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Support vector machine (SVM) is regarded as a powerful method for pattern classification. However, the solution of the primal
optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this
shortcoming, an improvedmodel, support vector machine with globality-locality preserving (GLPSVM), is proposed. It introduces
globality-locality preserving into the standard SVM, which can preserve the manifold structure of the data space.We complete rich
experiments on the UCI machine learning data sets. The results validate the effectiveness of the proposed model, especially on the
Wine and Iris databases; the recognition rate is above 97% and outperforms all the algorithms that were developed from SVM.

1. Introduction

In the past decades, support vector machine (SVM) [1] was
thought to be a powerful tool for classification tasks. It can
separate different classes by hyperplanes, which are deter-
mined by optimal directions and support vectors, while the
optimal directions are obtained by maximizing the margins
between each two classes. SVM and its variants [2–5] have
been successfully applied to many research areas such as face
detection and recognition [6], speech recognition [7], text
classification [8], and image retrieval [9].

It is well known that SVM is an optimization problem.
The optimal solution can be found by solving a quadratic
programming problem. Because the objective function is
convex, the global minimum solution is guaranteed. How-
ever, the traditional SVM solution is susceptible to class
distribution, whichmeans it is nonrobust to data samples. So,
in order to overcome this shortcoming, Zafeiriou et al. [10]
proposed a minimum class variance support vector machine
(MCVSVM), which was inspired by optimization Fisher’s
discriminant ratio. By taking the manifold structure of the
data space into consideration, Wang et al. [11] introduced
within-class locality preserving into SVM and proposed the
minimum class locality preserving variance support vector
machine (MCLPV SVM). Besides, since SVM deals with a

subset of data points (support vectors) rather than the entire
data set, so to some extent, SVM solution is based on “local”
characteristics of the data; therefore, Xiong and Cherkassky
[12] incorporated global discriminant information into SVM
and proposed the SVM+LDA. Analogously, Khan et al. [13]
presented a novel SVM+NDA (nonparametric discriminant
analysis) model for classification; it fused some partially
global information and local information. In particular, both
SVM+LDA and SVM+NDA can cope with the small sample
problem, which benefited from the construction method of
the models.

According to the above analysis, none of the mentioned
methods takes the manifold structure of the data space
into consideration, except the MCLPV SVM method, but
MCLPV SVM loses some discriminant information. In the
basic learning algorithms, the locality of learning data set
should be considered; in recent years, many excellent publi-
cations showed the importance of locality, such as [14–16]. It
is also important for finding the clusters in high dimensional
data set, such as [17, 18]. Recently, discriminant locality
preserving projections (DLPP) [19–21] is proposed, and it is
keen to find the subspace which can best discriminate differ-
ent classes by maximizing the locality preserving between-
class distances while minimizing the locality preserving
within-class distances. So, DLPP can not only preserve

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 872697, 6 pages
http://dx.doi.org/10.1155/2014/872697

http://dx.doi.org/10.1155/2014/872697


2 The Scientific World Journal

local structure, but also implicate discriminant information.
Inspired by DLPP, and considering that the mean sample
can reflect the characteristics of data structure, which is
also center-invariant in each class [22], this paper proposed
a novel learning algorithm, called support vector machine
with globality-locality preserving (GLPSVM). It introduced
globality and locality preserving ability into the SVM. The
proposed method preserves intrinsic manifold structure of
the data space, takes the class distribution into consideration,
and obtains a robust solution.

In summary, this paper is organized as follows. Section 2
gives a brief review of SVM. Section 3 gives the proposed
method, including derivation, solving, and analysis. The
experimental results are given in Section 4. Finally, conclu-
sions are in Section 5.

2. A Brief Review of SVM

Given a set of pairwise samples S = {(x
𝑖
, 𝑦
𝑖
)}

𝑛

𝑖=1
, where x

𝑖
∈

R𝑚 is a sample point in 𝑚-dimensional space and 𝑦
𝑖
∈ {+1,

−1} is the corresponding label. The direct way to separate
these samples into two classes is to find a separating hyper-
plane.

For the linearly separable case, the SVM model is as
follows:

minw
1

2

‖w‖

2

s.t 𝑦
𝑖
(w𝑇x
𝑖
+ 𝑏) ≥ 1, ∀𝑖 = 1, . . . , 𝑛.

(1)

By transforming this optimization problem into its corre-
sponding dual problem, the optimal discriminant vectors can
be found through

w =

𝑛

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
x
𝑖
, (2)

where 𝛼
𝑖
and x

𝑖
are the dual variable and data sample

(called support vector), respectively. The support vectors are
crucial for classification since removing these points may
change the solution of SVM. In SVM, the separable directions
are decided by the optimal discriminant vectors obtained
through (2). So, if we project the data into a feature space
spanning by the optimal discriminant vectors, then these data
will be separable in the feature space.

Usually, in real world applications, we need to deal with
the multiclassification cases, such as face recognition [6] and
text categorization [8]. In such cases, we need to extend
SVM to multiclass SVM. The general approach is to code
the classes according to a certain strategy, like one-against-
all (OAA) or one-against-one (OAO) [23]. The OAA coding
approach compares data in a single class with all the samples
in others classes to generate the decision boundary; in this
case, 𝑐-many decision boundaries are built for 𝑐-many classes.
The OAO strategy generates decision boundaries from all
possible pair of classes, which obtains 𝑐(𝑐 − 1)/2-many
decision boundaries. Comparatively, the OAO can obtain
more discriminant vectors than OAA but will cost more
computational time.

3. The Proposed GLPSVM

In this section, we will propose a novel support vector classier
which takes the class distribution into consideration, and
a robust solution is expected. Firstly, we will introduce the
definition of globality-locality preserving.

3.1. Globality-Locality Preserving (GLP). Discriminant local-
ity preserving projections (DLPP) [19–21] is a powerful
method for extracting themanifold structure of data samples.
Given a set of samples X = {x

𝑖
}

𝑛

𝑖=1
∈ R𝑚×𝑛, where x

𝑖
is

a sample point in 𝑚-dimensional space, and 𝑌 = {𝑦
𝑖
}

𝑛

𝑖=1
∈

R1×𝑛 is the corresponding labels. Let 𝑦
𝑖
∈ {+1, −1} and 𝐶 =

{𝐶
+
, 𝐶
−
}, and then all 𝑦

𝑖
= +1 label samples belonging to 𝐶

+

and the others belonging to 𝐶
−
. Thus, we have 𝑛 = 𝑛

1
+ 𝑛
2
,

where 𝑛
1
is the number of samples in𝐶

+
and 𝑛
2
is the number

of samples in 𝐶
−
. Suppose that T = {t

𝑖
}

𝑛

𝑖=1
∈ R𝑑×𝑛 is the

low-dimensional feature projections of X and DLPP tries to
maximize an objective function as follows:

𝐽 =

∑
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wherem
𝑖
andm

𝑗
represent the mean vectors of the projected

samples in the 𝑖th and 𝑗th class, respectively. 𝑊

𝑠

𝑖𝑗
and 𝐵

𝑖𝑗

are elements of the within-class weight matrix W and the
between-class weight matrix B defined as
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(4)

where N
𝑘
1

(x), N
𝑘
2

(u) denote local neighbors of x and u,
respectively, 𝑘

1
is the sample neighborhood, and 𝑘

2
is the

mean sample neighborhood. The parameters 𝜎
1
and 𝜎

2
are

empirically determined, and u
𝑖
is the mean vector of samples

in the 𝑖th class. Suppose w : X → T is a mapping from high-
dimensional data space to low-dimensional feature space;
that is, T = w𝑇X. Then, the objection function (3) can be
rewritten as follows:

𝐽 (𝑤) =

w𝑇UHU𝑇w
w𝑇XLX𝑇w

,
(5)

where U = [u
1
, u
2
], H and L are the Laplacian matrices [24,

25], H = D
𝑏
− B, B = [𝐵

𝑖𝑗
]

2

𝑖,𝑗=1
, D
𝑏
is a diagonal matrix and

its elements are column (or row) sums of B, L = D
𝑤

− W,



The Scientific World Journal 3

W is a block diagonal matrix, that is,W = diag {[𝑊

𝑠

𝑖𝑗
]

𝑛
𝑠

𝑖,𝑗=1
}

2

𝑠=1

,
and Dw is also a block diagonal matrix; each block of Dw is
a diagonal matrix and its elements are the column (or row)
sums of each block ofW.

Formula (5) is also called locality preserving discriminant
ratio (criterion); that is, DLPP is keen to find the feature sub-
space via maximizing this ratio, which means simultaneously
maximizing the locality preserving between-class distance
andminimizing the locality preserving within-class distance.

On the other hand, Huang et al. [22] had another view of
the weight matrix of DLPP, and they believe that the mean
sample is center-invariant in the same class, and it can reflect
the characteristics of data structure, so to some extent it
decides the accuracy in classification tasks. In this paper, we
preserve the structure information of mean samples, which
can to a large extent make up the loss of global information
when only local structure is preserved. In a word, we define
locality preserving matrix and globality preserving matrix as
follows:

(i) locality preserving matrix: Z
𝑤

= XLX𝑇,

(ii) globality preserving matrix: Z
𝑏
= UHU𝑇.

3.2. Derivation of GLPSVM. Now, we give the proposed
extension of SVM, calledGLPSVM. For the linearly separable
data, GLPSVM can be described as follows:

minw
1

2

w𝑇 (𝜆Z
𝑤

+ Z
𝑏
+ 𝛽I)w

s.t. 𝑦
𝑖
(w𝑇x
𝑖
+ 𝑏) ≥ 1, ∀𝑖 = 1, . . . , 𝑛,

(6)

where𝛽I represents the regularizationmatrix, which is added
to cope with small sample problems. This model not only
maximizes the margin of the separating hyperplane, but also
minimizes the scatter of the data in discriminant directions,
which benefited from taking both the locally manifold struc-
ture of the data space and globality manifold structure of the
mean sample space into consideration. Here, 𝜆 is an empiri-
cally determined key parameter which controls the tradeoff.

According to the model, we can see that the optimal
discriminant directions are no longer the same as classical
SVM. It is because that we introduce the obtained GLP to the
optimization model of SVM. The classification performance
of the proposed method will be shown in Section 4.

3.3. Solution to the GLPSVM. Similar to SVM, the proposed
model can be viewed as a quadratic optimization problem.
Lagrange’s method of undetermined multipliers is used to
solve this problem. Suppose 𝛼

𝑖
(𝑖 = 1, 2, . . . , 𝑛) is positive

Lagrange multipliers, and let Δ ≜ 𝜆Z
𝑤

+ Z
𝑏
+ 𝛽I, and then

the corresponding Lagrangian is

𝐿 (w, 𝑏, 𝛼) =

1

2

w𝑇Δw −

𝑛

∑

𝑖=1

𝛼
𝑖
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𝑖
(w𝑇x
𝑖
+ 𝑏) − 1] . (7)

Taking derivatives with respect to w and 𝑏, respectively, we
obtain

w = Δ
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𝑖
𝛼
𝑖
x
𝑖
,

𝑛
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𝑦
𝑖
𝛼
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(8)

Hence, we have the following dual problem:
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𝛼
𝑖
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𝑦
𝑗
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𝑗
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𝑖
Δ

−1x
𝑗
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𝑛

∑
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𝑦
𝑖
𝛼
𝑖
= 0, 𝛼

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛.

(9)

Suppose 𝛼∗ is the optimization solution of this dual
problem. Then, the optimal discriminant vectors w∗ can be
found as

w∗ =
𝑛

∑

𝑖=1

𝑦
𝑖
𝛼

∗

𝑖
Δ

−1x
𝑖
. (10)

So, the corresponding decision surface is

𝑔 (x) = sign (w∗𝑇x + 𝑏)

= sign(

𝑛

∑

𝑖=1

𝑦
𝑖
𝛼

∗

𝑖
x𝑇
𝑖
Δ

−1x + 𝑏

∗
) .

(11)

Finally, the corresponding optimal bias 𝑏

∗ can be calcu-
lated as

𝑏

∗
=

1

𝑛sv

𝑛 sv

∑

𝑖=1

(𝑦
𝑖
−

𝑛

∑

𝑗=1

𝑦
𝑗
𝛼

∗

𝑗
x𝑇
𝑗
Δ

−1x
𝑖
) , (12)

where 𝑛sv is the number of support vectors.
As can be seen, in linearly separable case, GLPSVM is

required to obtain a completely accurate decision hyperplane.
However, in real world applications, the decision hyperplane
no longer needs to be completely accurate, so we extend the
GLPSVM to soft margin situations.

3.4. Soft Margin GLPSVM. Reference [13] proposed the soft
margin method for SVM, to cope with cases when we do not
need to obtain a completely accurate decision hyperplane;
that is, we permit an error tolerability within limits.Then, the
soft margin GLPSVM can be described as follows:

minw
1

2

w𝑇 (𝜆Z
𝑤

+ Z
𝑏
+ 𝛽I)w + 𝐶

𝑛

∑

𝑖=1

𝜉
𝑖

s.t. 𝑦
𝑖
(w𝑇x
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
, 𝜉
𝑖
≥ 0, ∀𝑖 = 1, . . . , 𝑛,

(13)

where 𝐶 is a predefined positive real number and larger
values of 𝐶 correspond to higher penalty assigned to errors.
𝜉 = [𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
] is slack variables which reflect the degree

of misclassification. Apparently, the soft margin GLPSVM is
also a quadratic optimization problem, and we can solve it in
the same way as standard GLPSVM.
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Table 1: The effects of parameter 𝐶 and sample neighborhood 𝑘
1
on classification performance.

𝑘
1

10 20 30 40 50 60 70 80

𝐶 = 0.1 0.8207 0.8048 0.8008 0.8008 0.7888 0.7769 0.7888 0.7809
𝜎 = 2 1 2 0.5 0.5 2 1.5 2

𝐶 = 1 0.8884 0.8884 0.8964 0.8805 0.8765 0.8008 0.8207 0.8048
𝜎 = 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

𝐶 = 10 0.9323 0.9482 0.9044 0.9203 0.9323 0.9203 0.9084 0.8884
𝜎 = 2 0.5 2.5 0.5 2.5 1 0.5 0.5

𝐶 = 100 0.9402 0.9283 0.9402 0.9442 0.9402 0.9323 0.9482 0.9363
𝜎 = 1.5 2 1.5 1.5 2.5 0.5 1 0.5

Table 2: The effects of trade-off parameter 𝜆 on classification performance; let 𝜎
1
= 𝜎
2
= 2.

𝜆 0.2 0.4 0.8 1 1.2 1.4 1.6 2

𝐶 = 0.1 0.8048 0.8048 0.7849 0.8008 0.8088 0.7928 0.7928 0.8008
𝑘
1

40 30 30 10 50 20 90 10

𝐶 = 1 0.9441 0.7849 0.8167 0.8127 0.7968 0.7968 0.8008 0.8008
𝑘
1

10 10 20 20 10 30 10 10

𝐶 = 10 0.9203 0.8964 0.9004 0.9203 0.8845 0.8964 0.8884 0.8645
𝑘
1

30 30 10 20 10 10 10 10

𝐶 = 100 0.9283 0.9442 0.9243 0.9482 0.9203 0.9323 0.9283 0.9163
𝑘
1

50 20 20 20 30 20 20 10

Table 3: Database information for comparative analysis.

Database Number of sample Attribute Number of class
Breast 699 9 2
Heart 270 13 2
Pima 768 8 2
NewThyroid (NT) 215 5 3
Wine 178 13 3
Iris 150 4 3
Glass 214 9 6

3.5. Effective Algorithm for GLPSVM. Note that the objection
function of classical SVM is (1/2)w𝑇w; however, in this paper,
we use (1/2)w𝑇Δw for replacement. In fact, if we define some
relational expressions as follows:

w𝑟 = Δ

1/2w,

x𝑟
𝑖
= Δ

−1/2x
𝑖
, ∀𝑖 = 1, 2, . . . , 𝑛,

(14)

and then the GLPSVMmodel is equivalent to

min
w𝑟

1

2






w𝑟


2

s.t 𝑦
𝑖
(w𝑟𝑇x𝑟

𝑖
+ 𝑏) ≥ 1, ∀𝑖 = 1, . . . , 𝑛.

(15)

Then, we can find that the solution to GLPSVM can
be solved by standard SVM software package, but the opti-
mal discriminant vectors are different. Since we introduce
globality-locality preserving to SVM, the optimal discrim-
inant directions in GLPSVM can preserve the intrinsic

manifold structure of the data in low-dimensional feature
space. Besides, matrices Δ

1/2 and Δ

−1/2 can be calculated
through the eigenvalue decomposition of the matrix Δ; the
interested readers can refer to literature [13] for more details.

4. Performance Evaluation

4.1. The Parameters’ Influence on the Performance. In the
proposed model, there are totally six parameters; they are
the neighborhood parameters 𝑘

1
, 𝑘
2
and the heat kernel

parameters 𝜎
1
, 𝜎
2
in locality preserving matrix and globality

preserving matrix, respectively, and a trade-off parameter 𝜆

along with the regularization parameter 𝐶. In this section,
to show the parameters’ influence on the performance, we
do experiments on a binary ionosphere database. We select
30% of samples of each class for training, the rest of samples
are for testing, and all the samples are normalized before the
experiment.

For the parameters setting, the regularization parameter
𝐶 is selected from the set {0.1, 1, 10, 100}, the heat ker-
nel parameter 𝜎 is selected from the set {0.5, 1, 1.5, 2, 2.5},
the neighborhood parameter 𝑘

1
is selected from the set

{10, 20, 30, 40, 50, 60, 70, 80}, and the trade-off parameter 𝜆 is
set to {0.2, 0.4, 0.6, 0.8, 1, 1.2, 2}.

Firstly, we set the trade-off parameter to be 0.2 and
use the same heat kernel parameter (𝜎

1
= 𝜎
2

= 𝜎) to
see the effect of the parameters 𝐶 and 𝑘

1
. Table 1 shows

classification accuracy under different settings of these three
parameters. We can find that the regularization parameter
𝐶 plays an important role in classification performance.
Besides, appropriate parameter selection can provide better
classification results.
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Table 4: Classification accuracy for comparative analysis.

Database SVM SVM + LDA MCVSVM MCLPV SVM GLPSVM
Breast 0.8613 ± 0.0103 0.9572 ± 0.0063 0.9596 ± 0.0052 0.9658 ± 0.0045 0.9686 ± 0.0046
𝐶 = 1 𝑘 = 40 𝑘

1
= 40, 𝑘

2
= 1

𝑡 = 2 𝜎
1
= 𝜎
2
= 2

Heart 0.6912 ± 0.0352 0.8176 ± 0.0205 0.8235 ± 0.0186 0.8294 ± 0.0338 0.8471 ± 0.0243
𝐶 = 10 𝑘 = 50 𝑘

1
= 50, 𝑘

2
= 1

𝑡 = 2 𝜎
1
= 𝜎
2
= 2

Pima 0.6723 ± 0.0296 0.7689 ± 0.0158 0.7663 ± 0.0144 0.7689 ± 0.1023 0.7841 ± 0.0277
𝐶 = 10 𝑘 = 80 𝑘

1
= 80, 𝑘

2
= 1

𝑡 = 2 𝜎
1
= 𝜎
2
= 2

NT 0.6923 ± 0.0000 0.8965 ± 0.0157 0.8569 ± 0.0148 0.9496 ± 0.0144 0.9512 ± 0.0170
𝐶 = 100 𝑘 = 10 𝑘

1
= 10, 𝑘

2
= 2

𝑡 = 0.5 𝜎
1
= 𝜎
2
= 0.5

Wine 0.5714 ± 0.0275 0.9490 ± 0.0228 0.8163 ± 0.0126 0.9694 ± 0.0219 0.9796 ± 0.0207
𝐶 = 100 𝑘 = 20 𝑘

1
= 20, 𝑘

2
= 2

𝑡 = 2 𝜎
1
= 𝜎
2
= 2

Iris 0.9467 ± 0.0172 0.9713 ± 0.0139 0.9733 ± 0.0147 0.9333 ± 0.0140 0.9753 ± 0.0124
𝐶 = 1 𝑘 = 10 𝑘

1
= 10, 𝑘

2
= 2

𝑡 = 0.5 𝜎
1
= 𝜎
2
= 0.5

Glass 0.6508 ± 0.0179 0.7996 ± 0.0132 0.7967 ± 0.0098 0.9172 ± 0.2222 0.9402 ± 0.0219
𝐶 = 100 𝑘 = 4 𝑘

1
= 4, 𝑘

2
= 4

𝑡 = 0.5 𝜎
1
= 𝜎
2
= 0.5

Next, we will explore the effect of the trade-off parameter
𝜆. Table 2 presents the classification accuracy of GLPSVM
under different trade-off parameter 𝜆 and different regular-
ization parameter 𝐶. Here, we give the highest accuracy with
its corresponding sample neighborhood parameter 𝑘

1
. It can

be seen that the 𝜆 also plays an important role in classification
results and small 𝜆 may be more appropriate than large 𝜆.

4.2. Comparative Analysis. In this subsection, comparative
experiments are conducted to test the ability of the proposed
GLPSVM.We compare it with SVM, SVM+LDA,MCVSVM,
and MCLPV SVM on seven different databases selected
from the well-known UCI database. The seven databases
include three binary databases and four multiclass databases.
In the multiclass tasks, one-against-one coding strategy
is employed. The detailed information of these selected
databases is shown in Table 3. For all these databases, 30%
of samples in each class are randomly selected for training,
the remaining samples are used for testing, and all the data
samples are normalized before experiment.

Table 4 gives the classification accuracy of SVM,
SVM+LDA, MCVSVM, MCLPV SVM, and GLPSVM
under different regularization parameter, neighborhood
parameter, and heat kernel parameter, where the highest
average classification accuracy is presented. Here, the
average classification accuracy is obtained through repeating
the operation 20 times. It can be seen from Table 4 that
the proposed GLPSVM has always the highest accuracy,
especially on the Wine and the Iris databases. The accuracy
is more than 97%, far more than the other algorithms.

5. Conclusions

In this paper, a new extension of SVM was proposed,
which was called support vector machine with globality-
locality preserving (GLPSVM). It took the intrinsic manifold
structure of the data space into consideration. Besides, the
soft margin GLPSVM was also presented. The effective algo-
rithm of GLPSVM showed that the model could be solved
through transferring it to the standard SVM model and
using the standard SVM software package for solving, which
would greatly improve the implementation efficiency. Finally,
experimental results on real world databases validated that
the proposed method could have better performance than
SVM, SVM+LDA, MCVSVM, and MCLPV SVM.
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