expression in public datasets 

Single-cell Tumor infiltrating immune cell atlas from 13 cancer types (21) was used to visualize 

target gene expression.  To evaluate expression in our previously published GC dataset (17), 

we reference mapped T and NK cells to the Tumor infiltrating immune cell atlas as outlined 

above.  For visualization in both datasets, all CD4 subtypes were grouped as Naïve cells, T 

Helper cells were renamed as ‘CD4_TFh’, cytotoxic and dysfunctional subsets were grouped as 

described above. 

 

Multiplex Immunofluorescence 

Antibodies used for multiplex immunofluorescence (mIF) staining included CD8α (C8/144B, 

#70306, 1:800), TIGIT (E5Y1W, #99567T, 1:800), FOXP3(D2W8E, # 98377, 1:200), GITR 

(D9I9D, #68014, 1:400) and Signal Stain Boost IHC Detection reagents for species specific 

HRP conjugated secondary antibodies (all from Cell Signaling Technology).  TSA Plus 

Fluorescein, Cyanine 5, and Cyanine 3 kit (Akoya Biosciences) were used for tyramide signal 

amplification.  Staining was carried out as per manufacturer’s protocol (Cell Signaling 

Technology).  Briefly, FFPE sections were deparaffinized in Histochoice clearing agent and 

hydrated in a descending alcohol series.  Antigen retrieval was performed with boiling 1 mM 

EDTA, pH 8.0 using a microwave with maintenance at a sub-boiling temperature for 15 min.  

Staining order, antibody concentrations and fluorophore combinations were optimized using a 

human tonsil section obtained from the Stanford Tissue Bank.  Order of antibodies and 

fluorophores in one panel was GITR (Cy3), FOXP3 (Cy5) and CD8 (Fluorescein) used 

sequentially.  Another panel comprised TIGIT (Cy3), FOXP3 (Cy5) and CD8 (Fluorescein) used 

sequentially.  Stripping of antibodies following signal amplification was performed using boiling 

10 mM Sodium Citrate, pH 6.0 in a microwave followed by maintenance at sub-boiling 
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temperature for 10 minutes and cooling on bench top for 30 minutes.  Nuclear staining was 

performed with 2 μg/ml DAPI (Thermo Fisher Scientific). 

 

RNA In situ hybridization 

RNA-ISH was performed for GZMB using the RNAscope Multiplex Fluorescent Reagent kit v2 

(ACD BioTechne) as per manufacturer’s protocol for FFPE sections. TSA Plus Cyanine 5 was 

used for detection.  Staining pattern was confirmed in a human tonsil section.  Positive and 

negative control probes supplied by the manufacturer were used to evaluate signal to noise ratio 

in the tonsil section. 

 

Image analysis 

Images were acquired on a Zeiss Axio Imager Widefield Fluoresce Microscope (Stanford 

Neuroscience Microscopy Service) from two or three representative regions of interest per 

sample. Image analysis was performed in QuPath version 0.3.2 (68). Cell detection was 

performed with default parameters except minimum area was set to 5 μm2. Composite classifier 

was created for mIF staining in each sample using mean signal intensity thresholds per cell for 

each fluorophore. Steps outlined in the QuPath vignette were followed. Cells positive for both 

FOXP3 and CD8 were filtered (1.88-2.67% of total cells). For RNA-ISH analysis, number of 

spots per cell was counted using subcellular detection function in QuPath. 

 

Additional statistical analysis and visualization 

We used the Adjusted Rand Index (ARI) to compare similarity between cluster labels and 

condition batch meta data label for each cell.  A vector of these respective class labels was 

supplied to the ‘adjustedRandIndex’ function in mclust package (version 5.4.7). Additional 
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analysis or visualization was conducted using R packages stats (version 4.1.0.), tibble (version 

3.1.7), dplyr (version 0.7.6), broom (version 0.7.6), ggplot2 (version 3.3.6), ggpubr (version 

0.4.0) and ComplexHeatmap (version 2.9.3) (69) in R version 4.1.0 (70). Seurat functions 

‘DimPlot’ and ‘DotPlot’ were also used for visualization. Figures were additionally edited in 

Adobe Illustrator CS6 (version 16.0.0). 

 

Data availability 

Sequencing data deposition is in progress under dbGAP identifier phs001818.  Cell Ranger 

matrices will be available on https://dna-discovery.stanford.edu/research/datasets/. 
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Table 1: Study samples. 

 Experimental conditions 

Sample ID Tumor site T0 ctrl PMAIono GITR TIGIT 

CRC-1 primary CRC + + + + - 

CRC-2 primary CRC + + + + - 

CRC-3 primary CRC + + + + - 

CRC-4 primary CRC + + + - + 

CRC-5 primary CRC + + + + + 

CRC-6 primary CRC + + + + - 

CRC-7 primary CRC + + + + + 

GC1-1 primary GC + + + + - 

GC-1-2 metastatic GC + + - + + 

GC-1-3 metastatic GC + + - + + 

 

CRC: colorectal cancer, GC: gastric cancer, T0: original surgical resection, ctrl: control, 

PMAIono: PMA Ionomycin 
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FIGURE LEGENDS 

Figure 1. (A) Schematic representation of study design. (B-C) UMAP representation of 

dimensionally reduced data following batch-corrected graph-based clustering of all datasets 

colored by (B) samples and (C) cell type. (D) Dot plot depicting average expression levels of 

specific lineage-based marker genes together with the percentage of cells expressing the 

marker. (E) TCR expansion index for respective cell types. p from pairwise Wilcoxon test with 

Benjamini-Hochberg correction. (F) Frequencies of clonotypes in CD8 T cells from respective 

patients. 

 

Figure 2. (A-B) Scaled expression of respective genes in various cell types from (A) all CRC T0 

resections, (B) all GC T0 resections.  (C-D) Immunofluorescence staining for respective proteins 

or their merged image in an example region of interest from sample CRC-2. Scale bar = 50 μm. 

(E-G) Scaled expression of respective genes in various cell types from (E) CRCs in the publicly 

available tumor immune atlas dataset, (F) our previously published GC dataset and (G) 

remaining 12 tumor types in the tumor immune atlas dataset. 

 

Figure 3. (A-B) UMAP representation of dimensionally reduced data from T0 and 24 hour ctrl 

TSCs following batch-corrected graph-based clustering of all datasets colored by (A) 

experimental condition and (B) cell type. (C) Quantile-quantile plot comparing the proportion 

distributions of respective cell lineages across all T0 and ctrl TSCs. (D) Scatter plot indicating 

average log expression of marker genes for T0 cell lineages in T0 and ctrl TSC in respective cell 

lineage, annotated with the number of marker genes examined. Pearson’s co-efficient was 

calculated using non-log transformed values. 
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Figure 4. (A-C) Scaled expression of respective genes in control or PMA/Ionomycin treated (A) 

CD8 T cells, (B) TFh-like cells and (C) Treg cells. (D-E) Respective pathway activity in control 

and treated CD8 T cells with T-test p. (F-G) Cohen’s effect size and p of t-test comparison of 

respective pathway activity between control and treated cells from each individual sample. 

 

Figure 5. (A) Violin plot depicting the expression of CCL4 in control or GITR agonist treated 

CD8 T cells derived from all samples. (B) Cohen’s effect size and p of t-test comparison of 

cytotoxic effector pathway activity between control and treated CD8 T cells from each individual 

sample. (C) UMAP representation of T0 samples identifying cells significantly associated with 

transcriptional responders (TR) or non-responders (TNR) based on differential abundance 

analysis. (D) Scaled expression of respective genes in cells significantly associated with TR or 

TNR. (E) Expression of gene signature of CD8 T cell dysfunction in TR and TNR with t-test p. 

(F) Cytotoxic effector pathway activity in control and treated cytotoxic and dysfunctional CD8 T 

cells with t-test p. (G) Schematic representation summarizing the ex vivo effects of GITR agonist 

in the TME. 

 

Figure 6. (A) Scaled expression of respective genes in control or TIGIT inhibitor treated CD8 T 

cells. (B-D) Respective pathway activity in control and treated CD8 T cells with t-test p in (B-C) 

CD8 T cell subtypes and (D) baseline expanded CD8 TCR clonotypes per sample. (E-F) 

Cohen’s effect size and p of t-test comparison of respective pathway activity between control 

and treated cells from each individual sample. (G) Violin plots depicting the expression of 

respective genes in CD8 T cells from GC-1-2 and GC-1-3 samples. 
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Figure 7. (A) Volcano plot demonstrating significant differentially expressed genes in TFh-like 

cells relative to control following TIGIT inhibition. (B) Pathway activity in control and treated TFh-

like cells with t-test p. (C) Cohen’s effect size and p of t-test comparison of pathway activity 

between control and treated TFh-like cells from each individual sample. (D) Average expression 

of respective genes in each sample in control and treated Treg cells with MAST DE adjusted p-

value. (E) Average expression of respective genes in each sample in control and treated 

dendritic cells with MAST DE adjusted p-value. (F) Cohen’s effect size and p of t-test 

comparison of pathway activity between control and treated tumor epithelial cells from each 

individual sample. (G) Schematic representation summarizing the ex vivo effects of TIGIT 

antagonist in the TME. 

 

SUPPLEMENTAL DATA 

Supplemental Figures S1 – S2.  Format: PDF 

Supplemental Tables S1 – S7.  Format: XLSX 
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