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review article

once fat was fat and that was that: our changing 
perspectives on adipose tissue
WF FERRIS, NJ CROWThER 

abstract
Past civilisations saw excess body fat as a symbol of wealth 
and prosperity as the general population struggled with food 
shortages and famine. Nowadays it is recognised that obesity 
is associated with co-morbidities such as cardiovascular 
disease and diabetes. Our views on the roll of adipose tissue 
have also changed, from being solely a passive energy store, 
to an important endocrine organ that modulates metabolism, 
immunity and satiety. The relationship between increased 
visceral adiposity and obesity-related co-morbidities has lead 
to the recognition that variation in fat distribution contrib-
utes to ethnic differences in the prevalence of obesity-related 
diseases. Our current negative view of adipose tissue may 
change with the use of pluripotent adipose-derived stromal 
cells, which may lead to future autologous stem cell therapies 
for bone, muscle, cardiac and cartilage disorders. Here, we 
briefly review the concepts that adipose tissue is an endocrine 
organ, that differences in body fat distribution underline the 
aetiology of obesity-related co-morbidities, and the use of 
adipose-derived stem cells for future therapies.
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a changing view of adiposity through the ages
The incidence of obesity and obesity-related co-morbidities 
has risen dramatically in the last century. The latest global data 
shows that in 2004 cardiovascular disease was the primary cause 
of death, above infectious and parasitic diseases, with the major-
ity of cases attributed to an unhealthy lifestyle. This includes 
over-nutrition.1 The increase in obesity has been accompanied 
by increased interest in fat and an abundance of research inves-

tigating the link between excessive adiposity and the associated 
pathologies. Currently there are over 130 000 research articles 
on obesity cited on PubMed and these publications show that our 
perception of the function of fat mass has changed considerably 
since the first entry cited from 1880. However, our knowledge of 
adiposity stretches back far beyond the 19th century. Although it 
is not known whether classical scholars recognised that adipose 
tissue is our major energy store, they did observe that excessive 
adiposity has negative health implications.

The Indian physician Sushruta (sixth century BCE) was prob-
ably the first to document a relationship between obesity and 
co-morbidities such as diabetes and heart disease. Not unlike 
today, he recommended exercise to remedy conditions that had 
arisen from a sedentary lifestyle and ‘pampering the belly’.2 Later 
in Europe, Hippocrates (460–377 BC) independently recognised 
the relationship between body composition, exercise and health, 
exemplified in his quote: ‘If we could give every individual the 
right amount of nourishment and exercise, not too little and not 
too much, we would have found the safest way to health’. In a 
time of scant medical knowledge, his insight extended further, 
beyond his contemporaries, to include the pathogenicity of 
obesity, in writing: ‘Repletion, carried to extremes, is perilous’ 
and ‘Corpulence is not only a disease in itself, but the harbinger 
of others’. He then subsequently noted that life expectancy was 
far shorter in the obese compared to lean individuals.3 

Although the detrimental effects of obesity have therefore 
long been known, in the intervening millennia since Sushruta 
and Hippocrates, portliness was generally regarded as a symbol 
of affluence. This was primarily due to periodic food short-
ages and famine, which were only brought under control in the 
Western world in the last century yet still ravish the developing 
world today. This association between wealth and increased body 
mass was often reflected in the art of European masters such as 
Rubens (1577–1640) who depicted women with a full-bodied, 
hour-glass shape; a shape which was associated with opulence 
and fertility.4 

By the 20th century, the use of intensive farming in conjunc-
tion with the mechanisation of the food industry helped to eradi-
cate famine in the developed world. The increasing availability 
of highly palatable, high-energy foods and decreased levels of 
physical activity has lead to an increasing imbalance between 
energy input and expenditure in the general population. The 
consequence of this is a burgeoning of portliness and obesity. 
This rise in the prevalence of obesity is a global phenomenon, 
occurring in both the developed and the developing worlds. Data 
from the USA shows that in the period 1988–1994 the preva-
lence of obesity was 22.5%,5 and rose to 32.2% in the period 
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2003–2004.6 A meta-analysis of studies measuring prevalence of 
obesity in west African countries showed that the prevalence of 
obesity in urban areas rose from 7.0% in 1990–1994 to 15.0% 
by 2000–2004.7 Data from China demonstrated that the preva-
lence of overweight and obesity was 14.6% in 1992 and 21.8% 
in 2002.8 Similar trends have been reported around the world. 
The increasing prevalence of obesity in the developing world is 
compounded by the cultural view of obesity as being a positive 
attribute, signifying both health and wealth. This is particularly 
so in African nations,9 and is in stark contrast to the Western 
ideal, as portrayed in the mass media, of thin is beautiful! 

Central adiposity, ectopic fat deposition and 
obesity-related co-morbidities
‘Not all fat is created equal’ may be the new dogma in obesity 
research, with many studies reporting that the pathological effects 
of excessive adiposity are dependent not only on the quantity of 
fat, but on the distribution of the fat mass. The adipose tissue 
surrounding the major abdominal organs, the visceral fat, is 
thought to be the principal adipose depot involved in the aetiol-
ogy of obesity-related disorders, with the subcutaneous fat depot 
playing a less prominent role.10 Closer scrutiny of adipocytes 
isolated from these two fat depots has corroborated this view 
and shown fundamental metabolic differences as well as a higher 
production from visceral adipocytes of adipose tissue-derived 
cytokines (adipokines), which may play an important role in the 
aetiology of many obesity-related diseases.11

It has been proposed that the rate of lipid uptake is greater in 
the subcutaneous than the visceral adipose tissue depot until the 
former site approaches its limit for lipid storage, when triglycer-
ide uptake into the visceral depot predominates.12,13 Lipid accu-
mulation in obesity promotes both adipocyte hyperplasia and 
hypertrophy,14,15 with storage mainly occurring in pre-existing 
adipocytes. As hypertrophy progresses, the storage capacity of 
the cells in subcutaneous adipose tissue becomes limiting and 
lipids that are not readily accumulated are shunted to the visceral 
stores. Excessive fat accumulation in the visceral stores leads to 
the secretion of free fatty acids into the portal vein, which, with 
the secretion of pro-inflammatory adipokines, leads to hepatic 
insulin resistance and aberrant accumulation of lipids in hepato-
cytes and the resultant hepatic steatosis.16 

In obese individuals, the inadequate lipid storage capacity of 
the body’s adipose tissue depots leads to ectopic fat deposition 
not only in the liver but in other organs such as skeletal muscle 
and the insulin secreting b-cells of the pancreas. It has been 
suggested that this ectopic fat deposition may play an important 
role in the aetiology of both insulin resistance and b-cell failure.17 
Furthermore, in obesity, increased fat deposition has also been 
noted peri-vascularly and peri-cardially and within myocytes.18 It 
has been suggested that this may contribute to vascular stiffness, 
cardiac dysfunction, hypertension, atherosclerosis and sodium 
retention, which are all characteristics of the cardiovascular 
disease observed in obese subjects.18 

adipose tissue, a paracrine and endocrine 
organ
Adipose tissue is no longer just seen as a fat store, but is consid-
ered a true secretory tissue, with differences in secretion under-

pinning the greater pathogenicity of visceral than subcutaneous 
fat masses. Adipocytes are known to secrete pro-inflammatory 
cytokines such as TNFα and IL-6, which in conjunction with 
elevated free fatty acids (FFAs), promote insulin resistance.11 
These cytokines are elevated in obesity and have been proposed 
to act in an autocrine loop, inhibiting the adipocyte hyperplastic 
response, which in turn leads to hypertrophy and further secre-
tion of FFAs and pro-inflammatory cytokines. 

Adipocytes produce a multitude of secreted peptides other 
than pro-inflammatory cytokines that have been linked to some 
of the obesity-related co-morbidities. Many of these molecules, 
such as plasminogen activation inhibitor 1 (PAI-1), angiotensino-
gen (AGT), monocyte chemo-attractant protein 1 (MCP-1) and 
resistin, have effects on vascular function. Plasminogen activa-
tion inhibitor 1 inhibits plasminogen activation and leads to 
fibrinolysis and a pro-thrombotic state.19,20 PAI-1 is secreted more 
by visceral than subcutaneous fat21 and is also a risk factor for 
coronary artery disease (CAD),22 whereas angiotensinogen has 
been implicated in the aetiology of hypertension and is upregu-
lated in obesity,23,24 with production being higher in visceral fat.25 
Furthermore, angiotensinogen is the precursor of angiotensin II 
of the vasoconstriction renin–angiotensin system and may be a 
causal agent for the hypertension seen during obesity.26 

Monocyte chemo-attractant protein 1 is also secreted predom-
inantly from the visceral depot, is overproduced during obesity 
and participates in the recruitment of macrophages and mono-
cytes into the arterial cell wall. As this recruitment may lead to 
atherosclerosis, MCP-1 was measured in patients with or without 
CAD, and it was found to be elevated in the former group.27 
Adipocytes also secrete resistin, which stimulates inflammatory 
cytokine production, as well as decreasing endothelial cell adhe-
sion molecule (iCAM-1, vCAM-1, Ccl-2) production, which 
may promote atherosclerosis.28 The role of resistin in insulin 
resistance is still unclear.29,30

Adipose tissue also secretes other peptides that have effects 
peripherally and centrally. The most investigated of these is 
leptin, a satiety factor which was first characterised in a rodent 
model of monogenic obesity, the ob/ob mouse.31 Since the isola-
tion and characterisation of leptin (from the Greek leptos: thin), 
adipose tissue has been viewed as a true endocrine organ. Leptin 
is secreted by adipocytes and modulates food intake by suppress-
ing orexigenic peptides (Agouti-related peptide and neuropep-
tide Y) and upregulates anorexigenic peptides (corticotropin-
releasing hormone and α-melanocyte stimulating hormone) in 
the brain.32 It also stimulates fatty acid oxidation and prevents 
lipid accumulation in adipose tissue.33,34 This forms a negative 
feedback mechanism, where increased fat mass produces more 
leptin, which reduces food intake, inhibiting further adipose 
expansion and limiting leptin expression. It was initially thought 
that this feedback loop could be used to inhibit food intake in the 
obese, but clinical trials of leptin analogues had little success, 
because endogenous leptin has since been found to be elevated 
in the obese, who often exhibit leptin resistance.35 The adipokine 
has since been attributed to being a signal for energy deficiency, 
rather than a signal to lose weight, as excessive weight loss will 
result in decreased leptin levels and a consequential increase in 
food intake.36,37 

Since the characterisation of leptin, many other adipokines 
have been discovered, such as apelin, visfatin, chemerin 
and vaspin, with adiponectin being the most fully studied. 
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Adiponectin is copiously secreted from mature adipocytes,38-40 
with expression negatively correlating with body mass index 
(BMI).41,42 Consequently, lean subjects have high levels, whereas 
obese subjects have low plasma levels. Decreased expres-
sion of adiponectin is observed in a number of obesity-relat-
ed co-morbidities such as type 2 diabetes,43,44 the metabolic 
syndrome,45,46 non-alcoholic steatohepatitis16 and CAD.47,48 It has 
also been found that the protein is anti-diabetic, increasing 
insulin sensitivity, glucose uptake and fat oxidation, as well as 
suppressing hepatic glucose output.49-51 The protein may also alter 
basal insulin secretion52 and modulate satiety, increasing food 
intake and suppressing energy expenditure when fasting, but 
surprisingly having opposite effects after refeeding.53 It is also 
anti-atherogenic47,54 and anti-inflammatory.55 

Whereas adiponectin decreases during obesity, there are other 
glucose-lowering adipokines that correlate positively with BMI. 
Circulating apelin increases in obesity56 and has been show to 
lower glucose in normal and obese mice.57 Homozygous apelin 
knockout mice have severe heart failure in response to pres-
sure overload and diminished heart contractility in aged mice,58 
indicating a role for the adipokine in maintaining cardiac func-
tion. Visfatin is an adipokine that is predominantly expressed 
in visceral adipose tissue and has been attributed to having 
insulin-like properties,59 although this has since been disputed,60,61 
and recently visfatin has been shown to have pro-inflammatory 
effects.62 Vaspin is a serine protease inhibitor and is reported to 
reduce expression of leptin, resistin and TNFα and improves 
insulin sensitivity.63,64 

The recently discovered adipokine chemerin65,66 increases 
insulin sensitivity in 3T3-L1 adipocytes67 and is essential for 
normal adipocyte differentiation.65,66,68 However, it has also been 
shown to lower glucose tolerance in murine models of obesity/
diabetes69 and to cause insulin resistance in human skeletal 
muscle cells, where it was also observed to be pro-inflamma-
tory.70 Consequently adipose tissue secretes both pro- and 
anti-inflammatory cytokines which modulate metabolism by 
altering insulin resistance. Generally, pro-inflammatory cytokine 
production increases and anti-inflammatory expression decreas-
es during insulin resistance and obesity.

obesity and cardiovascular disease in africa
Studies have shown that the prevalence of both cardiovascular 
disease (CVD)71 and obesity7 is rising in Africa. Although it is 
not certain that these two findings are linked, the observation that 
CVD is more common in obese Africans72 supports this premise. 
This recent rise in the prevalence of obesity in Africa is attributed 
to increased urbanisation and the associated ease of access to a 
more westernised, calorie-dense diet.73

Within Africa, the prevalence of CVD and its risk factors 
differs across the various resident population groups. Accordingly, 
mortality due to heart disease is higher in the Asian-Indian and 
European ethnic groups of South Africa when compared to the 
indigenous black African population.74 Fasting serum cholesterol 
and triglyceride levels are higher in Asian-Indian than African 
subjects,75 with type 2 diabetes being more prevalent in the 
former population group.76 The reasons for these ethnic differ-
ences in disease prevalence rates and cardiovascular risk factors 
are not fully understood, although it has been suggested that 
the higher abdominal fat mass observed in Asian-Indian and 
European compared to African subjects may be involved.77

It is, however, of note that African subjects tend to be more 
insulin resistant than Europeans78,79 even though they have less 
visceral adiposity. This would suggest either that visceral fat 
in African compared to European subjects has a greater abil-
ity to reduce insulin sensitivity, or that visceral adiposity is not 
involved in determining the level of whole-body insulin sensitiv-
ity in the African population. The latter hypothesis is unlikely 
since it has been shown that waist circumference, independently 
of BMI, is a determinant of insulin sensitivity in this popula-
tion group.80 It is also possible that subcutaneous abdominal fat 
may play a more prominent role in determining whole-body 
insulin sensitivity in African than European females, as has been 
observed in a previous study.79

Previous investigators have suggested that obesity in African 
subjects is benign. This hypothesis was based on reports that 
blood pressure, glucose and lipid levels were not elevated 
in obese compared to lean African females.81 However, this 
hypothesis is challenged by data showing that there is a higher 
prevalence of CVD in obese compared to non-obese African 
subjects.72 Furthermore, it must be noted that these studies81 did 
not take into account body fat distribution, which is a major 
contributing factor to the pathogenesis of obesity-related disor-
ders. It is also of interest to note that the African countries with 
the highest prevalence of obesity have the highest prevalence of 
obesity-related disorders, such as type 2 diabetes.82 

adiposity and insulin resistance as a  
biological advantage
Obesity has many negative connotations with regard to health. 
It is associated with an increased risk of many diseases, rang-
ing from asthma to cancer. However, body fat does have an 
important physiological role, including the maintenance of body 
temperature and triglyceride storage. It also acts as an endocrine 
modulator of insulin sensitivity and appetite. The negative effects 
of adiposity on insulin sensitivity are often viewed as purely 
pathological. However, insulin resistance has been proposed to 
have an important biological role. It is now thought that insulin 
resistance is a normal physiological response to obesity to slow 
down triglyceride deposition in adipose tissue.83 Studies have 
indeed shown that insulin resistance may protect against weight 
gain.84,85 Furthermore, the biological adaptation of insulin resist-
ance has been proposed as advantageous in prehistory, during 
times of feast and famine. The ability to readily store energy 
as fat would be beneficial until excessive adiposity would limit 
the capability of our ancestors to hunt and escape predation. 
Thus, insulin resistance would act to limit the rate of fat deposi-
tion. It is therefore possible that insulin resistance evolved to 
limit fat deposition in a period of human evolutionary history 
when excessive caloric intake was not a common occurrence. 
In modern times however, access to calorie-dense foods is not 
limited and this homeostatic mechanism for limiting excessive 
weight gain has been overpowered by new environmental condi-
tions in which famine has been replaced by feast. 

Adipose tissue may play an important role in modulating 
immunity. Adipocytes secrete a wide range of different cytokines 
that have both pro- and anti-inflammatory properties. Also, 
lymph nodes are normally found within adipose tissue depots 
and studies have demonstrated a strong interrelationship between 
these two tissue types. Therefore, the cells of the lymph node are 
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supplied with specialised free fatty acids by the perinodal adipo-
cytes, and dendritic cells from the lymph nodes are able to modu-
late lipolysis of the surrounding adipose tissue.86 Furthermore, 
the adipokine, leptin has been shown to have effects on immune 
system functionality. Subjects with a leptin gene mutation have 
very low serum leptin levels and reduced numbers of CD4

+ T 
cells and low T-cell proliferation rates. All these defects are 
normalised by administration of exogenous leptin.87 

fat as a source of stem cells
Our perception of adiposity has recently changed again. In addi-
tion to being an energy store, a major protagonist in the develop-
ment of insulin resistance and a modulator of satiety, adipose 
tissue has been found to be an abundant store of stem cells. 
Adipose tissue may therefore be seen more positively, given that 
these cells may be used to treat a multitude of diseases. 

Originally, Young et al.88 isolated stem cells by digesting the 
connective tissue in fat and cultured the liberated cells, which 
they labelled the stromal vascular fraction (SVF). This was 
an unpurified population containing stromal cells, endothe-
lial progenitor cells, fibroblasts and haematopoietic stem cells,89 
which were used to produce neo-vascular cells. The multipoten-
tial mesenchymal precursor cells that are harboured within the 
SVF may not only be differentiated into adipocytes,90-92 but also 
bone-forming osteoblasts,90,93,94 muscle myoblasts,93,95 cardiomyo-
cytes96 and cartilage-forming chondrocytes.90,93 Consequently, 
there is considerable interest in these adipose-derived stromal 
cells (ADSCs)93,94 for regenerative medicine. This is not only for 
the replacement of damaged fat,97 bone,98-100 muscle101 and carti-
lage,102 for it has been found that ADSCs also secrete cytokines, 
such as VEGF, HGF and SDF-19,103,104 which stimulate angio-
genesis. These cells may therefore be used to treat ischaemic 
disease,105 such as fibrosis and osteoradionecrosis, which are 
late complications of radiotherapy.106 It has also been found 
that the growth factors that ADSCs secrete stimulate fibroblast 
and keratinocyte growth and therefore ADSCs have been used 
to aid skin repair.107 Unlike bone marrow-derived stromal cells 
(BMSCs), a prominent redeeming feature of ADSCs is their ease 
of isolation.108

ADSCs and fat transplantation have been successfully used 
after trauma and surgical resection such as mastectomy,109,110 
where ADSCs help to abrogate problems with angiogenesis and 
the long-term viability of grafts.111-113 ADSCs have also been 
used to treat lipodystrophy,114 which has become common due 
to side effects of antiretroviral therapies (ART) in HIV-positive 
patients.115,116 These ADSCs are expanded in number in vitro and 
differentiated into mature adipocytes using a cocktail including 
insulin, the cAMP inducer IBMX, a PPARg agonist indometh-
ecin and a low concentration of a glucocorticoid such as dexa-
methasone.117,118 The use of different cocktails enables ADSCs 
to be differentiated into osteoblasts, myocytes or chondrocytes.

Lee et al.119 was the first to demonstrate that ADSCs could be 
differentiated into bone-forming osteoblasts and these cells were 
used to heal critically sized calvarial defects in mice. In a direct 
comparison during this investigation, ADSCs were found to have 
the same efficacy as BMSCs. It was established, using genetic 
analysis that 96% of the new bone was from the female donor 
rather than from the male recipient.120 As both adults and chil-
dren over the age of two years are unable to correct large cranial 
defects due to inadequate ossification, this application has direct 

relevance in man and was first used to correct a 120-cm2 defect 
in a seven-year-old girl with a severe head injury.121 

The differentiation of ADSCs into myocytes is relatively 
inefficient and gives a low yield and low reproducibility.89 
Glucocorticoids and 5% horse serum are used to supplement 
the growth media to stimulate the fusion of cells to form 
multi-nucleated myotubes which express myocyte markers.90,93,122 
Although in vitro differentiation is far from optimal, these cells 
have been used to correct defects in the tibialis anterior muscle in 
a mouse model for Duchennes’s muscular dystrophy. 

The differentiation of ADSCs into chondrocytes is also 
inefficient. Insulin, TGFb1 and ascorbic acid122,123 are used to 
stimulate chondogenesis in ADSCs, which takes two weeks, but 
unfortunately the yield is far less than when using BMSCs.123 
As cartilage repair in vivo is often difficult and slow, the use of 
ADSCs to treat traumatised and arthritic joints and to aid joint 
reconstruction still warrants further research102 and promises to 
improve therapy for cartilage repair in the future.

Adult mesenchymal stem cells isolated from the adipose 
tissue of rabbits are able to differentiate into cardiomyocytes 
when treated with 5-azacytidine.96 This process has also been 
observed in human ADSCs cultured in the presence of dimethyl-
sulfoxide.124 Furthermore, such cells were used to improve 
cardiac function and increase survival rate in a rodent model of 
myocardial infarction.124 Similar results were obtained in experi-
ments in which undifferentiated ADSCs were transplanted into 
rodent125,126 and porcine127 infarcted hearts. These data suggest 
that at least in non-human models of myocardial infarction, 
ADSCs may be used to repair damaged cardiac tissue, although 
their utility in humans is still not known and requires further 
investigation.

fat and the future
The future certainly looks secure for fat. The prevalence of 
obesity in the developing world shows no sign of abating, 
although recent data from the USA shows evidence of plateau-
ing.128 The rising levels of obesity in Africa were expected to 
result in an increase in the prevalence of obesity-related disor-
ders, which seems to be the case.71,129 Africa is also the centre 
of an HIV/AIDS epidemic and is therefore suffering a double 
burden of communicable and non-communicable diseases. 
Studies have shown that HIV infection and ART can both lead to 
cardiovascular disease130 and this will further enhance the current 
epidemic of obesity-related diseases on the African continent. 
Consequently, the use of ART has converted our view of HIV 
infection from a certain death sentence to a chronic disease, 
and this is leading to the development of health service infra-
structures that can be used for HIV diagnosis, ART roll out and 
patient follow up. Such infrastructure could also be utilised for 
the diagnosis and monitoring of non-communicable diseases in 
both HIV-positive and HIV-negative subjects.131

There are a number of interesting aspects of obesity in 
African populations that deserve continued investigation. The 
more diabetogenic than atherogenic nature of adiposity in 
African compared to European subjects is not well understood 
and unravelling the molecular mechanisms involved in such 
ethnic differences may well uncover new aetiological pathways 
of obesity-related diseases. The difference in body fat distribu-
tion between population groups is also worthy of further study, 
particularly as African subjects have less visceral fat than 



CARDIOVASCULAR JOURNAL OF AFRICA • Vol 22, No 3, May/June 2011AFRICA 151

BMI-matched Europids, and yet are more insulin resistant.77-79 

The use of high-throughput gene-screening technology, which 
has yielded important information on the polygenic nature of 
obesity via genome-wide association studies132 should therefore 
be used in African populations to determine the genetic input 
to adiposity and body fat distribution. It is possible that ethnic 
differences in insulin sensitivity and the prevalence of obesity-
related disorders are due to differences in the secretory output 
of adipocytes. The comparison of adipocyte secretomes across 
population groups using the new technologies developed for 
the analysis of complex mixtures of bioactive molecules133 may 
therefore be very worthwhile. 

The future of the use of adipose-derived stromal cells 
(ADSCs) for the treatment of human disease looks very promis-
ing. Such cells have already been used to correct cranial defects 
in humans,119 and preliminary studies in man to rectify cardio-
vascular134,135 and soft tissue136-138 defects hold hope for the future 
use of ADSCs in the treatment of muscle and cartilage defects 
and heart infarcts. However, before this becomes a reality, there 
are a number of technical problems that need to be overcome. 
The methods used for the large-scale isolation of ADSCs and 
their efficient conversion into the correct cell phenotype must be 
improved and standardised. Also, the long-term safety of the use 
of these cells in humans must be explored, initially by the devel-
opment of the appropriate animal models. Stem-cell therapy is 
already available for the treatment of haematological malignan-
cies in specialised medical centres within Africa139 and therefore 
it is feasible that the therapeutic use of ADSCs may also become 
a reality for this continent. 

Conclusion
Our view of adipose tissue has changed over time. Additional 
information has led us to confirm that fat is not only a store of 
energy, but when in excess, it is the instigator of obesity-related 
co-morbidities. The characterisation of adipokines has led to the 
realisation that adipose tissue is a true endocrine organ, and the 
isolation and use of ADSCs has led to hope for future therapeu-
tic treatments of degenerative diseases of fat, bone, muscle and 
cartilage. Once fat was just fat, but it is now much more than 
that.
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