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ABSTRACT

The DNA damage response network guards the sta-
bility of the genome from a plethora of exogenous
and endogenous insults. An essential feature of the
DNA damage response network is its capacity to tol-
erate DNA damage and structural impediments dur-
ing DNA synthesis. This capacity, referred to as DNA
damage tolerance (DDT), contributes to replication
fork progression and stability in the presence of
blocking structures or DNA lesions. Defective DDT
can lead to a prolonged fork arrest and eventually cu-
mulate in a fork collapse that involves the formation
of DNA double strand breaks. Four principal modes
of DDT have been distinguished: translesion synthe-
sis, fork reversal, template switching and repriming.
All DDT modes warrant continuation of replication
through bypassing the fork stalling impediment or
repriming downstream of the impediment in combi-
nation with filling of the single-stranded DNA gaps. In
this way, DDT prevents secondary DNA damage and
critically contributes to genome stability and cellular
fitness. DDT plays a key role in mutagenesis, stem
cell maintenance, ageing and the prevention of can-
cer. This review provides an overview of the role of
DDT in these aspects.

INTRODUCTION

Prior to each cell division, DNA has to be faithfully repli-
cated and chromosomes equally distributed over the daugh-
ter cells, as failure to maintain DNA integrity may lead to
premature ageing and cancer (1). The DNA constantly suf-
fers from lesions arising through endogenous as well as ex-
ogenous processes. Endogenous sources of DNA damage
include spontaneous deamination, reactive oxygen species

(ROS), S-adenosylmethionines, aldehydes and active enzy-
matic DNA processes like cytosine deamination by mem-
bers of the AID/APOBEC family (2,3). Examples of exoge-
nous sources of DNA damage include UV irradiation, � -
irradiation, tobacco smoke carcinogens, alcohol and DNA
damaging chemotherapeutics. Thus, our genomes are con-
stantly exposed to DNA damage and dedicated DNA dam-
age response pathways protect the genome from DNA dam-
ages. The DNA damage response network can be divided
into DNA damage signalling, DNA damage repair and
DNA damage tolerance (DDT) pathways. Specific DNA re-
pair pathways repair defined spectra of DNA lesions. These
pathways include base excision repair, nucleotide excision
repair, interstrand crosslink repair, mismatch repair, ribonu-
cleotide removal pathway, direct damage reversal and sev-
eral double strand break repair pathways (1,4). Next to
DNA repair, the DDT system plays a key role during DNA
replication, mainly in response to DNA damage. As not
all lesions are repaired prior to DNA replication, repli-
cation forks may run into these lesions. When replication
forks stall, lesions cannot be repaired canonically, as the two
strands are separated and hence direct access to the repair-
template is lacking.

Replicative polymerases � and ε (POL� and POLε) per-
form the bulk of DNA synthesis, operate on the lagging
or leading strand, respectively (5–7), and are highly spe-
cialized in warranting precise and swift DNA synthesis
(8). Furthermore, replicative polymerases POL� and POLε
have proofread capacity to prevent mis-incorporation of
nucleotides. Due to these traits, lesions in the DNA can
stall replicative polymerases, as these lesions generally do
not base pair well with incoming nucleotides and therefore
cannot be accommodated in the catalytic site of replicative
polymerases, leading to replication fork stalling. Lesions
that stall replicative polymerases include abasic sites, base
adducts, intrastrand crosslinks, interstrand crosslinks, cy-
clobutane pyrimidine dimers (CPD) and (6–4) photoprod-
ucts (6-4PP). Furthermore, replicative polymerases can be
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halted by structures such as DNA–protein crosslinks, incor-
porated ribonucleotides, secondary DNA structures as G4
structures, fragile sites and R-loops (9–13). Replicative by-
pass of replication fork stalling structures and lesions re-
quires DDT pathways. DDT is defined as the restarting of
replication after replication fork stalling and filling in post
replicative gaps generated upon repriming 3′ of the repli-
cation impediment. When replication forks stall, helicases
and replicative polymerases are uncoupled, exposing an in-
creased amount of single-stranded DNA. Single-stranded
DNA is coated with replication protein A (RPA) protein,
which activates DDT to prevent prolonged stalling and con-
sequent fork collapse (14–17). Modes of DDT are transle-
sion synthesis (TLS), fork reversal, template switching and
repriming (18–23) (Figure 1). Repriming can be followed
by post-replicative gap filling by TLS or template switch-
ing. TLS involves replicative bypass directly opposite the
fork stalling entity by specialized TLS polymerases. During
fork reversal, the replication fork reverts to a chicken foot
like structure in order to use the nascent strand of the sis-
ter chromatid as a template to bypass fork stalling lesions.
Repriming involves primer formation 3′ of the fork stalling
lesion, allowing a quick restart of the fork but generating
a post-replicative gap. Template switching uses the nascent
sister chromatid as a template in post-replicative gap filling,
in order to bypass the fork stalling lesion.

TRANSLESION SYNTHESIS (TLS)

TLS is performed by specialized DNA polymerases, which
insert DNA opposite of a damaged template or replica-
tion impediment. These specialized TLS polymerases gen-
erally have larger active sites and lack proofread-activity,
which allows non-Watson Crick base pairs to accommodate
within the catalytic site (24). Both features enable TLS poly-
merases to tolerate lesions that stall replicative polymerases:
POL� and POLε. Mammalian DNA polymerases with TLS
capabilities include REV1, POLH (POL�), POLI (POL�),
POLK (POL�), POLN (POL�), POLQ (POL�) and POL	
(consisting of catalytic subunit REV3/accessory subunit
REV7) and PRIMPOL (8,18–20,25). POLH, POLI, POLK
and REV1 belong to the Y-family of DNA polymerases.
Most TLS polymerases use the lesion as template, REV1
on the other hand is a DNA template independent dCMP-
transferase that uses its own arginine residue 324 as pro-
tein template (26). The TLS polymerase complex POL	
catalytic subunit REV3 is a B-family polymerase and can
extend from mismatches left by other TLS polymerases.
The A-family of DNA polymerases comprising POLQ and
POLN also have TLS capability, though the role of POLN
in DDT remains unknown (8,25,27). POLQ plays a role in
alternative-end joining, a DNA double strand break repair
pathway (28,29). In addition, POLQ is also involved in TLS
(30).

Regulation of TLS by PCNA monoubiquitination

Central to the regulation of DDT is proliferating cell nu-
clear antigen (PCNA). PCNA is a homotrimeric DNA
clamp that acts as a key processivity factor for many
DNA polymerases and central hub regulating a myriad

of processes during DNA replication, tolerance and re-
pair (16,31). Regulation of TLS occurs through site-specific
PCNA monoubiquitination (PCNA-Ub) on lysine 164
(K164), which promotes polymerase switching from one of
the replicative POL� or POLε to a TLS polymerase (Figure
2) (32–34). PCNA is monoubiquitinated by the E2/E3 ubiq-
uitin ligase complex RAD6/RAD18. Other E3 ligases tar-
geting PCNA K164 have been revealed, such as CRL4Cdt2

and RNF8 (35–38). Additionally, spliceosome-associated
factor 3 (SART3) has also been reported to affect PCNA
monoubiquitination and POLH recruitment into foci (39).
Furthermore, PCNA-associated factor 15 (PAF15) is dou-
ble monoubiquitinated and regulates polymerase switching
through its interaction with PCNA (40,41). PAF15 is deu-
biquitinated upon fork stalling, this releases PCNA and fa-
cilitates interaction with TLS polymerases. Paf15 depletion
through shRNA-mediated knockdown leads to increased
mutagenesis upon UV exposure, likely due to an increased
error-prone TLS activity. In vitro analysis using purified
PCNA, POLH and PAF15 revealed an inhibition of POLH
TLS when PAF15 is present (42).

E3 ubiquitin ligase HECT, UBA And WWE Domain
Containing 1 (HUWE1) has been shown to interact with
PCNA, which is important for suppressing replication
stress, though the exact mechanism remains unclear (43).
FANCD2-associated nuclease 1 (FAN1) has an PCNA in-
teraction peptide (PIP) through which it binds to PCNA-
Ub (44). The FAN1 PIP is required for FAN1 foci formation
and prevents fork collapse upon replication fork stalling in-
duced by G4 stabilizing compounds. This function of FAN1
is likely independent of its function in interstrand crosslink
repair, as FAN1 foci still form upon interstrand crosslink
inducer MMC in cells expressing FAN1 PIP mutant.

Factors that regulate PCNA and RAD18 interaction in-
cludes BCRA1. BRCA1 is a key factor in double strand
break and interstrand crosslink repair, though also reg-
ulates RAD18 (45). BRCA1 deficiency impairs RAD18
recruitment and PCNA K164 ubiquitination. Next to
BRCA1, SIVA1 apoptosis inducing factor (SIVA1) was
found to direct RAD6/RAD18 to ubiquitinate PCNA (46).
In addition, SprT-like domain-containing protein SPRTN
is involved in a feed forward loop with PCNA-Ub, as
SPRTN is recruited by PCNA-Ub, and also involved in re-
cruitment of RAD18 and TLS polymerases that requires the
DNA-binding domain of SPRTN (47–52). Whether this re-
lates to a direct effect on recruitment of TLS polymerases
or through stabilization of PCNA-Ub remains to be es-
tablished. Additionally, NIBRIN (NBN) that is mutated in
Nijmegen breakage syndrome also affects PCNA-Ub for-
mation through interaction with RAD18. Knockdown of
NBN leads to decreased number of POLH foci, UV sensi-
tivity and increased mutagenesis (53).

Deubiquitinase USP1 is the most investigated deubiquiti-
nating enzyme of PCNA-Ub, surprisingly USP1 is degraded
through autocleavage upon DNA damage induction by UV,
but not mitomycin C (MMC), methyl methanesulfonate
(MMS) or hydroxylurea (HU) (54,55). The degradation of
USP1 upon UV is counterintuitive, considering that the
PCNA-Ub trimer should be deubiquitinated to dissociate
from the TLS polymerase once the TLS step is completed.
This suggests that USP1 activity keeps PCNA deubiquiti-
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Figure 1. Modes of DNA damage tolerance. Upon stalling of the replication fork, several modes of DDT can be activated. TLS and fork reversal can
occur at the stalled fork. Alternatively, TLS or template switching can occur after repriming event. Figure adapted from (23).

nated under DNA damage free conditions and that there
is yet another USP responsible in PCNA K164 deubiquiti-
nation once TLS is completed. USP1 has been reported to
interact with PCNA unloading factor ATPase family AAA
domain containing 5 (ATAD5) and this interaction was
considered important in the deubiquitination of PCNA-
Ub (56,57). The release of TLS polymerase from PCNA-
Ub is complex. PCNA-Ub can be modified by ubiquitin-
like modification E3 ubiquitin/ISG15 ligase TRIM25/EFP.
TRIM25/EFP ISGylates PCNA-Ub on two lysine residues,
one of which is K168 (58). ISGylation of the two lysine
residues was demonstrated to depend on PCNA K168. IS-
Gylated PCNA (PCNA-ISG) in turn binds USP10, which
deubiquitinates PCNA-Ub leading to the release of POLH.
PCNA-ISG is then deISGylated by UBP43, enabling the
switch back to a replicative polymerase. Apparently, ISGy-
lation signals the release of TLS polymerases from PCNA.

Regulation of TLS by REV1

Next to PCNA-Ub, TLS polymerase REV1 can re-
cruit other TLS polymerases independently of PCNA-Ub,
through its C-terminal domain (59–62) (Figure 2). REV1 is
ubiquitinated and interacts with Fanconi anemia associated
protein 20 (FAAP20), a subunit of the Fanconi core com-
plex, in UV-induced REV1 foci (63). The REV1 FAAP20
complex is also associated with PCNA at the replication
fork, though it is not clear whether this process is PCNA
K164 ubiquitination dependent. Interestingly, the knock-
down of Polh in mouse embryonic fibroblasts (MEFs) also

leads to a reduction of UV-induced REV1 foci, suggesting
that also POLH has a recruiting function (64). The genetic
characterization of Rev1 and Pcna K164 has shown that
REV1 and PCNA K164 are mainly non-epistatic (65,66),
indicating that there is a PCNA-K164-dependent DDT
pathway and a REV1-dependent DDT pathway. Although
REV1 functions independently of PCNA-Ub, it also op-
erates in a PCNA-Ub-dependent manner as seen with in-
creased binding efficiency with PCNA-UB over PCNA (65).
Furthermore, the presence of REV1 increases PCNA-Ub
levels, likely by stabilizing the RAD18 interaction with
PCNA (67).

In summary, the recruitment and exclusion of potentially
error-prone TLS polymerases are tightly regulated by a myr-
iad of protein interactions and post-translational modifica-
tions. Furthermore, PCNA and REV1 seem to exert mainly
non-epistatic functions regarding the regulation of DDT.

HOMOLOGY-DIRECTED DNA DAMAGE TOLERANCE

During homology-directed DDT, the newly synthesized
DNA strand of the sister chromatid is used as template in
order to bypass the fork stalling entity either at the ongo-
ing replication fork or in a post-replicative gap setting. Two
pathways are thought to perform homology-directed DDT,
specifically fork reversal and template switching (21,67,68)
(Figure 3). In mammals, fork reversal seems the domi-
nant homology-directed pathway, whereas in yeast tem-
plate switching is more dominant (69). Compared to TLS,
both homology-directed DDT pathways are considered rel-
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Figure 2. Translesion synthesis. TLS pathways are regulated by PCNA K164 ubiquitination or REV1. PCNA Ub can also interact with REV1 directly, as
with other TLS polymerases. PAF15 is degraded upon fork stalling, which allows PCNA to interact with TLS polymerases. RPA recruits RAD6/RAD18
ligase that can ubiquitinate PCNA to recruit TLS polymerases. SPRTN binds PCNA Ub preventing PCNA deubiquitylation. After TLS is completed, the
TLS polymerase replaced again by the replicative polymerase. In the REV1-dependent pathway, REV1 can recruit other TLS polymerases. Figure adapted
from (23).

atively error-free (70). Both homology-directed DDT path-
ways depend on the formation of PCNA polyubiquitination
(PCNA-Ubn), where one of the Rad5 homologues SNF2
histone linker PHD RING helicase (SHPRH) or helicase-
like transcription factor (HLTF) extends a Ub-K63 linked
polyubiquitin moiety to PCNA-Ub. The observation that
PCNA-Ubn is still formed in the absence of both SHPRH
and HLTF implies the existence of at least one additional
ubiquitin ligase generating PCNA-Ubn (71). For a more de-
tailed insight into the molecular mechanisms of template
switching and fork reversal, see these reviews (21,72). In
mouse and human cells, the frequency of PCNA-Ubn, the
main indicator of homology-directed DDT, appears quite

rare as suggested by steady state levels of PCNA-Ub versus
PCNA-Ubn (3435,71,73,74). In both homology-directed
DDT mechanisms, the fork stalling entity can be avoided
by using the newly synthesized template of the other DNA
strand.

Fork reversal

During fork reversal, the replication fork regresses from
a fork into a chicken foot-like DNA structure (72) (Fig-
ure 3). In the chicken foot structure, the replication ma-
chinery has the opportunity to use the newly synthesized
strand of the intact sister chromatid as alternative to the
damaged template. Though it has not been proven directly
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Figure 3. Homology-directed DNA damage tolerance. Homology-
directed DDT involves template switching and fork reversal. In order to
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the sister chromatid is used. Template switching occurs after a priming
event in a post replicative gap. After fork stalling, the replication fork can
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that fork reversal promotes damage bypass, it is an attrac-
tive model for the function of the fork reversal as fork re-
versal gives nascent DNA of the stalled strand direct ac-
cess to the nascent homologues undamaged template. Al-
ternatively, fork reversal may occur to stabilize the stalled
fork (22). PCNA-Ubn formation facilitates fork reversal
and E2 ubiquitin ligase UBC13 is needed to generate a K63-
linked polyubiquitin moiety at PCNA K164 (69). Translo-
case zinc finger RANBP2-type containing 3 (ZRANB3)
binds PCNA-Ubn and remodels the replication fork to a

reversed fork and is involved in D-loop dissociation (69,74–
76). Another translocase, SWI/SNF related, matrix associ-
ated, actin dependent regulator of chromatin, subfamily a
like 1 (SMARCAL1) is also involved in promoting fork re-
versal (75,77). SMARCAL1 can evict RPA from the DNA
and reanneal complementary single-stranded DNAs (78–
80). In this manner, SMARCAL1 is involved in reversing
stalled replication forks. Furthermore, SMARCAL1 phos-
phorylation by ATR prevents nuclease-mediated fork col-
lapse (81). The phosphorylation of SMARCAL1 by ATR
limits fork regression by SMARLCAL1. Other factors that
are involved in fork reversal are the homologous recombi-
nation proteins BRCA2 and RAD51. These factors pro-
tect the fork form Meiotic Recombination 11 Homologue
1 (MRE-11) exonuclease activity (82–84). When forks are
reversed, these structures need to be protected from MRE-
11 exonuclease activity. Without protection of the reversed
fork, MRE-11 degrades the newly synthesized DNA of the
leading and lagging strand from 3′ to 5′ and 5′ to 3′, re-
spectively (85). As in vitro MRE-11 only has a 3′–5′ resec-
tion activity, the 5′ to 3′ degradation of the lagging strand
may involve another exonuclease whose activity depends on
MRE-11 (86). In addition, RecQ like helicase (RECQL),
DNA replication helicase/nuclease 2 (DNA2) and Werner
syndrome RecQ like helicase (WRN) helicases are involved
in promoting replication fork restart during fork reversal
(22). Another report in human cells suggest that RECQL
limits DNA2- and WRN-mediated degradation of the re-
versed fork to create the 3′ overhang in the reversed fork
(87). Furthermore, PARP1 is involved in promoting fork
reversal, as shown in topoisomerase inhibitor induced fork
reversal (88). In addition, helicase FANCM has been im-
plicated in fork reversal in promoting branch migration,
as shown using purified FANCM (89,90). This observation
has been corroborated independently in fission yeast, where
FANCM orthologue Fml1 promotes fork reversal (91).

Template switching

Template switching occurs in post replicative gap filling and
serves to close the single-stranded gap containing the lesion
in an error-free manner (21) (Figure 3). Template switch-
ing involves formation of structures resembling double hol-
iday junctions (92). In Saccharomyces cerevisiae, it has been
demonstrated that the cohesion/condensing-like Smc5/6
complex stimulates template switching. Furthermore, tem-
plate switching is needed to replicate through natural paus-
ing sites (93). In the same model system, the helicase Pif1
was described to be key in template switching through en-
larging single-stranded DNA in post-replicative gaps (94).
The combined action of the E3 ubiquitin ligases Rad18- and
Rad5 generates PCNA-Ubn, which is necessary for tem-
plate switching. Next to PCNA-Ubn, PCNA SUMOyla-
tion mediated by Mms2 and Ubc13 has been shown to pro-
mote template switching in S. cerevisiae (95). Furthermore,
PCNA SUMOylation prevents the formation of DNA dou-
ble strand break formation and recombination upon fork
stalling (96). Human PCNA is SUMOylated on several
residues, including K164. K164 SUMOylation is not site-
specific, as K164R mutation does not abrogate PCNA
SUMOylation, although the level of SUMOylation was
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found to decrease. Rad18-deficient cells are used as PCNA-
Ub free system, though there are alternative E3 ligases in
higher eukaryotes that can ubiquitinate PCNA. Therefore,
it remains unclear whether the PCNA K164R mutation
leads to SUMOylation related defect in the human sys-
tem. In line with preventing double strand break formation,
PCNA SUMOylation prevents spontaneous gene conver-
sion (97).

RESTARTING DNA SYNTHESIS BY REPRIMING

In order to start DNA synthesis, a primase is required that
generates a primer for a DNA polymerase. On the lagging
strand this is warranted by continuous priming by POL
.
Therefore, a stalled fork does not necessarily cause a stop
of replication on the lagging strand (98). On the leading
strand, replication is usually continuous and hence repet-
itive priming by POL
 is not required. Therefore, on the
leading strand a stalled fork might have more impact on
the progression of replication. However, also on the lead-
ing strand repriming occurs (99,100). In mammals, this task
appears primarily executed by the primase and polymerase
PRIMPOL (18,20,101). In contrast to POL
 that produces
an RNA primer and subsequently extends the primer with
DNA, PRIMPOL uses mainly dNTPs for priming (20).
PRIMPOL has both primase and TLS polymerase activ-
ity, though the primase activity seems to be more important
for fork progression and genome stability (102,103). PRIM-
POL reprimes after lesions to rapidly restart replication
(18,20,101). PRIMPOL binds to single-stranded DNA–
RPA filaments. At high concentrations of RPA, RPA in-
hibits PRIMPOL activation (Figure 4). However, at non-
saturating RPA conditions, single-stranded RPA–DNA fil-
aments do activate PRIMPOL (104,105). This model fits
with the observation that Primpol-defective MEFs do not
have a replicative defect upon low dose UV-C exposure,
though at a higher dose they were found impaired (106).
Furthermore, free RPA becomes rate limiting in high lev-
els of DNA damage or replication fork stalling (107). These
data suggest that the concentration of unbound RPA reg-
ulates PRIMPOL activation. In chicken DT40 lymphoma
cells, loss of PRIMPOL leads to epigenetic instability es-
pecially at G4 stacks on the leading strand (108). The epi-
genetic instability refers to loss of histone marks during
replication. Under steady state conditions, histone marks
are the same on the DNA before and after replication of
a locus as many histones are recycled and distributed over
the sister chromatids, but under certain replication stresses
the histone marks can be instable possibly due to defec-
tive histone recycling (109). Using the same system, also
REV1 was shown to exert the same effect on the epigenome
(10). In this earlier article, one of the conclusions was that
G4s on the lagging strand do not affect epigenetic stabil-
ity. The authors suggest that this may be due to continu-
ous repriming. Thus, G4-induced epigenetic instability in
this setting cannot be used for restriction of activity to the
leading strand, due to the absence of an effect on the lag-
ging strand. The only evidence that PRIMPOL selectively
targets the leading strand is based on the analyses of the
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Figure 4. Regulation of PRIMPOL by RPA. (A) PRIMPOL is inhibited
from access to single-stranded DNA by high concentration of RPA on
DNA. (B) When the amount of RPA coating single-stranded DNA is low,
PRIMPOL can bind single-stranded DNA and form a primer for a replica-
tive polymerase to continue.

different base-to-base substitutions during somatic hyper-
mutation of Igh genes in PrimPol-deficient B cells, where
a strand-biased anti-mutagenic effect of PRIMPOL on the
leading strand was observed (106,110). This anti-mutagenic
effect likely relates to a preferential PRIMPOL activity on
the leading strand, promoting an error-free DDT pathway
such as template switching. Additional evidence for this hy-
pothesis awaits further experimentation. At present, it re-
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mains unclear how the system targets PRIMPOL preferen-
tially to the leading strand.

TRANSLESION SYNTHESIS DURING INTERSTRAND
CROSSLINK REPAIR

Fanconi anemia is a disease characterized by reduced fer-
tility, bone marrow failure induced anemia, and increased
risk of acute myeloid leukemia and solid tumours (111).
Furthermore, patients show increased chromosomal in-
stability and sensitivity to interstrand crosslink inducing
agents such as mitomycin C and cisplatin. This is due to
disease-causing mutations found in genes associated with
interstrand crosslink repair. The Fanconi anemia path-
way is involved in interstrand crosslink repair. Interstrand
crosslinks are covalently linked bases on opposite strands
of the Watson/Crick double helix, and prohibit the melt-
ing of two DNA strands necessary for central biological
processes, such as transcription and replication. Conse-
quently, DNA interstrand crosslinks are highly toxic le-
sions (112). Interstrand crosslink repair appears one of the
molecularly most challenging and intricate DNA repair
processes. Most relevant in the context of this review, inter-
strand crosslink repair depends on TLS. During S phase, as
demonstrated in Xenopus nuclear egg extracts, interstrand
crosslinks require two converged and stalled replisomes for
replication-coupled repair (113). Upon stalling of the repli-
cation fork, FANCD2 and FANCI are monoubiquitinated
by the Fanconi anemia core complex. The monoubiqui-
tination of FANCD2 is necessary for recruitment of nu-
cleases that then make the incisions and unhook the in-
terstrand crosslink (114) (Figure 5A). After unhooking of
the crosslink, TLS is required to continue replication op-
posite the non-instructive, unhooked interstrand crosslink.
REV1 and POL	 have been implicated in this step (115).
At present, the role of PCNA-Ub is ill defined, as studies in
Xenopus egg extracts could not adequately deplete PCNA
to determine the reliance of interstrand crosslink repair on
PCNA K164 (115). Resolving the molecular details of in-
terstrand crosslink repair greatly benefitted from studies in
nuclear Xenopus egg extracts using cisplatin-induced inter-
strand crosslinked plasmids.

Of note, many mammalian studies frequently used pso-
ralen, as they are known to induce specifically interstrand
crosslinks. However, as shown in Xenopus egg extracts,
these appeared to be repaired by an alternative interstrand
crosslink repair pathway involving the DNA glycosylase
NEIL3. NEIL3 has also been shown to repair abasic site
induced interstrand crosslinks in Xenopus. Both psoralen
and abasic site induced interstrand crosslinks do depend
on REV1 for TLS (116) (Figure 5B and C). In the case
of psoralen-induced interstrand crosslinks, NEIL3 cleavage
leaves an abasic site on one strand and an unhooked ICL
on the other. Subsequent TLS on both sister chromatids re-
quires REV1. For abasic site induced interstrand crosslinks,
however, NEIL3 cleavage leaves one strand intact while the
other contains the abasic site. Apparently, the bypass of the
abasic site involves REV1 in Xenopus.

There is also an alternative model to the converging fork
model. However, in this study with mammalian cells, pso-
ralens are used and might be repaired more by the NEIL3

pathway rather than the Fanconi pathway. The authors
reveal FANCM is involved in traversing the replication
fork over the interstrand crosslink (117). In the model pro-
posed by the authors, the replication fork stalls at the in-
terstrand crosslink and FANCM is needed to restart the
replication fork on the opposite side to the interstrand
crosslink. Further investigation revealed that the interac-
tion between FANCM and PCNA is necessary for travers-
ing of the replication fork (118). When the replication fork
traverses the interstrand crosslink, the replication fork can
continue. Therefore, interstrand crosslink traversing can be
seen as a mode of DDT.

DNA DAMAGE TOLERANCE DEFECTS AND DIS-
EASES

Defects in genes involved in DDT are associated with sev-
eral diseases. Similar to DNA damage repair associated dis-
eases, symptoms include cancer susceptibility, neurological
disorders, stem cell defects and progeria. The following sec-
tions address these genes and their associated genetic de-
fects in an alphabetical order (Table 1).

ATAD5––Ovarian cancer

ATAD5 has been implicated in unloading of the DNA
clamp PCNA and is also involved in the deubiquitination
of PCNA-Ub through interaction with USP1 (56). In hu-
mans, ATAD5 mutations have been associated as a risk fac-
tor for ovarian cancer (119). In line, imice with a heterozy-
gous Atad5 defect tumours of diverse origins arise (120). As
the genome instability observed in Atad5-deficient cells is at
least partially linked to the unloading of PCNA from chro-
mosomes, it appears that this defect is responsible for the
increased genome instability and tumorigenesis (121).

ATR––Cutaneous telangiectasia and cancer syndrome, fa-
milial, Seckel syndrome

ATR is a key kinase in the DNA damage response in-
volved in fork stability and the management of replication
stress (122). In humans, ATR mutations have been associ-
ated with familial cutaneous telangiectasia and cancer syn-
drome and Seckel syndrome (123,124). Seckel syndrome is
characterized by short stature, intellectual disability, prema-
ture ageing and many more diverse symptoms between pa-
tients. One mouse model with an Atr mutation also shows
Seckel syndrome (125). These homozygous Atr impaired
mice show also increased dwarfism, increased replication
stress and accelerated ageing, but do not show increased tu-
morigenesis. All these symptoms are in common with the
human symptoms of ataxia telangiectasia, with the excep-
tion of tumour predisposition. It remains unknown to what
extend the fork stabilizing function of ATR contributes in
preventing Seckel syndrome and cancer susceptibility.

BRCA1/FANCS––Familial breast-ovarian cancer suscep-
tibility, Fanconi anemia (complementation group S) and
prostate cancer

BRCA1 is involved in genome maintenance through
its function in homologous recombination, interstrand
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sites. Cisplatin and mitomycin C are repaired by the Fanconi anemia pathway (A), whereas psoralen and abasic site induced ICL are repaired through
NEIL3-dependent pathway (B and C). Figure adapted from (23).

crosslink repair and fork stability (72,111,126). Mutations
in human BRCA1 contribute to familial breast and ovar-
ian cancer, Fanconi anemia and other cancer types such
as prostate cancer (127,128). Mouse models of Brca1 defi-
ciency are embryonic lethal. But mammary gland specific
knockouts and hypo-morphic non-lethal mutations show
increased incidence in developing mammary tumours, in
line with human phenotypes (129). It remains unknown

whether and to what extent the fork stabilization of BRCA1
contributes to cancer formation.

BRCA2/FANCD1––Familial breast-ovarian cancer, Fanconi
anemia (complementation group D1), Wilms tumour and
other cancers

Similar to BRCA1, BRCA2 is also involved in homologous
recombination, interstrand crosslink repair and fork rever-
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Table 1. Genetic defects of genes implicated in DNA damage tolerance and their associated diseases

Gene Disease Citation

ATAD5 Ovarian cancer (119)
ATR Cutaneous telangiectasia and cancer syndrome, familial, Seckel syndrome (123,124)
BRCA1/FANCS Familial breast-ovarian cancer susceptibility, Fanconi anemia

(complementation Group S) and prostate cancer
(127,128)

BRCA2/FANCD1 Familial breast-ovarian cancer, Fanconi anemia (complementation group D1),
Wilms tumour and other cancers

(130,131)

DNA2 Seckel syndrome and progressive external ophthalmoplegia (134,135)
HUWE1 X-linked syndromic mental retardation turner type and colon cancer (129–137)
PRIMPOL/CCDC111 Myopia (142)
RAD51/FANCR Fanconi anemia, complementation group R, mirror movements and breast

cancer
(133–145)

REV3 Möbius syndrome (149)
REV7/MAD2L2/FANCV Fanconi anemia (151)
SMARCAL1 Schimke immunoosseous dysplasia (154)
SPRTN Ruijs-Aalf syndrome, hepatocellular carcinoma (161)
POLH Xeroderma Pigmentosum Variant (167)
UBE2A/RAD6A X-linked syndromic mental retardation, Nascimento type (176)
UBE2B/RAD6B Male infertility (179)
WRN Werner syndrome (184,185)

sal (72,111,126). In line, human BRCA2 deficiency con-
tributes to familial breast and ovarian cancer and Fanconi
anemia (130,131). Mice deficient for Brca2 are also embry-
onic lethal. Similar to the human pathology, conditional
Brca2 alleles show increased mammary tumour incidence in
mice. Also, Fanconi anemia phenotypes are reconstituted in
Brca1 mutant mice, as hematopoietic stem cell defect and
increased sensitivity to mitomycin C (132). It remains un-
known whether and to what extend the fork stabilization of
BRCA2 contributes to cancer formation.

DNA2––Seckel syndrome and progressive external ophthal-
moplegia

DNA2 is a helicase and nuclease involved in fork rever-
sal, long-patch base-excision repair and the processing of
Okazaki fragments (133). Mutations in human DNA2 is
associated with Seckel syndrome and progressive exter-
nal ophthalmoplegia with mitochondrial DNA deletions
(134,135). Progressive external ophthalmoplegia is an in-
creasing weakness of the eye muscles, the cause of droopy
eyes. Dna2 homozygous knockout model is embryonic
lethal, though the heterozygous Dna2 is not lethal. Het-
erozygous Dna2 mice show shorter telomeres and show in-
creased tumorigenesis, though no Seckel or ophthalmople-
gia symptoms have been reported (136). It remains unclear
to what extend the role of DNA2 in fork reversal contributes
to Seckel syndrome and progressive external ophthalmople-
gia.

HUWE1––X-linked syndromic mental retardation turner
type and colon cancer

The E3-ligase HUWE1 facilitates DDT through its interac-
tion with PCNA, thereby preventing replication stress (43).
However, HUWE1 does not affect PCNA ubiquitination.
Similar to UBE2A/RAD6, HUWE1 is also associated with
X-linked turner syndrome (137,138). HUWE1 is lost often
in colon cancer. Consistent, in Apc-deficient mice the loss
of Huwe1 activity increased the tumour incidence (139). In-
creased tumorigenesis due to HUWE1 deficiency is likely

due to a mixed effect of increased WNT signalling, genetic
instability and MYC activity (43,139,140). Mouse models of
Huwe1 are embryonic lethal and neuronal ablation resulted
in severe neuronal differentiation defects (141).

PRIMPOL/CCDC111––Myopia

PRIMPOL is associated with leading strand repriming
(106). Mutation Y89D in PRIMPOL has been associated
with myopia (142). The PRIMPOL Y89D mutation leads
to both primase and polymerase defects in the DT40 B-cell
lymphoma (143). The mutation impairs PRIMPOL func-
tion; however, the causal relationship to myopia remains to
be determined.

RAD51/FANCR––Fanconi anemia, complementation group
R, mirror movements and breast cancer

RAD51 is involved in homologous recombination, fork re-
versal and interstrand crosslink repair (72,144). In human,
RAD51 gene mutations lead to breast cancer, Fanconi ane-
mia and mirror movements (145–147). Mirror movements
are movements of limbs one side that are mirrored by the
other. In mice, Rad51 deficiency leads to embryonic lethal-
ity (148). It remains unclear to what extent the role of
RAD51 in fork reversal contributes to mirror movements
and breast cancer.

REV3––Möbius syndrome

Surprisingly, while REV7 mutations are linked to Fanconi
anemia, mutations in the catalytic subunit of the POL	
complex REV3 in humans are causal for the Möbius syn-
drome in an autosomal dominant fashion (149). These ob-
servations suggest that REV3 and REV7 may have some
differences in activity, in addition to being part of the POL	
complex. Möbius syndrome patients display facial paraly-
sis and eye movement defects (150). In line, in mice het-
erozygous Rev3 deficiency closely mimicked phenotypes ob-
served in patients. As the main function of REV3 is TLS, it
is likely that the TLS defect in REV3-defective cells leads to
Möbius syndrome.
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REV7/MAD2L2/FANCV––Fanconi anemia

As mentioned above, Fanconi anemia is a disease associ-
ated with defects in the interstrand crosslink repair path-
way. Patients suffering from Fanconi anemia display bone
marrow failure and subsequent anaemia, reduced fertility,
congenital defects, an increased cancer incidence, and their
cells are highly sensitive to MMC. A biallelic REV7 mu-
tation has been implicated in the development of Fanconi
anemia, and therefore REV7 was coined FANCV (151).
As REV7 is a part of the POL	 complex, a REV3/REV7
heterodimer, it is likely functions as extender TLS poly-
merase activity opposite unhooked interstrand crosslink
during the TLS synthesis step. Besides its roles in TLS,
REV7 exerts an REV3-independent function by preventing
end-resection and thereby promoting non-homologous end
joining (152,153). However, since the non-homologous end
joining pathway does not play a prominent role in inter-
strand crosslink repair, the Fanconi anemia phenotype of
REV7 impairment likely relates to defective TLS over the
interstrand crosslink.

SMARCAL1––Schimke immunoosseous dysplasia

SMARCAL1 is a translocase involved in reversing stalled
replication forks to generate a chicken foot structured repli-
cation fork. Mutations in the human SMARCAL1 gene
contribute to Schimke immunoosseous dysplasia (154).
This syndrome is an autosomal recessive disease, character-
ized by T-cell immunodeficiency, dysplasia and renal dys-
function, leading to death at around 8 years (155). In line
with observations in humans where the mutation alone is of-
ten not enough to cause the disease, knockout mouse mod-
els only show phenotypes of Schimke immunoosseous dys-
plasia upon inhibition of an RNA polymerase II inhibitor
(156). These data suggest a Smarcal1 mutation predisposes
to the disease but is not sufficient in causing the disease.
Furthermore, differential gene expression was also found
in Smarcal1-deficient MEFs and speculated that SMAR-
CAL1 regulates gene transcription directly, and that this
contributes to disease progression in combination with loss
of genomic integrity. On the other hand, SMARCAL1 mu-
tations found in patients affect SMARCAL1 ability to re-
model replication forks and bind to Holliday junctions
(157). This suggests that the differential gene expression
in SMARCAL1-deficient cells is due to replication stress,
rather than to direct regulation of transcription.

SPRTN––Ruijs-Aalf syndrome, hepatocellular carcinoma

SPRTN is recruited by PCNA-Ub and once recruited is
thought to prevent PCNA deubiquitination through inhi-
bition of USP1 (47–50). SPRTN also plays a role in resolv-
ing fork stalling DNA–protein crosslinks (158–160). In hu-
man, the SPRTN gene is associated with progeroid subtype
Ruijs-Aalf syndrome and hepatocellular carcinoma (161).
In mice, genetic deletion of Sprtn leads to embryonic lethal-
ity. A mouse model of Sprtn combining a hypo-morphic al-
lele and a knockout allele also show progeroid phenotype
and increased tumour incidence, in line with the human dis-
ease (162,163). It remains unclear to what extend the in-

teraction with PCNA-Ub and SPRTN prevents Ruijs-Aalf
syndrome and cancer.

POLH––Xeroderma pigmentosum variant

The first human disease linked to impaired DDT was Xe-
roderma Pigmentosum Variant (XP-V). Patients suffering
from Xeroderma Pigmentosum (XP) are defective in nu-
cleotide excision repair (NER) and highly sensitive to UV-
induced DNA lesions (164–166). Patients suffering from the
variant form of XP (XP-V) are nucleotide excision repair
competent but defective in the Y-family TLS POLH gene
(167). XP-V is characterized by an UV-hypersensitivity,
a high skin cancer incidence due to higher mutagenicity
of UV-induced DNA damage in the absence of POLH
(168,169). In line with the observation that POLH can
perform TLS opposite TT CPDs error-free, Polh-deficient
mice show increased cancer incidence upon UV treatment
(170–172). Furthermore, also heterozygous mice show an
increased cancer incidence (173). These data indicate that
POLH haploinsufficiency in humans might have and in-
creased cancer incidence, due to the loss of the remain-
ing functional allele (173). The increased mutagenesis in
Polh-deficient mice seems to be related to increased com-
pensatory POLI activity, as Polh;Poli double mutation was
found to decrease mutagenesis upon UV, compared Polh
single mutants (174,175). Interestingly, while Polh;Poli dou-
ble mutants showed a lower mutation rate, they suffer from
an increased tumour susceptibility following UV irradia-
tion (174). This suggests, in this setting not the UV-induced
point mutations, but other types of genomic instability as
result of the Polh;Poli defect are the main drivers of tumori-
genesis. In addition to POLI, POLQ has been reported to be
involved in error-prone TLS in UV-induced lesions. Similar
to Polh;Poli double mutants, Polh;Polq double mutates also
show decreased point mutagenesis and increased tumorige-
nesis upon UV, compared to the Polh single mutant (30).
Collectively, POLH-dependent TLS on UV-induced lesions
leads to decreased mutagenesis and thereby contributes pre-
vention of tumorigenesis.

UBE2A/RAD6A––X-linked syndromic mental retardation,
Nascimento type

E2 ubiquitin ligase UBE2A/RAD6A is involved in PCNA
monoubiquitination (35). In humans, UBE2A/RAD6A de-
fect is associated with X-linked syndromic mental retarda-
tion (176). X-linked mental retardation syndrome is linked
to a lot of different loci on the X chromosome. A mouse
model of Ube2a/Rad6a shows defects in learning, memory
and long-term depression, and female infertility (177,178).
In contrast to infertile mouse mutants carrying a non-
modifiable PcnaK164R mutation where germ cells are lack-
ing, ovaria and oocytes develop in Ube2a/Rad6a mice. The
inability of the embryo to survive the two-cell stage causes
the infertility in Ube2a/Rad6a mice. It is not clear whether
the symptoms are due to defective DDT, as ubiquitin ligases
have many targets.
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UBE2B/RAD6B––male infertility

E2 ligase UBE2B/RAD6B is involved in PCNA monoubiq-
uitination (35). UBE2B/RAD6B mutations lead to male in-
fertility (179). Mouse defective in Ube2b/Rad6b show male
infertility, due to defects in synaptonemal complex and mei-
otic recombination in spermatocytes (180,181). It is not
clear whether the symptoms relate to defective DDT, as
ubiquitin ligases generally have many targets.

WRN––Werner syndrome

The WRN gene encodes a DNA helicase and exonuclease
and is involved in homologous recombination repair, and
fork reversal (182,183). In humans, aberrant mutations in
the WRN gene lead to Werner syndrome (184,185). Clini-
cal features of Werner syndrome include premature ageing,
short stature and cancer predisposition (186). Werner syn-
drome inheritance is recessive and the average age of death
is 54 years. Surprisingly, Wrn-defective mice do not recapit-
ulate Werner syndrome symptoms of premature ageing as
found in humans, though they are born at a sub-Mendelian
frequency (187). However, Wrn defective mice kept for 3–5
generations do show increased ageing phenotypes, such as
grey hair, osteoporosis, increased cancer susceptibility and
other phenotypes of seen during normal ageing. This phe-
notype could also be accomplished by crossing Wrn mice to
telomere maintenance factor Terc-deficient mice (188). As
mice have very long telomeres compared to humans, these
data suggest that the Werner syndrome might be mainly
caused by defects in telomere maintenance (189). In fact, the
Wrn defect leads to telomeric loss likely due to G4 stack by-
pass defect during replication of the G4 stack dense telom-
eric DNA (190). This suggests that premature ageing in this
model relates to defective DDT of G4 stacks, ultimately
leading to loss of telomeres.

In summary, DDT plays a key role in preventing dis-
ease. Overall, DDT defects are associated with neurological
symptoms, accelerated ageing, infertility and cancer. These
symptoms are shared with DNA repair defects, highlight-
ing the critical contribution of the DDT system to the DNA
damage response network. Mouse models with genetically
defined DDT defects will be of value to further study the
disease-related DDT defects and develop strategies that al-
leviate the symptoms or cure the patients.

THE ROLE OF DNA DAMAGE TOLERANCE IN MUTA-
GENESIS

The role of translesion synthesis in the generation of point
mutations

DDT has been divided into error-prone TLS, error-free TLS
and error-free homology-directed DDT, the latter includes
fork reversal and template switching (191). Error-free defi-
nition in this context should be not considered literally but
relatively, as error-free DDT can still contribute to mutage-
nesis, albeit at a lower frequency. Despite the fact that TLS
is closely linked to the generation of point mutations, the ex-
istence of multiple TLS polymerases implies the existence
of specificity per polymerase for the type of DNA lesion.
In line with this notion, POLH or POLK knockouts, two

closely related Y-family members show selective sensitivity
for UV and MMS, respectively (74,192,193). In line, expres-
sion of Y-family TLS polymerases POLI and POLK cor-
related inversely with the mutation load in invasive breast
cancers, suggesting that the absence of one TLS polymerase
leads to increased point mutagenesis. This mutagenic phe-
notype likely relates to the fact that the backup TLS poly-
merases are more error-prone in tolerating a specific lesion.
Missing TLS polymerases are likely to be back-upped by
other members that further increases the error-rate and con-
sequently mutation-rate (106). In line with this hypothesis,
both Polh and Polk knockout mouse models show increased
mutagenesis under specific conditions, suggesting that each
TLS polymerase has its preferred lesion(s). Polh deficiency
leads skin UV-induced mutagenesis in the skin, Polk defi-
ciency leads to an increase of spontaneous mutations during
ageing in an organ-specific manner, respectively (174,194).

In order to provide a comprehensible overview on the ef-
fect of TLS on mutagenesis, we focus here on UV-induced
mutagenesis. Exposure of DNA to UV leads to the forma-
tion of CPDs and 6-4PP (195). Upon UV-B exposure, these
CPDs and 6-4PP are produced in a declining frequency: TT
CPD > TC CPD > TC 6-4PP > CT CPD > CC CPD >
TT 6-4PP (196). The UV signature is composed of primar-
ily of TC > TT or CC > TT transitions caused by CPDs
(197). Daylight UV and more specifically UV-B exposure
leads to preferential formation of CPDs at 5-methylcytosine
bases, though this preference for 5-methylcytosine bases
seems to be absent upon UV-C irradiation (198,199). Repli-
cation across the U in CPDs can explain the TC > TT and
CC > TT UV mutagenic signature. TLS has been involved
in UV mutagenesis, as POLH-deficiency leads to increased
mutagenesis and XP-V (168,169). As mentioned previously,
POLH can synthesize DNA across TT CPDs in an fairly
error-free manner (200). The increase of mutagenesis in XP-
V seems to be due to POLI activity, as Polh;Poli double mu-
tant mice have a lower mutation rate upon UV exposure,
compared to Polh defective mice (174,175).

In contrast to POLH, POLQ was found to act error-
prone on UV-induced lesions even in the presence of POLH,
as Polq-deficient cells show a level of UV-induced muta-
genesis decreased similar to the non-treated control (30).
These data are in line with the notion that specific TLS poly-
merases bypass different types of DNA damage. In order
to study selectively CPDs or 6-4PP, CPDs or 6-4PP specific
photolyases are often used to repair either CPDs or 6-4PP
(201). Whether an impairment in the activity of a given TLS
polymerase will be pro- or anti-mutagenic appears to de-
pend on the type of the DNA polymerase and lesion (64).
The authors exposed MEFs express (6–4) PP and CPD spe-
cific photolyases to UV light and show that knockdown of
Polh or Rev1 leads to an increased number of mutations in
the 6-4PP lyase setting, but a decrease of mutations when
the CPD specific lyase is expressed.

Whereas loss of individual TLS polymerases generally in-
creases mutagenesis, impaired regulation of TLS decreases
UV-induced mutagenesis. Regarding UV-damage induced
mutagenesis, both REV1 and PCNA K164 were found to
stimulate mutagenesis (64,73,202). Thus, if there is ineffi-
cient recruitment due to a defective TLS regulator, there
are fewer mutations, at least in the case of UV irradia-
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tion. Whether the same holds for the plethora of endoge-
nous lesions remains to be determined further. However,
the loss of an individual non-regulatory TLS polymerase
increases mutagenesis, likely caused by an alternative TLS
polymerase more error-prone at a given lesion.

Homology-directed DNA damage tolerance in genome rear-
rangements

Both template switching and fork reversal prevent point
mutations by avoiding the use of the damaged template;
however, they are associated with the extension of inverted
repeats and other genome rearrangements (70). Homology-
directed DDT has been shown to be involved in genome re-
arrangements induced by template switching during paus-
ing at inverted repeats, as shown in Schizosaccharo pompe
and S. cerevisiae (203–205). The genome rearrangements fu-
elled by inverted repeats can lead to acentric and dicentric
chromosomes. Also in the evolution of the human genome,
homology-directed DDT induced genome rearrangements
seems to have a large contribution (206).

In conclusion, DDT can have both pro- and anti-
mutagenic activities. Both homology-directed modes of
DDT prevent point mutations, though they likely come
wish the risk of increased genome rearrangements. The
error-proneness of TLS depends on the specific lesion and
the type of TLS polymerase replicating this lesion. It re-
mains unknown whether there are mechanisms that recruit
specific TLS polymerases to specific lesions.

THE ROLE OF DDT IN AGEING AND STEM CELLS

Stem cells depend on their own genome stability to both
maintain an adequate stem cell pool and differentiate to en-
able long-term tissue homeostasis. The majority of work on
genome stability in stem cells and its effect on ageing has
been focussed on hematopoietic stem cells (HSC). Long-
term HSC (LT-HSC) are mainly quiescent and thought to
differentiate into short-term HSC (ST-HSC) (207). ST-HSC
further differentiate into multipotent progenitors (MPP) 2,
3 and 4, which give rise to the majority of blood cells to
warrant hematopoiesis (207–210).

Increased genome instability leads to a decrease in HSC
potential and this progresses with age, suggesting that
DNA damage accelerates HSC ageing (211). Similarly, dif-
ferent mouse models have shown that increased replica-
tion stress leads to premature ageing of HSCs (125,212–
214). DDT impaired PcnaK164R/K164R mice show prema-
ture ageing of HSCs and skewing of differentiation toward
the myeloid/erythroid lineage and increased DNA dam-
age within the LSKs (213). Both myeloid/erythroid pro-
genitor skewing and increased DNA damage in HSCs are
signs of increased ageing. Myeloid/erythroid skewing of
HSC differentiation is known to increase upon ageing and
is thought to be at the basis of lymphoid decline in aged
mice (213,215,216). In line with the role of DDT in HSCs,
TLS regulator and Y-family polymerase Rev1 mutant mice
show a reduction of LSK cells in 5-month-old mice. The
Rev1 defect can be increased through introduction of the
Xpc nucleic excision repair defect (214). As many lesions are
not repaired, the Rev1;Xpc double defect leads to increased

replication stress, anemia and bone marrow failure. Knock-
out mice lacking regulators of TLS such as Paf15 a PCNA
associated factor suffer from severe HSC defects (217). An-
other regulator of PCNA, Sprtn hypomorphic variant mice
displayed a progeroid phenotype. The hematopoietic pro-
genitor compartment was not investigated, though likely to
be affected as well. Next to the genes involved in TLS, mu-
tation of genes involved in fork reversal may also have HSC
defects. Mouse models of translocase Smarcal1 also dis-
played decreased number of HSC upon induction of replica-
tion of stem and progenitors (218). Strikingly, Smarcal1 de-
fective cells are more sensitive to fork stalling by 5-FU, but
not double strand break inducing � -irradiation, indicating
that Smarcal1 deficiency affects DDT but not double strand
break repair. In Brca1/Fancs hypo-morphic mice, HSCs are
marginalized and the mice show reduced bone marrow cel-
lularity (219). In line, a fully defective Brca1/Fancs bone
marrow specific deletion using a bone marrow specific Cre
leads to bone marrow failure and hematologic malignan-
cies (220). Furthermore, Brca2/Fancd1 contributes to HSC
function, as a hypo-morphic homozygous Brca2/Fancd1
allele also shows an HSC repopulating defect and a de-
creased number of cells in the bone marrow (132). Next to
HSCs, other stem cells also appear sensitive to DDT de-
fects. For example, germ stem cells were completely absent
in PncaK164R/K164R mice, in both male and female mice (221).

In summary, increased DNA damage and replication
stress due to DDT defects can accelerate ageing as shown in
the hematopoietic system. It will be interesting to assess the
relevance of DDT in determining the ageing of other tissues
and their stem cells. Although in the liver DNA damage has
been shown to contribute to ageing, independent of mutage-
nesis (222). The role of mutations in HSC and ageing is less
clear, many DDT defective mouse models will have both in-
creased DNA damage and mutagenesis, it remains unclear
what the contribution of mutations to ageing is.

DDT AS TARGET FOR CANCER THERAPY

Paradoxically, while DNA needs to be kept in pristine
condition, both DNA itself and the DNA damage re-
sponse are prime targets for anti-cancer therapeutics. Many
chemotherapeutic agents act through damaging the DNA
or impeding replication (1,223). Defective DDT often leads
to increased sensitivity to chemotherapeutically induced
replication stalling DNA lesions. In line, increased expres-
sion levels of POLH have been found to correlate with de-
creased survival in non-small cell lung cancer treated with
platinating agents (224). As many cancers have somatic mu-
tations in DDT genes, targeting defects in the DDT system
is an attractive way to optimize the treatment of cancers
(225). One example already present in the clinic is PARP
inhibitors in BRCA1/2-deficient cancers, though the mech-
anism of sensitivity to PARP inhibitors has been hypoth-
esized to be due to defective homologous recombination
(226). However, PARP inhibitor resistance mechanisms in-
volve a rescue of replication fork stability, suggesting that
one homology-directed DDT mechanism that is defective in
Brca1/2-deficient cells plays a role in determining the sensi-
tivity to PARP inhibitors (227). Furthermore, PCNA K164
ubiquitination inhibition is also synthetic lethal with Brca1,
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in combination with UV or cisplatin treatment (228). An-
other potential candidate for synthetic lethality with DDT
defects leading to increased replication stress could be ATM
inhibitors, as tumours with mutated DDT genes should
show increased replication stress and ATM inhibitors are
synthetic lethal with increased replication stress (229). Fur-
thermore, synthetic lethality with Rad18 or Polk can be in-
duced by inhibitor of WEE1- and oncogene-induced stress
(230). Individual TLS DNA polymerases may be attrac-
tive anti-cancer targets, because they have a bigger active
site than replicative polymerases and therefore could be tar-
geted specifically. Screens for TLS polymerase inhibitors for
POLK have identified new lead compounds, which await
further development (231). As PCNA is a key regulator
of DDT, inhibitors of PCNA function are being devel-
oped. T2AA is a PCNA ubiquitination inhibitor isolated
from fungi (232). Next to T2AA, short peptides inhibiting
PCNA interactions revealed efficacy in mouse tumour mod-
els (233–235). These PCNA inhibitors affected the AlkB
homologue 2 PCNA-interacting motif (APIM), PIP motif
or Y211 phosphorylation, and thereby prevent proper re-
sponse to DNA damage. Furthermore, targeting ubiquitin-
binding motif of REV1 that binds PCNA also sensitizes tu-
mours to DNA damaging agents in vitro (236). However,
mouse models have shown that targeting PCNA K164 for
chemo-sensitization strategies is not a good approach, as
the side effects of PCNA inhibition combined with plat-
inum treatment become severe, mainly due to bone mar-
row failure. However, like for high dose chemotherapy, bone
marrow failure may be compensated or prohibited by au-
tologous HSC transplantation (213,225). Though, PCNA
K164 targeting could be feasible in a setting where there is
a tumour-specific mutation in a gene that is synthetic lethal
with PCNA K164 inhibition. Phenotypes of mice treated
with drugs that target PCNA K164 specifically are likely a
lot less sensitive to platinating agents, as compared to a sys-
temic PCNA K164R mutation (213,225).

Inhibition of PCNA deubiquitinase USP1 functioning
also leads to cellular sensitization to chemotherapeutics.
Targeting USP1 can be accomplished through targeting the
USP1 UAF1 complex formation, which is needed for the
activity of USP1. The activity of USP1 on FANCD2-Ub
and PCNA-Ub has successfully been targeted leading to in-
creased sensitivity to cisplatin in vitro (237).

In summary, DDT should be further exploited for syn-
thetic lethal anti-cancer strategies and tumour-specific vul-
nerabilities to further optimize cancer therapy. In the future,
personalized cancer medicine that targets tumour-specific
vulnerabilities with adequate drugs will be achieved.

CONCLUSION

DDT is a key component of the DNA damage response net-
work and hence has a central role in genome maintenance,
through preventing replication stress and secondary DNA
damage. Defects in the DDT system are associated with
specific diseases. Disease phenotypes generally include in-
creased ageing, cancer and neurological symptoms. Besides
being causal in some cancers, DDT defects can lead to de-
creased genome stability, which at the same time opens a
therapeutic window that renders primarily the tumour vul-

nerable to targeted therapies. Further research is required to
unravel the choice and regulation of specific DDT pathways.
These insights will be instrumental in treating DDT-related
pathologies.
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