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Abstract

Introduction

Alzheimer’s disease (AD) affects multiple neural pathways and regions, resulting in various

visual impairments such as motion perception. Generally, gamma-band activities during

visual motion perception have been thought to reflect ongoing cognitive processes. Never-

theless, few studies have specifically examined induced gamma band activity during visual

motion perception in AD patients. Therefore, after performing magnetoencephalography

(MEG) recording during apparent motion (AM) stimulation for the left hemi-visual field in

patients diagnosed as having AD in the early stage, we compared the results with findings of

cognitive performance.

Methods

Seventeen AD patients in the early stage and 17 controls matched for age, sex, and educa-

tional attainment participated in this study. For each participant, memory performance was

assessed with the Mini-Mental State Examination (MMSE) and the Wechsler Memory

Scale-Revised (WMS-R). For MEG analysis, we examined power changes induced in a

higher frequency range (20–100 Hz) after AM stimuli.

Results

The power of induced gamma band activities was significantly higher in AD patients. The

power of induced gamma band activities was associated with higher performance on both

MMSE and WMS-R tests for attention and concentration in AD patients.

Conclusions

Given that neuronal dysfunction in AD is associated with excitotoxic neurodegeneration,

and given that subsequent development of compensatory inhibitory mechanisms also con-

tributes to pathology in AD patients, elevated gamma band oscillations might reflect an

imbalance of inhibitory and excitatory activity in AD patients. Moreover, positive correlation
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between induced gamma activity and cognitive performance might signify a compensating

mechanism of inhibitory neurons which preserve the pyramidal neuron from excitotoxicity in

a posterior association area.

Introduction

Alzheimer disease (AD) is the most prevalent form of dementia. Aging is the most important

risk factor for AD. As an unavoidable consequence of longer life span during recent decades,

increasing numbers of people reach ages at which AD commonly occurs. Neuronal dysfunc-

tion associated with excitotoxic neurodegeneration has been reported to occur with Alzheimer

disease (AD) [1–5]. Clinically, this mechanism seems plausible because of increased risk of sei-

zure activity in AD [6]. Results of a recent human immunohistochemical study suggest that

neuronal overexcitation and subsequent development of compensatory inhibitory mecha-

nisms contribute to pathology in AD [7]. Transgenic mice studies also elucidated this compen-

satory inhibitory mechanism induced by amyloid-β [8, 9]. Although it remains unclear

whether these neuronal imbalances of inhibition–excitation are a cause or effect of pathologi-

cal degeneration, these imbalances must play an important role in the pathological progress of

AD patients.

Gamma band activity detected by electroencephalography (EEG) or magnetoencephalogra-

phy (MEG) is a candidate non-invasive index that accounts for inhibitory–excitatory neuronal

dynamic alteration in the human brain. Inhibitory interneuron networks are well established

as having a prominent role in the generation of gamma-band activity. Activation of these inter-

neuron networks is attributable to excitatory driving from pyramidal cells [10]. Nevertheless,

only a few studies of AD patients have specifically examined locally induced gamma band

oscillations that are not time-locked or phase-locked to a stimulus, but which are elevated dur-

ing meaningful information processing [11]. One study demonstrated that the AD patients

had higher induced gamma band power than control subjects had. These powers were posi-

tively correlated with cognitive performance [12]. This finding suggests that local cortical

activities are preserved or are rather higher in AD, which might reflect hyper-excitability of the

cortex or a compensation mechanism by inhibitory interneurons, which counters hyper-excit-

ability in AD.

Presuming that the hyper-excitability of the cortex and compensatory inhibitory mecha-

nisms contribute to higher induced gamma activity in AD patients, more specific brain activa-

tion particularly addressing brain local regions that are commonly vulnerable in AD can

elevate the diagnostic sensitivity of gamma band activity. For this study, we employ apparent

motion (AM) visual stimulation. The AM stimulation consists of static images that are pre-

sented successively with a spatial shift. It provides simple information about object motion.

Using this stimulus, earlier MEG studies of healthy participants revealed activated cortical ori-

gins that were estimated around temporo-occipital, occipital or parietal areas [13]. It is note-

worthy that amyloid deposition and metabolic reduction in AD patients was reported in these

areas [14]. Nevertheless, no report describes a study investigating visual motion-induced brain

gamma band activities and their relation to cognitive dysfunction in patients with early AD.

The purpose of the current study is to evaluate the diagnostic sensitivity of locally induced

gamma band MEG activities in discriminating AD patients from healthy controls. Because

neuronal overexcitation and the compensatory inhibitory mechanisms seem to contribute to

pathology in AD, we expected that regionally induced gamma band activity would be aberrant

in early-stage AD patients.
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Materials and methods

Participants

The characteristics of AD group and control group participants are presented in Table 1. The

AD patient group consisted of nine women and eight men who were referred to the psychiatric

outpatient clinic of Kanazawa University Hospital or Kaga Kokoro Hospital. The patients ful-

filled the National Institute of Neurological and Communicative Diseases and Stroke/Alzhei-

mer’s disease and Related Disorders Association (NINCDS-ADRDA) work group criteria for

probable AD [15]. Neurological, serological, and MRI studies of these patients were performed

to eliminate any other medical condition potentially causing dementia. The period from the

time the symptoms were noticed by the family was defined as the duration of illness. No

patient was receiving any medication acting upon the central nervous system (i.e. antipsy-

chotic, anticholinergic, antidepressant, anticonvulsant, benzodiazepine, cerebral metabolic

activator, or cerebral vasodilator) except donepezil hydrochloride (9 patients were receiving 5

mg of donepezil hydrochloride per day). Each patient was assessed with the functional assess-

ment stages (FAST) [16] (CDR) [17], and a Japanese version of the Mini-Mental State Exami-

nation (MMSE) [18]. The Wechsler Memory Scale-Revised (WMS-R) [19] was used to

evaluate details of memory performance. The control group, which consisted of 17 healthy vol-

unteers, was not significantly different from the AD group in age or gender. Control partici-

pants had no personal or family history of psychiatric or neurological disease. All were

functioning normally and independently in daily life. None of their WMS-R subscores was

below the 1.5 standard deviation of the normal range. All participants had normal color vision,

visual acuity, pupil reaction, and visual fields. All participants agreed to participate in the study

with full knowledge of the experiment characteristics of the research. Written informed con-

sent was obtained from all participants before their enrollment. The Ethics Committees of

Kanazawa University Hospital approved this study.

Table 1. Characteristics of all participants.

Group Healthy controls Alzheimer disease T value

Total number 17 17

Male/Female 9/8 9/8

Age (range) years 69.6 (61–77) 72.0 (63–80) 1.36

Education (range) years 12.4 (6–16) 11.2 (6–16) 0.28

Duration of illness (range) years – 1.6 (1–5)

CDR – 0.94 (0.5–2)

FAST – 3.6 (3–4)

MMSE score 28.5 (27–30) 22.4 (14–28) 6.71 �

WMS-R indexes

Attention and Concentration Index (range) a 108.1 (89–125) 87.1 (53–109) 4.28 �

General Memory Index (range) b 101.2 (84–122) 65.6 (50–93) 8.40 �

Verbal Memory Index (range) 100.4 (84–121) 70.3 (53–97) 7.82 �

Visual Memory Index (range) 102.7 (80–125) 67.5 (50–100) 7.44 �

Delayed Recall Index (range) c 99.9 (87–130) 61.4 (50–81) 9.82 �

CDR, Clinical Dementia Rating; FAST, Function Assessment Staging; MMSE, Mini-Mental State Examination; WMS-R, Wechsler Memory Scale–Revised
a Immediate memory (retention of information in immediate awareness).b Capacity to acquire and recall information over brief time periods.
c Ability to recall information after 30 min of intervening activity. Significance was inferred from results of un-paired t-tests.

� P < 0.05.

https://doi.org/10.1371/journal.pone.0266693.t001
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Visual stimuli

A participant lay supine on the bed, facing a tilted white screen with 24 × 16 cm that was fixed

above the bed in a dark, magnetically shielded room (Daido Steel Co., Ltd., Nagoya, Japan) in

which the MEG apparatus was set. Using a video projector (PG-B10S; Sharp Corp., Japan)

with a refresh rate of 60 Hz, a computer placed outside the magnetically shielded room pro-

jected a picture through a small window of the wall of the shielded room, onto the screen

above the head position of the bed. The distance from the participant’s nasion to the center of

the screen was about 30 cm. Therefore, the visual angle of the picture that was projected on the

screen was about 42 × 34 degrees. Visual stimuli were generated by software “Presentation”

(Neurobehavioral Systems Inc., Albany, USA). Diagrams of the experiment procedures are

shown in Fig 1. We used a visual AM stimulus similar to that used for an earlier study [13].

The visual stimulus consisted of two frames. Each frame had a green spot (0.27 degrees visual

angle diameter) as the fixation point and a white vertical bar (subtended 0.2 × 3.9 degrees) on

the left of the fixation point. The bar was located at a 1.0 degree and a 2.0 degree offset from

the fixation point, respectively for Frames 1 and 2. The frames were presented alternately so

that participants would see a horizontal to-and-fro motion of the bar between the places where

the bars were presented. The duration of the presentation of each frame was randomized

Fig 1. Schematic illustrations of the visual stimuli and a diagram showing the MEG acquisitions. Visual stimuli

used to induce apparent motion (AM) were created using two frames: Frame 1 had a fixation point (FP) and a bar

offset 1 degree (visual angle) from that point; Frame 2 had an FP at the same location as in Frame 1 and a bar offset 2

degrees from that point. Frames 1 and 2 were presented alternately for 1 to 1.5 s with an interstimulus interval of 16–44

ms. Trigger pulses for the averaging of magnetic responses occurred whenever the frame changed.

https://doi.org/10.1371/journal.pone.0266693.g001
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between 1 and 1.5 s to eliminate averaging late activities which might be evoked by the preced-

ing stimulation and to prevent the participant’s expectation and adaptation to the stimuli [20].

The interframe interval was 16–44 ms because of synchronization to the monitor frame flyback

time. The respective measured luminance of the bar and the screen background were 38.5 and

4.3 lux.

Acquisition and data analysis of MEG evoked responses

MEGs were recorded with a 160-channel, whole-head coaxial gradiometer MEG system (PQ

1160C; Yokogawa Electric Corp., Kanazawa, Japan) in the magnetically shielded room

installed at the MEG Center of Yokogawa Electric Corp. Each gradiometer had 15.5-mm-

diameter pick-up coils. The coils were separated by 25 mm. The instrument sensitivity was 3

fT/Hz0.5 or better. MEG was sampled at 5000 Hz per channel (band pass 0.1–3000 Hz). The

participant’s head was placed in a whole-head dewar, in which 160 magnetic sensors had been

arranged concentrically.

We determined the head position within the helmet by measuring the magnetic fields after

passing currents through coils that had been attached at five locations of the head surface as

fiduciary points with respect to the landmarks (nasion and pre-auricular points). A 3-D head

coordinate system was applied to express the location and orientation of equivalent current

dipoles (ECDs).

The recordings (sampled at 5000 Hz) were resampled at 500 Hz after a low pass filter of 200

Hz was applied. Then we made segmentation of these time series around the onset of AM (-

300 to 700 ms) and after the baseline correction (-50 to 0 ms). At least 200 segments were aver-

aged for each 160 magnetic sensor. Segments contaminated by noise with large amplitude

exceeding ± 4 pT were removed from the analysis. As shown in Fig 2, dominant activities were

found around 100 ms after the onset of AM in this study. The single ECD model [21] was used

to estimate the “center of gravity” of the current sources in the activated cerebral cortex that

was detected by at least 20 sensors evoked by the visual stimuli. We accepted estimated ECDs

Fig 2. A, Representative example of the magnetic responses to the visual stimuli obtained from one participant. MEG waveforms (160 channels) are overlaid at

the corrected baseline. Isocontour maps of the magnetic field (strength denoted by color, varying from green (flux-in) to red (flux-out)) at the response peak

and sensor locations (white dots) are shown. B, Isocontour maps of the magnetic field after apparent motion visual stimuli. A, anterior direction; P, posterior

direction; L, left; R, right.

https://doi.org/10.1371/journal.pone.0266693.g002
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only when they fulfilled the following criteria: First, during the response that we specifically

examined, the location of estimated dipoles with the single ECD model was stabilized within

±8 mm of each coordinate. Second, the correlation between the measured and expected mag-

netic fields remained at 0.9 or more during the period 10 ms around the peak of the response.

When ECDs were estimated in bilateral hemispheres, we adopted ECD from either hemi-

sphere in which correlation between the measured and expected magnetic fields was higher.

Analysis of induced MEG activity

Aside from estimating ECDs after AM stimulation, we attempted to analyze the induced MEG

activities. To examine AM-related activities specifically, we selected the 25 fixed sensors for

both right and left hemispheres (Fig 3B), which seemed to contain the magnetic response to

the AM stimuli. Selection of the 25 fixed sensors was done using the following procedures.

First, we calculated the root mean square (RMS) of the averaged MEG traces obtained from

160 channels. Then we made grand averaged topographies from rectified averaged data at the

Fig 3. A, Grand averaged topographies from rectified averaged data at the peak of RMS (using 160 sensors) after AM stimuli for the

healthy controls (n = 17) and AD patients (n = 17). B, Location of 25 sensors (red circles for right hemisphere, yellow circles for left

hemisphere), which seemed to cover the magnetic response to the apparent motion stimuli for each hemisphere. These sensors were

located mainly at the posterior areas. A, anterior direction; P, posterior direction; F, foot direction; H, head direction; L, left

direction; R, right direction.

https://doi.org/10.1371/journal.pone.0266693.g003
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peak of RMS (using 160 sensors) after AM stimuli (Fig 3A). As shown in Fig 3A, no apparent

difference was found in these topographical features between healthy controls and AD

patients. Then, according to these grand averaged topographies, we selected the 25 fixed sen-

sors for each hemisphere which seemed to include the magnetic response to the AM stimuli

(Fig 3B).

The recordings for each trial were transformed to a time–frequency representation using a

Morlet wavelet transform before the averaging procedure. Then, at least 100 time–frequency

representations were averaged across trials, and averaged across 25 sensors again for each right

and left hemisphere. This second analysis will reveal a mixture of evoked and induced power

changes in each hemisphere because phase stability in the responses is not necessary. This

Morlet wavelet transform was applied to the 20–100 Hz frequency range of the MEG epochs.

Wavelet center frequencies were 20, 24.2, 28.4, 32.6, 36.8, 41.1, 45.3, 49.5, 53.7, 57.9, 62.1, 66.3,

70.5, 74.7, 79.0, 83.2, 87.4, 91.6, 95.8, and 100 Hz. Baseline levels were subtracted from each

time–frequency map (-50 to 0 ms relative to stimulus onset). All spectral analyses were per-

formed using an analyzer (Brain Vision; Brain Product, GmbH).

Anatomical investigation

All participants underwent T1-weighted MRI examination (Signa Excite HD 1.5 T system; GE

Yokogawa). To superpose the coordinate system of MEG on the MRI images, T1-weighted

MRI was performed with spherical lipid markers placed at the five MEG fiduciary points.

These MRI images consisted of 166 sequential horizontal slices of 1.2 mm thickness, with reso-

lution of 512 × 512 points in a 261 × 261 mm field of view. After reconstructing three-dimen-

sional MRI images, the best-fit sphere was determined for each participant’s head.

Statistics

Statistical significance of the effects was inferred using un-paired t tests. Pearson’s product

moment correlation coefficient (r) was used for correlation analyses.

Results

Dipole location estimated by the equivalent current dipole (ECD) model

Fig 2 presents results of magnetic responses following AM stimuli obtained from a representa-

tive, control participant. The AM-evoked response culminated at around 100 ms after the

onset of AM stimulation (Fig 2A). As shown in Fig 2B, the ECD for AM-evoked MEG

response was in the occipital association area. Similarly to the findings shown for this partici-

pant, during AM stimuli, 17 of 34 participants (8 of 17 healthy participants, 9 of 17 AD

patients) showed magnetic responses by which we were able to estimate dipoles that met the

acceptable criteria in the cortical region with the single ECD model. These estimated ECDs

were identified in the right hemisphere in 15 participants (8 of 8 healthy participants, 7 of 9

AD patients) or in the left hemisphere in two participants (2 of 9 AD patients). The mean

moment of estimated ECD was 7.8 ± 3.8 nAm (mean ± SD, n = 8) for healthy participants,

whereas that for AD patients was 7.1 ± 4.8 nAm (mean ± SD, n = 9). The estimated dipole

latencies or moments did not differ significantly between AD patients and healthy participants

(latencies, t = 0.09, p> 0.05; dipole moments, t = 0.33, p> 0.05).

However, 17 of the 34 participants (9 of 17 healthy participants, 8 of 17 AD patients)

showed magnetic fields with a complex pattern consisting of multiple flux-out or flux-in foci.

Therefore, the estimated ECDs in these cases did not fulfill the acceptable criteria for addi-

tional single ECD analysis.
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Stimulus-induced changes in gamma band (60–80 Hz)

As shown in Fig 4B, a time–frequency representation demonstrated that AM stimuli elicited a

robust increase in the gamma band (50–80 Hz) in right hemispheres in AD patients. Unpaired

t-tests comparing findings for the two groups demonstrated a prominent gamma (60–80 Hz)

increase of about 170 ms after stimuli in the right hemisphere in the AD group (Fig 4C). To

assess effects of treatment with 5 mg of donepezil hydrochloride on this robust difference 170–

200 ms after stimuli, we calculated the average value of the wavelet coefficients in the right

hemisphere (62.1–70.5 Hz, 170–200 ms after stimulus) for healthy controls, AD patients with

and without drug treatment (Fig 5). As shown in Fig 5, no robust effect of treatment with 5 mg

of donepezil hydrochloride was apparent from this measurement (t = 0.52, p = 0.612).

Memory performance correlations in AD patients

Because of significant differences in AM-induced gamma band changes between AD patients

and healthy controls in the right hemisphere, we investigated the relation between AM-

induced oscillation in the right hemisphere and memory performance. We made time–fre-

quency maps of correlation coefficients between visual-stimulation-induced power changes in

the right hemisphere and MMSE scores or WMS-R indexes in AD patients (Fig 6). As shown

in Fig 6 (upper maps), prominent positive correlation was found between gamma band syn-

chronization (around 200 ms after AM stimuli) and the MMSE total score or one of the

WMS-R index (attention and concentration).

Fig 4. Grand average stimulus-related time–frequency maps using a Morlet wavelet transform for (A) healthy controls (n = 17) and (B) AD patients (n = 17)

for both hemispheres. This analysis will reveal a mixture of evoked and induced power changes because phase stability in the responses is not necessary. (C)

Stimulus-related time–frequency T-value maps for healthy control and Alzheimer’s disease participants.

https://doi.org/10.1371/journal.pone.0266693.g004
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Discussion

The present study demonstrated that 8 of 17 healthy participants (47.1%) had a plausible single

ECD source in posterior regions. Using similar AM stimuli, earlier studies of healthy partici-

pants demonstrated that 9 out of 12 participants (75.0%) had magnetic responses that could be

used to estimate the cortical origins with the single ECD model, and demonstrated that these

estimated cortical origins corresponded anatomically to the middle temporal area, third visual

cortex accessory, and posterior end of superior temporal sulcus [13]. These locations were

identical to those found not only from an earlier MEG study [22–24], but also from PET and

fMRI studies [25, 26], which measured regional activation during visual motion stimuli. For

the present study, to elucidate neural substrates in conjunction with impaired visual motion

processing in AD patients, we studied ECD sources in AD patients and detected plausible sin-

gle ECD sources in posterior regions in 9 of 17 AD patients (52.9%). This report is the first of a

study of AM-evoked MEG potentials in AD patients. However, we failed to find different char-

acteristics of ECD sources between the AD and control groups. The dipole strength or peak

latency did not differ between the two groups. We were unable to draw any definitive conclu-

sions because of the small sample size. Further investigation with a larger sample must be done

to ascertain whether differences exist between normal elderly and AD patients in visually

Fig 5. Changes in gamma band activity (positive value means increase, 62.11–70.53 Hz, 170–200 ms after

stimulus). “AD treatment (+)” denotes patients treated with 5 mg of donepezil hydrochloride. “AD treatment (-)”

denotes AD patients with no drug treatment. Increases in gamma band activity in AD patient were greater than those

in the control group (t = 2.69, p = 0.011), although drug treatment has no significant effect on these changes (t = 0.52,

p = 0.612).

https://doi.org/10.1371/journal.pone.0266693.g005
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motion-evoked, extracellular current flow associated with massively summed postsynaptic

potentials.

From this MEG study, we obtained time–frequency maps averaged over each trial of AM

stimulation after Morlet wavelet transformation. Consistent with our hypothesis, we found ele-

vated induced gamma-band (60–80 Hz) activity in the AD group. Although the finding of

gamma band activity in AD patients remains controversial, this report is the first of a study

showing that AM stimuli induce the augmented activity in the gamma-band (60–80 Hz) in

early-stage AD patients. Using a considerably different analytical method (i.e., spontaneous

EEG oscillations), one earlier study demonstrated elevated gamma band EEG power in AD

patients, which was positively correlated with cognitive performance [12]. This earlier study

was unable to demonstrate the precise time course of gamma band activity because of the

methodological difference (i.e. they calculate the average power over a long interval). However,

consistent with our current results, this earlier frequency domain approach demonstrated the

possibility that cortical activities are preserved or that they are rather higher in AD. In contrast

to our current findings, one earlier study demonstrated decreased gamma band power in a

40-Hz steady-state response (SSR) paradigm in AD [27]. This result cannot be compared

directly with our current results because the generative mechanism of SSR differs from that of

induced gamma band activities. Actually, SSR is a sinusoidal response at the driving stimulus

frequency. It is elicited by simple auditory stimuli, which can be interpreted as a natural reso-

nance frequency of the brain and which can be related to primary sensory processing [28].

Lower synchronization of the global field gamma band oscillation in AD has been reported

from several earlier studies [29, 30]. This lower global field synchronization in the gamma

Fig 6. Time–frequency maps of correlation coefficient between visual stimulation induced power change in right hemisphere and Mini Mental State

Examination (MMSE) score or Wechsler Memory Scale-Revised (WMS-R) indexes in AD patients (n = 17). Red areas show positive correlation (correlation

coefficient> 0.5). Blue areas show negative correlation (correlation coefficient< - 0.5). Prominent positive correlation is found for the MMSE score and

WMS-R index for attention and concentration at around 200 ms after stimuli.

https://doi.org/10.1371/journal.pone.0266693.g006
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band is explainable by the loss of long distance cortico-cortical connections that characterize

AD because synchronization is a numerical property of the association between two or more

sensors. These results are consistent with the concept that gamma-band oscillation between

the neural networks is necessary for cortical information processing [31]. Our currently

obtained results do not contradict earlier results because the localized gamma band activity

recorded in each sensor can be elevated, reflecting the compensation mechanism for decreased

long-distance connectivity.

Gamma band activity has been thought to account for inhibitory–excitatory neuronal

dynamic alteration in terms of postsynaptic potentials in synchronously activated pyramidal

cells. It is well established that inhibitory interneuron networks play a prominent role in the

generation of gamma-band activity [32, 33]. The activation of these interneuron networks is

attributable to excitatory drive from pyramidal cells [10]. Although it remains unclear which

pathological mechanisms facilitate gamma band oscillations in AD, over-activation of both

inhibitory and excitatory neuron in AD patients seem to account for elevated gamma band

oscillations. In fact, recent reports have described that neuronal dysfunction in AD is associ-

ated with excitotoxic neurodegeneration [1–4]. Subsequent development of compensatory

inhibitory mechanisms also contributes to pathology in AD patients [7]. Results of a transgenic

mice study indicate this compensatory inhibitory mechanism in the hippocampus [8]. These

findings support the over-activation of both inhibitory and excitatory neuron in AD patients,

and also suggest that the compensating up-regulation of inhibitory neurons contributes to

neuronal resistance to the excite-toxic disease process in AD. In our current study, AD patients

who had higher gamma band activity after AM stimuli demonstrated higher performance of

MMSE and of a WMS-R index for attention and concentration. This positive correlation

might reflect the compensating mechanism of inhibitory neurons, which preserve pyramidal

neurons from excitotoxicity in the posterior association area.

Generally, event-related gamma-band activity has been thought to reflect ongoing cognitive

processes [11, 34–40]. Especially, the attention seems to play an important role in gamma

oscillations. Sokolov et al. (1999) demonstrated that the effects of attention to the stimuli are

specific to the gamma-band MEG activity after visual motion stimulation. The question arises

of whether elevated gamma band activity in AD patients found in our current study reflects

their deviated visual attention to the moving stimuli. Although all participants in our current

study were instructed to devote their attention to a green spot as a static fixation point, AD

patients might have allocated their attention to a moving bar instead of a fixation point because

of their distractibility by moving visual stimuli [41]. However, this assumption cannot explain

our results straightforwardly. Our study showed that AD patients who had higher gamma

band activity tend to show less severe deficit in cognitive performance, and accordingly seem

to be less likely to be distracted by moving visual stimuli. Further investigations using other

visual tasks that require various degrees of attentional effort and using eye-gaze tracking sys-

tems must be undertaken to draw definitive conclusions.

Abundant gamma activities are apparently specific to the early stage of AD because com-

pensative inhibitory mechanisms seem to operate at the onset of AD pathology, whereas loss

of such mechanisms might facilitate or be caused by further progression of AD pathology [7].

In addition, sparseness of neuronal networks in severe AD must result in a decrease in neural

oscillations. For better understanding of the underlying mechanisms which contribute to the

excess gamma-band activity in early-stage AD patients, additional studies must be conducted

using various cognitive tasks including AD patients with various degrees of disease severity.

Results of our current study suggest the great possibility of these gamma band analyses, at least

for early diagnosis of AD.
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This study has some limitations. First, we did not employ positron emission tomography

imaging or cerebrospinal fluid tests to ascertain whether amyloid beta and tau pathology are

present in the brain. Secondly, further studies with various types of dementia must be con-

ducted to ascertain conclusively whether the MEG findings in this study are specific for AD.

Thirdly, this study is a sensor-level analysis. Further study with source-level analysis for the

gamma band oscillations might enable us to identify brain regions that are specific for the

early diagnosis of AD.
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