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Abstract

Background: Chronic pain is frequently comorbid with depression in clinical practice. Recently, alterations in gut microbiota 
and metabolites derived therefrom have been found to potentially contribute to abnormal behaviors and cognitive dysfunction 
via the “microbiota–gut–brain” axis.
Methods: PubMed was searched and we selected relevant studies before October 1, 2019. The search keyword string included 
“pain OR chronic pain” AND “gut microbiota OR metabolites”; “depression OR depressive disorder” AND “gut microbiota OR 
metabolites”. We also searched the reference lists of key articles manually.
Results: This review systematically summarized the recent evidence of gut microbiota and metabolites in chronic pain 
and depression in animal and human studies. The results showed the pathogenesis and therapeutics of chronic pain and 
depression might be partially due to gut microbiota dysbiosis. Importantly, bacteria-derived metabolites, including short-
chain fatty acids, tryptophan-derived metabolites, and secondary bile acids, offer new insights into the potential linkage 
between key triggers in gut microbiota and potential mechanisms of depression.
Conclusion: Studying gut microbiota and its metabolites has contributed to the understanding of comorbidity of chronic pain 
and depression. Consequently, modulating dietary structures or supplementation of specific bacteria may be an available 
strategy for treating chronic pain and depression.
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Introduction
According to World Health Organization statistics, incidence 
rates of various pain symptoms range from 8% to 60% worldwide 

(Bair et  al., 2003). Epidemiological data indicate that approxi-
mately 65% of patients with pain have experienced depression 
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throughout their lifetime. Accordingly, patients with pain are 3 
to 5 times more likely to suffer from depression than pain-free 
patients, while the prevalence of depression corresponds with 
the degree of pain. Similarly, reports have shown that the preva-
lence of chronic pain among patients with depression was 51.8% 
to 59.1% (Mohr et  al., 2010; Hooten, 2016; Stubbs et  al., 2017). 
In fact, chronic pain and comorbid depression have been fre-
quently encountered clinically, while many studies have unrav-
eled the close association between chronic pain and depression.

There are 1014 to 1015 microorganisms in the large intestine, 
which is approximately equal to the number of eukaryotic cells 
in the human body (de Vos and de Vos, 2012; Lozupone et al., 
2012; Sender et al., 2016). Furthermore, some researchers have 
recognized gut microbiota as the second genome, which con-
tains 100 times the number of genes in the human genome 
(Bäckhed et al., 2005). Host genes associated with the microbial 
genome are dependent on the overall metabolic status, which is 
vital for physiological and pathological conditions in humans.

Many studies have suggested that dysbiosis and metabolite 
alterations are associated with chronic pain and depression 
(Foster and McVey Neufeld, 2013; OʼMahony et al., 2017; Russo 
et al., 2018). Fecal microbiota transplantation of germ-free mice 
with “depression microbiota” derived from patients with major 
depressive disorder (MDD) resulted in similar depression-like 
behaviours and dysbiosis as well as host metabolites disturb-
ance, especially for carbohydrate and amino acid metabolism 
(Zheng et  al., 2016). This suggests that dysbiosis may play a 
causal role in the pathogenesis of depression via its influence 
on the host’s metabolism. Importantly, our previous study re-
ported that anhedonia-susceptible rats had a significantly dif-
ferent gut microbiota composition compared with the sham or 
anhedonia-resilient rats who underwent spared nerve surgery 
(SNI) (Yang et al., 2019).

Taken together, the gut microbiota and its metabolites may 
be involved in the comorbidity of pain and depression. However, 
interactions between gut microbiota and host metabolism and 
their correlation with diseases remain ambiguous. The cur-
rent review aimed to summarize alterations in the gut micro-
biota and its metabolites in chronic pain and depression and 
explore potential mechanisms of dysbiosis in the development 
of pain and depression from a perspective of bacteria-derived 
metabolites.

The Role of Gut Microbiota in Chronic Pain 
and Depression

It is acknowledged that gut microbiota imbalance plays a major 
role in the etiology of chronic pain and depression. With the 
development and progress of 16S rRNA gene sequencing and 
macrogenomics technologies, understanding the composition 
and function of gut microbiota has become convenient. To this 
end, 27 related studies, including 17 depression-related and 10 
chronic pain-related preclinical and clinical studies, were en-
rolled. Subsequently, the major findings regarding gut micro-
biota during depression and pain will be discussed. The details 
of each study are shown in Tables 1 and 2.

Dysbiosis in Depression

Studies have reported that chronic social defeat stress (CSDS), 
chronic unpredictable mild stress (CUMS), and chronic variable 
stress  (CVS) could effectively mimic animal models of depres-
sion, which are frequently utilized in preclinical studies. We pre-
viously compared gut microbiota composition in a CSDS model 

wherein increased phylum Actinobacteria and decreased phylum 
Tenericutes as well as a higher abundance of genus Bifidobacterium 
and Butyricimonas were associated with depression susceptibility 
(Yang et al., 2017b). Moreover, ketamine’s effect on alleviating de-
pression may be attributed to the restoration of Bifidobacterium 
levels (Yang et  al., 2017a). Another study (Szyszkowicz et  al., 
2017) also found that mice susceptible to chronic social defeat 
displayed prominent changes within particular sets of bacteria 
at the phylum and genus taxonomic ranks. At the phylum level, 
Verrucomicrobia and Proteobacteria increased, whereas Chloroflexi 
decreased. Interestingly, changes in the mRNA expression of 
interleukin (IL)-1β and IL-6 within the prefrontal cortex were 
associated with elevated Flavobacterium levels and reduced 
Turicibacter levels, which were also strongly correlated with so-
cial avoidance severity. Moreover, McGaughey et al. (McGaughey 
et  al., 2019) demonstrated a reduction in Ruminococcus, Dorea, 
and Akkermansia and an increase in Prevotella and Parabacteroides 
among depression-susceptible animals. Meanwhile, further 
functional analyses predicted that an increase in Akkermansia 
was negatively related to G-protein-coupled receptors and be-
havior metrics in both anxiety and depression. Studies have 
also shown significant changes in Firmicutes and Bacteroidetes, 
indicators of gut microbiota “health,” among CUMS animals 
and patients with MDD. However, such studies have reported 
inconsistent changes in Firmicutes and Bacteroidetes, with 4 pub-
lications (Lin et al., 2017; Chen et al., 2018a; Rong et al., 2019; 
Taylor et al., 2019) showing increased Firmicutes and decreased 
Bacteroidetes in animals or patients susceptible to depression 
and others showing a higher proportion of Bacteroidetes and 
lower proportion of Firmicutes among patients with depression 
(Yu et  al., 2017; Huang et al., 2018; Jianguo et  al., 2019). These 
paradoxical results may be due to various factors, such as age, 
gender, severity of depression, complications, and drug use etc. 
Studies have also shown that other bacteria, including Alistipes, 
Oscillibacter, Blautia, and Faecalibacterium, were significantly asso-
ciated with depression severity (Naseribafrouei et al., 2014; Jiang 
et al., 2015; Yu et al., 2017; Taylor et al., 2019).

In summary, most studies have shown dysbiosis among 
patients with depression or rodents with depression-like be-
haviors. However, inconsistent changes in gut microbiota have 
been described among the studies. Overall, higher Bacteroidetes, 
Actinobacteria, and Verrucomicrobia as well as lower Firmicutes and 
Proteobacteria were observed in depressive subjects. At the genus 
level, Alistipes, Oscillibacter, Blautia, Akkermansia, Ruminococcus, 
Prevotella, and Lactobacillus were closely associated with the se-
verity of depression symptoms.

Dysbiosis in Chronic Pain

Currently, only 7 studies have investigated the association be-
tween chronic pain and gut microbiota. Although all such 
studies have indicated gut microbiota alterations among in-
dividuals with chronic pain, specific characteristics have re-
mained inconsistent. Our previous study reported higher 
Parcubacteria and lower Verrucomicrobia in neuropathic pain 
combined with anhedonia rats. Importantly, antibiotic-treated 
pseudo germ-free mice received fecal microbiota from rats with 
chronic pain with anhedonia showed similar hypersensitivity 
and anhedonia as the donor rats (Yang et al., 2019). Therefore, 
gut microbiota could have likely played a major role in pain 
and depression-like phenotypes. In addition, alterations in 
gut microbiota were also observed in a chronic pain model of 
vitamin D deficiency with an increase in Firmicutes and decrease 
in Verrucomicrobia and Bacteroidetes. Furthermore, changes in 
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gut bacterial composition were closely correlated with altered 
nociception and the endocannabinoid system in the spinal 
cord, suggesting that gut microbiota may be involved in the 
development of neuropathic pain induced by vitamin D de-
ficiency (Guida et al., 2019). It has been reported that changes 
in the composition and physiologic functions of gut microbiota 
were closely associated with the endocannabinoid system in 
gut, neuroinflammation in hippocampus, and depression-like 
symptoms in antibiotic-induced dysbiotic mice (Guida et  al., 
2018). In particular, substances including N-acylethanolamines 
and N-acylserotonins are capable of enhancing functions of 
endocannabinoid systems to ameliorate abnormal behaviors of 
visceral pain and depression in rodents (Navarria et  al., 2014; 
Bashashati et al., 2017). Thus, interactions between gut micro-
biota and the endocannabinoid system in chronic pain and de-
pression need further investigation.

Complex Regional Pain Syndrome (CRPS) is a common 
neuropathic pain induced by a variety of conditions such as 
injury, illness, or surgery. Accordingly, Reichenberger et  al. 
found more Proteobacteria and less Firmicutes in 16 patients with 
CRPS compared with 16 healthy controls (Reichenberger et al., 
2013). Interestingly, studies have shown that the abundance 
of Prevotella was correlated with the severity of inflammatory 
bowel disease-induced functional abdominal pain as well as 
pain among men with chronic prostatitis/chronic pelvic pain 
syndrome (Shoskes et al., 2016; Cruz-Aguliar et al., 2019). In add-
ition, a study on abdominal pain among the general population 
showed that gut microbiota composition, such as Akkermansia 
muciniphila, Blautia, Streptococcus, and Lactobacillus, was associ-
ated with the occurrence, frequency, duration, and intensity of 
abdominal pain (Hadizadeh et al., 2018). Functional gastrointes-
tinal disorder (FGID) often occurred in children with Autism 
spectrum disorder (ASD). Another study showed that ASD-FGID 
had significantly higher levels of several mucosa-associated 
Clostridiales but markedly lower levels of Dorea, Blautia, and 
Sutterella compared with healthy children (Luna et al., 2017).

Emerging data on chronic pain suggest that altered host–
microbe interaction may contribute to disease symptoms. Gut 
microbiota such as Prevotella in Bacteroidetes, Blautia in Firmicutes, 
Akkermansia muciniphila in Verrucomicrobia, and Lactobacillus 
tended to have a significant correlation with the severity and 
duration of chronic pain as well as depression.

The Role of Bacteria-Derived Metabolites in 
Chronic Pain and Depression 

To evaluate the relationships between depression and fecal 
metabolome, 16s rRNA gene sequencing technology combined 
with ultra-high-performance liquid chromatography-mass spec-
trometry based on metabolomics was used to explore changes in 
gut microbiota metabolites in depression. A  recent study found 
dysbiosis and fecal metabolite alterations in CUMS rats, while 
functional analysis demonstrated that fecal metabolome al-
terations occurred before changes in plasma metabolome and 
depressive-like symptoms. This seemingly suggests that fecal 
microbiota metabolites rather than blood metabolites possibly 
induce the pathogenesis of depression. Furthermore, several 
fecal and serum amino acids, such as alanine, serine, tyrosine, 
l-threonine, isoleucine, and oxidized proline, have demonstrated 
significant correlations with gut microbiota and behavioral in-
dices of depression, suggesting that gut microbiota amino acid 
metabolites contributed toward changes in circulating amino 
acids and depressive behaviors (Jianguo et al., 2019). Rat models of 

CVS-induced depression also showed dysbiosis, with lower amino 
acid and fatty acid levels and higher bile acid, hypoxanthine, and 
stercobilin levels. In addition, altered fecal metabolites, especially 
the metabolic compounds of tryptophan and bile acids, showed 
substantial associations with perturbed microbiota genera and 
severity of depression (Yu et al., 2017). Studies have reported that 
short-chain fatty acids (SCFA), such as acetate, butyrate, and pro-
pionate, have multiple beneficial effects in humans and may 
play important roles in the pathology of depression. Although 
Skonieczna-Zydecka and Zheng found that common intestinal 
bacteria metabolites, such as SCFA, were negatively correlated 
with the severity of depressive symptoms (sample size of 10 and 
58, respectively), Kelly et al. (Kelly et al., 2016) reported no differ-
ence in depressive patients (n = 34) (Zheng et al., 2016; Szyszkowicz 
et al., 2017). Apart from macrogenomics and metabolomics tech-
nologies, a comparative metaproteomics approach based on iso-
baric tags for relative and absolute quantification had been used 
to identify the host microbial signature in patients with MDD. The 
results showed that the relative abundance of Faecalibacterium 
was negatively correlated with the severity of depression and that 
carbohydrate and amino acid metabolism of fecal microbiota were 
important (Chen et al., 2018a). These findings were consistent with 
those presented in previous studies (Zheng et al., 2016; Ma et al., 
2019).

Regarding bacteria-derived metabolites in pain-related studies, 
further microbiome-neuroimmune profile analysis was utilized 
in ASD-FGID patients to find that cytokines and tryptophan me-
tabolites significantly increased in children with ASD and ab-
dominal pain. Importantly, these proinflammatory cytokines and 
trytophan metabolites were significantly correlated with several 
Clostridiales (Luna et al., 2017). Microbiome, serum metabolome, 
and circulating cytokines were studied in fibromyalgia patients, 
and the results demonstrated that Bifidobacterium and Eubacterium 
genera were reduced and glutamine as well as serine metabolism 
were altered. It suggests that microbiota associated with neuro-
transmitter metabolism would contribute to the pathogenesis of 
fibromyalgia (Clos-Garcia et al., 2019). Moreover, another study in 
female fibromyalgia patients showed that SCFA, especially bu-
tyrate and propionate, in the serum and butyrate-producing bac-
teria in Clostridium genera were highly associated with chronic 
pain syndrome (Minerbi et al., 2019). Also, fatty acid metabolism 
and nicotinate/nicotinamide metabolism were reported to serve 
as new therapeutic strategies for treating chronic pelvic pain 
(Braundmeier-Fleming et al., 2016).

The relationship between fecal metabolome and depression 
as well as chronic pain has mainly focused on common metab-
olites, such as SCFA, amino acids, and bile acids, which need 
further investigation in future studies.

Potential Mechanism of Bacteria-Derived 
Metabolites in Chronic Pain and Depression

Accumulating evidence has indicated that nutritional sub-
stances obtained from diet could be metabolized by microbiota 
into a set of small molecular chemicals, such as SCFA, indole 
and its analogues, and bile acids, which interact with various 
physiological and pathological pathways in the gut and distant 
organs, such as the brain.

Influences of Diet on Microbiota and Its Metabolites

Diet, a major source of diverse nutritional component, could 
rapidly alter the microbial composition in the host (David et al., 
2014; Kolodziejczyk et  al., 2019). On the contrary, alterations 
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in the microbiota and/or microbiome affect human health 
(Ursell et al., 2014; Sonnenburg and Bäckhed, 2016). The ultra-
high-performance liquid chromatography-mass spectrometry 
method was performed to compare the metabolomics between 
mice transplanted with human fecal microbiota and conven-
tional mice, and results showed that diet could remodel me-
tabolites profile of their host (Marcobal et al., 2013). Moreover, 
omega-3 polyunsaturated fatty acid deficiency in early life could 
significantly alter the gut microbiota composition, HPA-axis 
activity, and inflammation, thereby inducing neurobehavioral 
dysfunction related to cognitive dysfunction and depression 
(Robertson et al., 2017). However, little is known about the role 
of bacteria-derived metabolites on behavioral performances and 
central nervous system function.

Bacteria-derived metabolites are important energy sources 
for colonocytes and regulate a range of processes, such as in-
flammatory response, immune modulation, and neurotrans-
mitter synthesis, by acting on cell surface or nuclear receptors. 
Hence, we believe it is important to discuss the role of bacteria-
derived metabolites, including SCFA, amino acid-derived 

metabolites, and secondary bile acids, in the comorbidity of 
chronic pain and depression as well as potential mechanisms 
for their relationship.

Role of SCFA

SCFA, including acetate, butyrate, and propionate, are im-
portant immunomodulatory and antiinflammatory molecules 
in the intestine that show promising effects against various 
diseases, including pain, depression, and neurodegenerative 
disease (Unger et al., 2016; Freidin et al., 2018; Deng et al., 2019). 
Regarding inflammation, studies have shown that high levels of 
proinflammatory cytokines may be associated with the patho-
genesis of chronic pain and depression (Walker et  al., 2014; 
Leonard, 2015). We previously reported that abnormities in in-
flammatory cytokines increased susceptibility to chronic neuro-
pathic pain-induced anhedonia in a rat model of SNI (Yang et al., 
2019). Thus, SCFA produced from microbiota may play an im-
portant role in the pathogenesis of chronic pain and depression, 
primarily due to their antiinflammatory effects (an outline for 
SCFA synthesis and its effects is presented in Figure 1).

Figure 1. The effects of short-chain fatty acids (SCFAs) on chronic pain and depression. SCFAs indirectly affect the progression of chronic pain and depression by 

modulating intestinal inflammation and epithelial barrier function. They also directly impact the CNS by modulating energy metabolism, neuroinflammation, 

and blood–brain barrier (BBB) permeability via their receptors, transporters, and histone deacetylases (HDACs). DCs, dendritic cells; DRG, dorsal root ganglion; EC, 

enterochromaffin cell; FFAR 2/3, free fatty acid receptor 2 or 3; MCT1, monocarboxylate transporter 1; SMCT1, sodium-coupled monocarboxylate transporter 1; Tregs, 

regulatory T cells; ↑, increase; ↓, decrease.
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Role of SCFA in the Gut

Irritable bowel syndrome (IBS), which is characterized by periodic 
abdominal pain, is a common gastrointestinal tract disorder. IBS 
and depression comorbidity is a common phenomenon in clin-
ical practice, with co-occurrence rates of approximately 30% (Liu 
et al., 2016; Sibelli et al., 2016). The major risk factor for IBS was 
determined to be low-grade intestinal inflammation, which al-
ters gut microbes and gut barrier permeability (Yamamoto et al., 
2019). Microbial dysbiosis and gut barrier impairment enhance 
bacterial translocation and activation of the HPA axis, which is 
intrinsic to the pathology of depression (Zhuang et al., 2017).

SCFAs can promote antiinflammatory and immunoregulatory 
effects in different cells within the gastrointestinal tract. 
Accordingly, studies have shown that NLRP3 (NOD-, LRR-, and 
pyrin domain-containing protein 3) inflammasome in intestinal 
epithelial cells can be activated by SCFAs to enhance IL-8 se-
cretion and subsequently improves the epithelia barrier integ-
rity (Kalina et al., 2002; Macia et al., 2015). Moreover, germ-free 
mice transplanted with the Bacteroides thetaiotaomicron (acetate 
producer) could promote mucin production by goblet cells and 
maintain intestinal barrier integrity. Apart from intestinal epi-
thelia cells, SCFAs can directly target immune cells to regulate 
the inflammatory response. Accordingly, butyrate and propi-
onate block the genesis and differentiation of dendritic cells 
from bone marrow stem cells, which are responsible for immune 
dysfunction (Singh et  al., 2010). However, butyrate and propi-
onate but not acetate can potentiate the generation and differ-
entiation of antiinflammatory regulatory T cells via inhibiting 
HDAC, affecting the balance of pro- and antiinflammatory 
mechanisms (Arpaia et  al., 2013). Moreover, SCFAs can reduce 
the production of proinflammatory cytokines from lipopolysac-
charide (LPS)-activated neutrophils and macrophages via HDAC 
inhibition (Chang et al., 2014).

Overall, SCFAs can regulate inflammatory and 
immunomodulatory response via affecting immune cells in the 
intestine as well as potentiate epithelial barrier integrity by pro-
moting mucin secretion.

Role of SCFA in the Central Nervous System

More studies have reported that SCFA can impact the CNS through 
their effects on energy metabolism, neuro-inflammation, and 
the blood–brain barrier (BBB). To the best of our knowledge, only 
a few studies have investigated physiological concentrations of 
SCFAs in the brain or cerebrospinal fluid. Considering the rela-
tively low levels of SCFAs in peripheral blood, we can speculate 
that SCFA concentration in the brain is extremely low. Evidence 
for the presence of SCFAs in the brain has been derived from 
the fact that numerous transmembrane neuronal proteins, re-
ceptors, and transporters typically bind to SCFAs to influence 
brain processes. Importantly, SCFAs can affect brain func-
tion by stimulating the peripheral nervous system or immune 
system without affecting the brain. We thus discuss relevant 
data regarding receptors, transporters, and histone deacetylases 
(HDACs) in the CNS.

SCFA Receptors
SCFAs have been found to activate 4 G protein-coupled re-
ceptors, namely GPR43 (also called free fatty acid receptor 2, 
FFAR2), GPR41 (FFAR3), GPR109a (also called hydroxycarboxylic 
acid receptor 2, HCAR2), and GPR164 (also called olfactory re-
ceptor family 51; Olfr558 in mice) (Bolognini et al., 2016). SCFA 
receptors can be found in several cell types, including neurons. 

Studies have shown that both FFAR2 and FFAR3 are expressed 
in norepinephrinergic sympathetic neurons and that binding of 
these receptors to propionate enhanced norepinephrine release 
(Kimura et  al., 2011). Notably, recent findings have suggested 
that noradrenaline is extremely important for the inhibition 
of neuropathic pain and depression (Obata, 2017). Moreover, 
the main mechanism whereby antidepressants inhibit neuro-
pathic pain is the increase in noradrenaline in the spinal cord 
and activation of the impaired descending noradrenergic in-
hibitory system (Obata, 2017). Furthermore, Lal et al. found that 
butyrate could directly activate afferent vagus nerve fibers and 
that FFAR3 was present in mouse brainstem vagal ganglion, the 
effects of which may be mediated by butyrate receptors (Lal 
et al., 2001). Importantly, dysfunctional vagus nerve-induced in-
flammatory imbalance has been closely associated with the eti-
ology of chronic pain and depression (Chakravarthy et al., 2015; 
Kong et al., 2018). FFAR2 and FFAR3 had also been found to be 
expressed in dorsal root ganglia and trigeminal ganglia, which 
are necessary for pain transduction. The hypothalamus, a vital 
integration site during ascending pain transduction, has been 
identified to express HCAR2. Furthermore, HCAR2 upregulation 
in the substantia nigra of patients with Parkinson’s disease 
was responsible for the antiinflammatory and neuroprotective 
effects of the recently approved anti-multiple sclerosis drug 
dimethylfumarate (Chen et al., 2014; Fu et al., 2015; Offermanns 
and Schwaninger, 2015). Taken together, these studies suggest 
the potential mechanistic benefits of SCFA receptor activation in 
antiinflammation and pain transduction. However, considering 
the absence of studies directly investigating the role of SCFA re-
ceptors in pain and depression, further large-scale preclinical 
and clinical studies are urgently needed.

SCFA Transporters
SCFAs are transported across cell membranes with the help of 
H+-coupled monocarboxylate transporters (MCTs) and sodium-
coupled monocarboxylate transporters (SMCTs). Interestingly, 
the distribution of these transporters in the brain is cell-specific 
such that SMCT1 is found mainly in neurons and MCT1 is pre-
dominantly expressed in glia cells, including astrocytes, micro-
glia, and oligodendrocytes (Moreira et al., 2009; Lee et al., 2012). 
Under physiological conditions, MCTs and SMCTs are important 
for shuttling lactate and acetone bodies from astrocytes to the 
neurons for energy metabolism. Importantly, butyrate can be 
transferred from the circulation into glial cells and neurons to 
mediate direct effects in the brain (Vijay and Morris, 2014). In 
addition to monocarboxylates, these transporters play a critical 
role in brain drug delivery and can be blocked by nonsteroidal 
antiinflammatory drugs (Martin et  al., 2006; Vijay and Morris, 
2014). Hence, the relationship between these transporters and 
the pharmacological effects of antidepressants and analgesics 
remains to be clarified in the future. Interestingly, butyrate itself 
possesses the potential to maintain BBB integrity considering 
that colonization with butyrate-producing bacterium (Clostridium 
tyrobutyricum) and oral sodium butyrate administration (1000 mg/
kg for 3 days) could repair BBB leakage by increasing the expres-
sion of tight junction proteins (Braniste et  al., 2014). Given that 
only a few studies have investigated SCFA transporters in chronic 
pain and depression, further studies are warranted to elucidate 
underlying mechanisms and to determine contexts wherein SCFA 
transporters are beneficial for pain and depression.

Histone Deacetylase Inhibitors
Several lines of evidence have suggested that epigenetic fac-
tors, such as chromatin remodeling via histone methylation 
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and acetylation, play an important role in chronic pain and 
depression. In this regard, epigenetic alterations in genes re-
lated to neuroprotection (e.g., brain-derived neurotrophic factor 
[BDNF]), inflammatory response (e.g., tumor necrosis factor-α). 
and oxidative stress (e.g., reactive oxygen species) have been 
identified in patients with chronic pain and depression (Kauer-
Sant’Anna et al., 2009). Several studies have inferred that SCFA-
induced inhibition of HDACs increases histone acetylation, 
thereby exerting analgesic and antidepressant effects (Negrete 
et al., 2017; Qiao et al., 2019). Yamawaki and colleagues found 
that repeated sodium butyrate treatment (1.2 g/kg for 7 days) al-
leviated LPS-induced extension of immobility time during the 
forced swimming test, which was associated with decreased 
expression ionized calcium-binding adapter molecule 1 in 
the hippocampus through acetylation of histones H3 and H4. 
Moreover, 1 study showed that butyrate alleviated depressive 
symptoms by increasing BDNF levels in the prefrontal cortex via 
its potential to inhibit histone deacetylation (Yamawaki et al., 
2018). Although no direct evidence supports SCFA treatment for 
pain, HDAC inhibitors, such as trichostatin A, valproic acid, and 
suberoylanilide hydroxamic acid, were found to reverse C-fiber-
related hypoesthesia and morphine resistance in neuropathic 

pain after peripheral nerve injury (Matsushita et al., 2013). Thus, 
the association between nociceptive transduction and SCFAs 
and HDACs should be investigated in future studies.

Overall, SCFAs may contribute to pain and depression relief 
through their antiinflammatory and immunomodulatory prop-
erties. SCFAs can also improve epithelial barrier function by 
stimulating mucin production and promoting reassembling of 
tight junctions (Braniste et al., 2014). However, except for inflam-
mation, the underlying mechanism whereby SCFAs affect the 
comorbidity of chronic pain and depression remains unknown, 
thereby warranting further large-scale studies.

The Role of Amino Acid-Derived Metabolites

The gut microbiota is critical for the fermentation and ab-
sorption of amino acids derived from food or the host. Amino 
acid-derived metabolites have been considered important 
modulators in the pathogenesis of chronic pain and depres-
sion. Importantly, oral supplementation of specific amino acids, 
such as tryptophan, had protective and therapeutic effects on 
pain and depression. Hence, we will mostly discuss the role of 
tryptophan-derived metabolites in chronic pain and depression.

Figure 2. The effects of tryptophan-derived metabolites on chronic pain and depression. Aryl hydrocarbon receptor (AhR) ligands metabolized from microbiota can 

improve epithelial function by activating AhR and modulate overall immune homeostasis. Kynurenine (Kyn) and its derivatives promote the progression of pain 

and depression by modulating inflammation, neurotransmission, and immune response. Another important product of tryptophan is 5-hydroxytryptamine (5-HT), 

synthesized in the EMC by tryptophan hydroxylase 1 (TpH1), which can promote or protect against chronic pain and depression by activating different receptors. DCs, 

dendritic cells; DRG, dorsal root ganglion; EC, enterochromaffin cell; IDO1, indoleamine 2,3-dioxygenase; NMDAR, N-methyl-D-aspartic acid receptor; Tregs, regulatory 

T cells.
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Tryptophan

Tryptophan and tyrosine are 2 important elements for mood 
and emotion regulation given that they are precursors for sev-
eral monoamine neurotransmitters, including serotonin (tryp-
tophan) and dopamine, epinephrine, and norepinephrine 
(tyrosine) (Parker and Brotchie, 2011). Monoamine neurotrans-
mitter deficiency has been considered the major mechanism 
underlying the comorbidity of chronic pain and depression 
(Thor et al., 2007; Benson et al., 2015). Tryptophan is essential 
and should be supplied externally, mostly through dietary sup-
plementation. Accordingly, the World Health Organization re-
commends a daily tryptophan intake of 4 mg/kg. Three major 
pathways for tryptophan metabolism in the gastrointestinal 
tract exist: (1) several molecules metabolized from microbiota, 
including ligands for the aryl hydrocarbon receptor (AhR); (2) 
the kynurenine (Kyn) pathway via indoleamine 2,3-dioxygenase 
(IDO); and (3) 5-hydroxytryptamine (5-HT) synthesis via IDO 
(TpH1) (Agus et al., 2018) (an outline for tryptophan-derived me-
tabolite synthesis and its effects is presented in Figure 2).

AhR Ligand Pathway
Intestinal microorganisms can metabolize tryptophan into sev-
eral molecules, such as indole and its derivatives. Many indole 

derivatives, including indole-3-acid-acietic, indole-3-aldehyde, 
indo-3-propionic acid, and indoleacrylic acid, are ligands for 
AhR. AhR signaling plays an important role in maintaining in-
testinal homeostasis by acting on many immune cells to modu-
late barrier integrity and inflammatory response (Lamas et al., 
2018). AhR is a ligand-dependent transcription factor that me-
diates the expression of target genes, such as cytochrome P450, 
and a set of pro-/antiinflammatory cytokines. AhR deficiency or 
microbial dysbiosis has been shown to increase the severity of 
dextran sulfate sodium-induced colitis. In these models, AhR 
signaling dysfunction promotes colitis by decreasing the pro-
duction of IL-22, a cytokine with well-known effects on intes-
tinal homeostasis (Qiu et al., 2012; Zelante et al., 2013; Lamas 
et al., 2018). Moreover, reports have shown that oral supplemen-
tation of tryptophan or AhR ligand-producing Lactobacillus spp. 
can alleviate colitis symptoms, suggesting that tryptophan me-
tabolites have an important role in mucosal immune homeo-
stasis via AhR dependent IL-22 production. Notably, germ-free 
mice deficient in AhR agonists are susceptible to chronic stress 
and show anxiety and depression-like behaviors (Lukić et  al., 
2019). Our previous study also demonstrated that pseudo 
germ-free mice established using a broad-spectrum antibiotic 
cocktail presented lower mechanical withdraw threshold and 
sucrose preference loss (Yang et al., 2019). In this regard, we can 

Figure 3. The effects of bile acids on chronic pain and depression. Deoxycholic acid (DCA)/lithocholic acid (LCA) metabolized from primary bile acids (cholic acid [CA]/

chenodeoxycholic acid [CDCA]) by microbiota are absorbed in the terminal ileum and redirected into the portal vein. Bile acids can activate Takeda G-protein-coupled 

receptor 5 (TGR5) on the spinal neurons, inducing the release of opioids and histamine that transmit itch and analgesia. They also affect the CNS by activating farnesoid 

X receptor (FXR) in the neurons and TGR5 in glial cells, which modulate neuroinflammation, oxido-nitrosative stress, and brain-derived neurotrophic factor (BDNF) 

levels. DRG, dorsal root ganglion; ↑, increase; ↓, decrease.
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speculate that tryptophan deficiency- or intestinal dysbiosis-
induced alterations in the AhR signaling pathway, which lead 
to a reduction in antiinflammatory cytokines, might be involved 
in the pathogenesis of chronic pain and depression comorbidity. 
However, this remains to be validated in future studies.

Kyn Pathway

Tryptophan can be converted into Kyn and downstream prod-
ucts, such as quinolinic acid, niacin, nicotinamide adenine 
dinucleotide, and kynurenic acid, by the rate-limiting en-
zyme IDO (Cervenka et  al., 2017; Kennedy et  al., 2017). The 
gut microbiota plays a key role in modulating IDO activity, es-
pecially in germ-free and antibiotic-treated mice. Kyn and 
downstream products are implicated in numerous biological 
processes involving inflammation, neurotransmitter transmis-
sion, and immune response. Accordingly, studies have shown 
that patients with MDD had higher plasma Kyn concentra-
tions compared with healthy controls and that variations in 
Kyn concentrations were closely associated with the severity of 
MDD (Savitz, 2017; Kuwano et  al., 2018). Furthermore, a study 
using an LPS-induced depression model found that Kyn aug-
mented systemic inflammation-induced monocyte trafficking 
in an AhR-dependent manner, which mediated neuroimmune 
dysregulation and depression-like behaviors (Zang et al., 2018). 
On the contrary, pharmacological AhR blockade and circulatory 
monocyte clearance reversed the LPS and Kyn effects on depres-
sive symptoms, suggesting that the Kyn–AhR axis is important 
for immunoregulation and depression. Quinolinic acid, the end 
product of Kyn, is a neurotoxic N-methyl-d-aspartic acid re-
ceptor agonist that can directly contribute to depressive symp-
toms. Additionally, 1 study investigated IDO1 and Kyn levels in 
an SNI-induced pain and depression comorbidity model, with 
the results showing that neuropathic pain was closely associ-
ated with an increase in IDO1 and Kyn/tryptophan ratio in the 
liver but not the brain. Importantly, intrathecal IL-1 inhibitor 
IL-1RA reversed IDO1 levels in the liver, SNI-induced mechan-
ical hyperalgesia, and depressive symptoms (Zhou et al., 2015). 
These findings support the possibility that Kyn derived from 
tryptophan via IDO plays a vital role in the comorbidity of 
chronic pain and depression.

5-Hydroxytryptamine Pathway

Tryptophan produces 5-hydroxytryptophan through catalysis of 
tryptophan hydroxylase, which can be inhibited by several fac-
tors, such as stress, inflammation, or insulin resilience (Turner 
et al., 2006). 5-hydroxytryptophan is then metalized into 5-HT 
(or serotonin), which affects numerous physiological functions, 
notably mood regulation, once released into the synaptic cleft. 
Interestingly, approximately 90% of 5-HT is produced in the gut, 
particularly by enterochromaffin cells (ECs), through the enzyme 
tryptophan hydroxylase 1 (TpH1). This observation suggests that 
ECs have potential effects on mood disorders, such as depres-
sion and anxiety, due to their regulation of 5-HT availability 
(Yang et  al., 2018). Considering that the relationship between 
ECs and depression and chronic pain has rarely been studied, 
further studies are warranted to determine the role of ECs in 
the pathology of chronic pain and depression comorbidity. It is 
noteworthy that 5-HT cannot transverse the BBB under normal 
conditions, although ECs produce 90% of 5-HT in the gut (Martin 
et al., 2017; Lund et al., 2018). Furthermore, 5-HT3 receptor ac-
tivation has been associated with pain and depression via the 
modulation of GABA and DA release into the CNS (Davies, 2011). 

Moreover, tricyclic antidepressants and SNRIs have been regu-
larly used in treating chronic pain, such as neuropathic pain, 
partly due to the increase in 5-HT.

Overall, disturbed tryptophan metabolism in subjects with 
chronic pain or depression may be linked to abnormal inflam-
matory and metabolic processes, immune dysregulation, and 
neurotransmitter synthesis dysfunction. Hence, considering the 
complex and multifactorial relationship between tryptophan 
metabolites and comorbidity of chronic pain and depression, 
further studies are greatly needed.

The Role of Secondary Bile Acids

Bile acids, approximately 85% of bile, are important compo-
nents necessary for the emulsification and absorption of 
dietary fats. Bile acids are synthesized from cholesterol in 
the liver and thereafter metabolized into second bile acids by 
colonic bacteria through multiple and well-characterized en-
zymatic pathways (Lefebvre et al., 2009). Primary bile acids are 
the direct products of cholesterol metabolites in hepatocytes, 
such as cholic acid (CA) and chenodeoxycholic acid (CDCA). In 
response to cholecystokinin after feeding, primary bile acids 
are secreted by the liver into the small intestine to ensure as-
similation of dietary lipids. Accordingly, 95% of the bile acids 
are actively absorbed in the terminal ileum and redirected into 
the portal circulation to reenter the liver, whereas a small pro-
portion pass into the colon where they are transformed by bac-
teria into secondary bile acids—lithocholic acid, deoxycholic 
acid, and ursodeoxycholic acid—via deconjugation and 7α-
dehydroxylation (Hofmann and Hagey, 2008; Bajor et al., 2010) 
(an outline for bile acid synthesis and its actions is presented 
in Figure 3). Studies have demonstrated that bile acids exert 
widespread physiologic effects via the activation of specific 
receptors in the nucleus and plasma membrane (Lieu et  al., 
2014). These receptors can mediate diverse pathophysiological 
processes, including glucose homeostasis, inflammation, and 
sensory transduction. Receptor-recognizing bile acids include 
nuclear receptors, for example, farnesoid X receptor (FXR), 
preganane X receptor, and vitamin D receptor; and surface 
receptors, for example, G protein-coupled bile acid receptor 
(GPBAR1 or TGR5), sphingosine 1 phosphate receptor 2, and 
muscarinic receptors 2 and 3.  Nuclear receptors mediate 
the genomic effects of bile acids on glucose and lipid me-
tabolism, while surface receptors mainly mediate rapid and 
nongenomic actions of bile acids, such as sensory transduc-
tion and inflammation (Lieu et al., 2014). The remainder of this 
section focuses mainly on FXR- and TGR5-mediated signaling 
in pain and depression.

FXR ligand activation is essential for the pathogenesis 
of depression. A  recent study found that overexpression of 
hippocampal FXR through lentiviral gene modulation induced 
depression-like symptoms and decreased hippocampal BDNF 
expression in naïve rats. Moreover, knockout of hippocampal 
FXR completely prevented the effects of CUMS on depressive be-
haviors and BDNF expression (Chen et al., 2018b). This suggests 
that FXR plays a crucial role in the pathogenesis of depression via 
the modulation of BDNF levels. Similarly, tauroursodeoxycholic 
acid treatment could prevent LPS-induced depressive behaviors 
probably through the attenuation of neuroinflammation and 
oxido-nitrosative stress. Accordingly, the inhibition of glial nu-
clear factor-κB and activation of TGR5 in microglia have been 
revealed to mediate the effect of tauroursodeoxycholic acid on 
the production of proinflammatory cytokines (Yanguas-Casás 
et al., 2014).
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Bile acids have been well recognized for their critical role in 
the process and treatment mechanisms of pain. Although mor-
phine can be used to treat pain, chronic use thereof can induce 
several side effects, such as dependence, tolerance, immuno-
suppression, and gastrointestinal disorders, which limit their 
long-term use (Dominguez and Habib, 2013). However, the mech-
anisms underlying these side effects still remain unknown. 
A  recent study suggested that microbial dysbiosis and bile 
acid imbalance contributed to the aforementioned side effects 
in mice receiving chronic morphine treatment, while further 
analysis demonstrated a liner correlation between morphine-
induced microbial dysbiosis, bile acid dysregulation, gut barrier 
disruption, and systemic inflammation. This study also showed 
that microbiota transplantation and blockade of toll-like re-
ceptor 2/μ-opioid receptor signaling could restore gut homeo-
stasis altered by morphine (Banerjee et  al., 2016). Moreover, a 
study using a morphine dependence model revealed a signifi-
cant shift in gut microbiome and metabolome within 1  day 
after morphine treatment, particularly expansion of Enterococcus 
faecalis and reduction of deoxycholic acid, contributing to dele-
terious effects during short-term opioid use (Wang et al., 2018). 
This suggests that gut microbiota and bile acids play a vital role 
in the pharmacological effects of opioid analgesics. Moreover, 
bile acids are often used as adjuvants to pharmaceutical drugs 
to increase their solubility. Studies have found that the admin-
istration of methyl ester of monoketocholic acid potentiates the 
analgesic effect of morphine by increasing morphine transport 

into the CNS (Shiffka et al., 2017). Lidocaine administration with 
cholic acids and its keto derivatives in rats has also been re-
ported to increase the duration of local anesthesia (Posa et al., 
2007). This analgesic effect of bile acids is assumed to be asso-
ciated with their membrane-stabilizing action (Horváth et  al., 
2016).

Interestingly, bile acids themselves can modulate pain per-
ception and sensory transduction. Patients with cholestatic liver 
disease exhibited severe pruritus and analgesia, which were 
probably mediated by TGR5 activation on sensory nerves, re-
sulting in the release of neuropeptides, including opioids and 
histamine, in the spinal cord that transmit itch and analgesia. In 
this study, intrathecal and intraplantar bile acids and selective 
TGR5 agonists induced hypersensitivity of DRG neurons and 
scratching behaviors, while these symptoms were absent from 
Tgr5-KO mice (Dawson and Karpen, 2014). Admittedly, bile acids 
are crucial chemical molecules involved in the pain process. 
Visceral hypersensitivity in IBS has also been reported to be as-
sociated with colonic bile acid aggregation, which involves the 
FXR-nerve growth factor–transient receptor potential vanilloid 1 
axis (Li et al., 2019).

In summary, bile acids are key signaling molecules involved 
in the pathogenesis of pain and depression. Although the mech-
anisms through which bile acids affect comorbidity of pain and 
depression remain unclear, further studies on the role of bile 
acids in the pathogenesis and treatment mechanisms of pain 
and depression are greatly needed.

Figure 4. Overview of “microbiota-gut-brain” axis in chronic pain and depression. AhR, aryl hydrocarbon receptor; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, 

deoxycholic acid; EC, enterochromaffin cell; FFAR 2/3, free fatty acid receptor 2 or 3; FXR, farnesoid X receptor; HDAC, histone deacetylase; 5-HT, 5-hydroxytryptamine; 

LCA, lithocholic acid; NMDAR, N-Methyl-D-aspartate receptor; SCFA, short-chain fatty acids; TGR 5, Takeda G-protein-coupled receptor 5.
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Conclusions

Both animal and human studies have revealed that alterations in 
gut microbiota and their metabolites can directly and indirectly 
affect neuroinflammation and neuro-immunity in the onset and 
transduction of pain and depression (the overview of gut micro-
biota and its metabolites in chronic pain and depression is shown 
in Figure 4). This review has focused on 3 classes of metabolites, 
namely SCFAs, amino acid-derived metabolites, and bile acids, 
which can act on epithelial and immune cells to modulate gut 
barrier permeability and inflammation, thereby indirectly af-
fecting the progression of pain and depression. In addition, these 
substances are capable of crossing the epithelial barrier into the 
circulation, thus modulating distant organs, such as the brain and 
spinal cord, by activating or inhibiting specific receptors therein. 
In view of this, we are certain that more complete knowledge on 
the relationship between the microbiota and its metabolites will 
be crucial for the development of new treatment modalities for 
relevant diseases. Consequently, modulating dietary structures 
or supplementation of specific bacteria may be a new strategy to 
address chronic pain and depression. In addition, probiotics have 
been reported to alleviate stress and its related disorders such 
as anxiety and depression (Bercik et al., 2010; Slyepchenko et al., 
2014; Wan and Jena, 2019). Future studies are required to investi-
gate whether supplementation of specific deficient bacteria and 
its derived metabolites could provide a new therapeutic strategy 
to prevent and treat chronic pain and depression.
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