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Abstract

Given the chronic inflammatory nature of Parkinson'’s disease (PD), T cell immunity may be important for disease onset.
Here, we performed single-cell transcriptome and TCR sequencing, and conducted integrative analyses to decode
composition, function and lineage relationship of T cells in the blood and cerebrospinal fluid of PD. Combined
expression and TCR-based lineage tracking, we discovered a large population of CD8" T cells showing continuous
progression from central memory to terminal effector T cells in PD patients. Additionally, we identified a group of
cytotoxic CD4™ T cells (CD4 CTLs) remarkably expanded in PD patients, which derived from Th1 cells by TCR-based
fate decision. Finally, we screened putative TCR-antigen pairs that existed in both blood and cerebrospinal fluid of PD
patients to provide potential evidence for peripheral T cells to participate in neuronal degeneration. Our study
provides valuable insights and rich resources for understanding the adaptive immune response in PD.

Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder in the aging population after
Alzheimer’s disease. PD is characterized by the loss of
dopaminergic neurons in substantia nigra, leading to
severe and progressive dyskinesia, including bradykinesia,
rest tremor, rigidity and a variety of non-motor symp-
toms, such as disorders of mood, affect with apathy, and
cognitive dysfunction'. It is estimated that PD affects one
percent of the population over the age of 60 years™>.
Overall, more than 10 million people worldwide have PD*,
and 80% of PD patients will eventually develop dementia®.

Correspondence: Qinghua Jiang (ghjiang@hitedu.cn)

'School of Life Science and Technology, Harbin Institute of Technology,
Harbin, Heilongjiang, China

’Department of Neurology, First Affiliated Hospital of Harbin Medical
University, Harbin, Heilongjiang, China

Full list of author information is available at the end of the article
These authors contributed equally: Pingping Wang, Lifen Yao

© The Author(s) 2021

Increasing studies suggest that immune system dys-
function plays important roles in the pathogenesis of PD,
including clinical and genetic associations with auto-
immune disease, cellular and humoral immune dysfunc-
tion, imaging evidence of inflammatory cell activation and
immunomodulatory disorders in experimental models of
PD®®. This complex disease is likely of autoimmune
origin, but many questions remain unanswered despite a
vast amount of available literature. On the one hand,
several studies have reported the alteration of the per-
centage of peripheral blood T cells in PD patients'’, but
the relative contribution of each cell subtype to the dis-
ease etiology remains unclear'®. On the other hand, CD8"
and CD4" T cells were reported to invade the brain in
both postmortem human PD specimens and in the mouse
model of PD”!!, but the composition and interaction of T
cell subtypes in human peripheral blood and cere-
brospinal fluid and their potential ability to infiltrate the
central nervous system remain unclear.
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Single-cell RNA sequencing has emerged as a powerful
technology for studying the heterogeneity of complex
tissues, which provides higher resolution of cellular dif-
ferences and reveals important functional insights that are
masked in bulk analysis of cell populations'*'?. Single-cell
T cell receptor (TCR) sequencing provides TCR sequen-
ces for each cell'*. The same TCR sequences indicate T
cell clonal expansion patterns and T cell lineages, which
are pivotal for recognizing endogenous and exogenous
antigens presented by the major histocompatibility com-
plex (MHC)". Recently, single-cell transcriptome and
TCR sequencing has been applied to analyze immune
cells in patients with Alzheimer’s disease and multiple
sclerosis, revealing T cell expansion signatures and their
relationship with nervous system inflammation'®"”.
Large-scale single-cell sequencing of lymphocytes may
help us to better understand the adaptive immune
response in PD.

Given the chronic inflammatory nature of PD, T cell
immunity may be important for disease onset. Here, we
used single-cell transcriptome and TCR sequencing to
systematically characterize the composition, function and
lineage relationship of T lymphocytes in the blood and
cerebrospinal fluid (CSF) of PD. In total, 21 T cell subsets
with distinct functions were identified from 103,365
T cells. Integrative analyses of single-cell gene expression
and TCRs revealed connectivity and potential differ-
entiation trajectories of these subtypes and provided novel
evidence of clonal expansion of T lymphocytes patrolling
in the blood and cerebrospinal fluid of PD. This unpre-
cedentedly large-scale transcriptome and immune profil-
ing data of T cells can be used as a valuable resource for
studying the basic characteristics of PD and potentially
guiding effective immunotherapy strategies.

Results
Single-cell transcriptome and TCR sequencing of T cells in
PD patients and healthy controls

We conducted a comprehensive analysis of single-cell
transcriptome and TCR profiling of T cells in the blood
and cerebrospinal fluid of PD patients (Fig. 1la). Fresh
blood samples were collected from 8 PD patients and 6
healthy controls. CD3" T cells were sorted by flow cyto-
metry, and single-cell 5 gene-expression and V(D)]
libraries were prepared on the 10x platform (10x Geno-
mics, CA, USA). Another 7 single-cell datasets from
healthy controls were downloaded from publicly available
datasets (Supplementary Table S1). In addition, publicly
available single-cell immune profiling datasets from CSF,
including 6 PD patients and 9 healthy controls'®, were
compared to better understand clonal expansion of lym-
phocyte T cells in PD. In total, we obtained single-cell
transcriptome data for 103,365 T cells and single-cell
TCR sequencing data for 113,690 T cells, of which 84,384
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cells have both gene expression and TCR profiling data
(Supplementary Table S1).

T cells exhibit a specific composition and transcriptome in
PD

To reveal the internal structure and potential functional
subtypes of the entire T cell population, we used a graph-
based clustering approach implemented in Seurat'®'? to
perform unsupervised clustering of all T cells. T cells were
visualized in 2D space using uniform manifold approx-
imation and projection (UMAP) based on the gene
expression profiling. In total, we identified 21 distinct
clusters representing different cell types, including 11
clusters for conventional CD4" T cells, 2 clusters for
regulatory CD41 T cells, 5 clusters for CD8" T cells, 1
gamma delta T cell cluster, 1 MAIT cell cluster and 1
double-negative T cell cluster (Fig. 1b). Cell types were
manually annotated by assessing the expression of classic
marker genes and their expression similarity with purified
bulk RNA-seq datasets**~>* (Fig. 1c; Supplementary Fig.
S1). Five major cell types, including CD8" T cells (CDS8),
CD4" T cells (CD4), mucosal associated invariant T cells
(MAIT), gamma delta T cells (gdT) and double-negative
T cells (DNT), were highlighted in Fig. 1d.

Regarding CD4" T cells, 3 clusters (C2, C4 and C8
clusters) were annotated as naive CD4" T cells char-
acterized by naive T cell markers SELL, CCR7, TCF7 and
LEF1; C1, C9, C7, C12 and C19 were separately annotated
as central memory CD4" T cells, classic Th1, Th2, Th17
and Tth cells, respectively, based on correlation analysis
with bulk RNA-seq datasets of purified immune cells**~>*
(Supplementary Fig. S1a); C13 was annotated as cytotoxic
CD4" T cells (CD4 CTL) with high expression of CD4
and cytotoxic genes GZMA, GZMB, PRF1 and NKG7;
C17 and C18 were annotated as regulatory CD4" T cells
with high expression of Treg markers FOXP3, CTLA4,
TIGIT and IL2RA; C20 and C21 were not assigned to
specific CD4" T cell types due to insufficient evidence
(Fig. 1¢; Supplementary Fig. S1).

For CD8™" T cells, the C5 cluster was annotated as naive
CD8" T cells that highly expressed naive cell markers
SELL, CCR7, TCF7 and LEF1; 2 clusters (C6 and C11)
were annotated as terminal effector CD8" T cells char-
acterized by effector markers, such as GZMA, GZMB,
PRF1, NKG7; C3 cluster was annotated as transitional
CD8" T cells with high expression of the transitional
marker gene GZMK™’; the C15 cluster was annotated as
central memory CD8" T cells (Tcy) with high expression
of Tcm markers CD27, SELL and CCR7 (Fig. 1c; Sup-
plementary Fig. S1).

The remaining T cells formed 3 clusters, including
1 gamma delta T cell cluster, 1 MAIT cell cluster and 1
double-negative T cell cluster. C10 was annotated as Vd2
gamma delta T cells, in which 93% of the cells exhibited
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Fig. 1 Single-cell transcriptome profiling of T cells. a Overview of experimental design. CD3" T cells from the blood of 8 PD patients and 6
healthy controls were sorted by FACS and simultaneously subject to single-cell transcriptome and immune sequencing with 5" V(D)J capture. Single-
cell TCR data from cerebrospinal fluid were downloaded from GEO with accession ID GSE134578. Batch effect correction and unsupervised clustering
were performed after merging single-cell datasets. b UMAP projection of 103,365 single T cells, showing 21 clusters. Each dot corresponds to one cell
and is colored according to cell cluster. ¢ Dot plot shows the expression of marker genes for 21 cell clusters. The size of the dot corresponds to the
percentage of cells expressing the gene in each cluster, and the color represents the average log normalized gene expression. Markers were ordered
to visualize the differences between cell types. d UMAP projection of T cells colored by the 5 major T cell types, including CD8" T cells (CD8), CD4™
T cells (CD4), mucosal-associated invariant T cells (MAIT), gamma delta T cells (gdT) and double-negative T cells (DNT). e Pie charts showing the
percentages of the five major T cell types in the blood of PD patients and healthy controls. For each cell type, the percentage was obtained by
dividing the number of cells in that cell type by the total number of cells in all PD patients or in all healthy controls. f Barplot showing the
percentages for different T cell types identified from single cell analysis. Error bars represent standard error of the mean.

high gene expression of TRDV2 and TRGV9 and afTCR
was not detected in 93% of the cells (Supplementary Table
S2). In total, 69% of the cells from C10 were annotated as
Vd2 gd T cells by purified bulk RNA-seq datasets Monaco
et al?! (Supplementary Fig. S1). C16 was annotated as
double-negative T cells, in which more than 60% of the
cells express neither CD4 nor CD8 (Supplementary Fig.
S1). C14 was annotated as MAIT cells with absolute

superiority of the recombination ratio of TRAV1-2 and
TRAJ33 gene segments in the TCRa chain; moreover,
correlation analysis also revealed the closest similarity to
purified MAIT cells from Monaco et al.*' (Fig. 1c; Sup-
plementary Table S2 and Fig. Sla).

To understand whether PD patients follow the reported
T lymphocyte changes'’, we compared the proportion of
CD4" T cells and CD8" T cells in the blood between PD
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patients and healthy controls. Among the identified cell
types in our single-cell transcriptome analysis, the pro-
portion of CD8" T cells was significantly increased in the
blood of PD patients compared to healthy controls (¢-test,
P-value = 0.018), whereas the proportion of CD4" T cells
significantly decreased (t-test, P-value = 0.014) (Fig. le, f).
The overall CD4/CD8 ratio in PD patients (ratio = 1.66)
was significantly reduced compared with healthy controls
(ratio = 2.44) (t-test, P-value = 0.0048). Published studies
have shown that the CD4/CDS8 ratio in the peripheral
blood of healthy adults is approximately 2:1, and an
altered ratio is indicative of diseases that are associated
with the immunodeficiency or autoimmunity®®~>%, Sig-
nificant decrease in the CD4/CD8 ratio may indicate an
immune disorder in PD.
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Clonally expanded T cells in the blood and CSF of PD

To gain insight into the clonal expansion of T cells in
PD, we performed comparison analysis for scTCR-seq
data from PD patients and healthy controls. Cells with the
same CDR3 sequences for both the TCR a-chain and
B-chain were defined as the same clonotype. We detected
113,690 cells from single-cell TCR sequencing data,
forming 87,832 unique clonotypes, in which 4458 clono-
types contained at least two cells, indicating the clonal
expansion of T cells (Supplementary Table S5). T cell
diversity in the blood was significantly lower in PD
patients compared with healthy controls (¢-test, P-value
= 6.87E—3, Fig. 2a). The number of clonotypes with the
same clone size was significantly increased in PD patients
compared with healthy controls (100 random sampling
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Fig. 2 Single-cell immune profiling of T cells. a Blood TCR diversity comparison between PD patients and healthy controls. TCR diversity was
measured by D50, which is proven robust for the sequencing library size. P value was estimated using two-sided Wilcoxon test. b The association
between the number of T cell clonotypes and the number of cells per clonotype. Downsampling was used to avoid bias caused by the total number
of detected T cells between PD patients and healthy controls. The dashed line separates nonclonal and clonal cells, with the latter identified by
repeated usage of aBTCRs. P value was estimated using paired samples Wilcoxon test. ¢ UMAP plot showing the distribution of clonally expanded
T cells. Each dot represents a unique clonotype in a T cell cluster, and the coordinates are the average coordinates of the cells belonging to this
clonotype. The color and size of the dot both reflect the clone size in each cluster. d Clonal composition of T cells in samples. The top panel shows
the distribution of clonotypes by size (NA, =1, =2, 220 and >100 cells, NA represents cells with no a3TCR sequence detected). The bottom pie charts
show the cell type composition of clonotypes from each sample stratified by clone size.
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tests, median P-value =5.98e—7, Fig. 2b). These results
indicate the existence of T cell clonal expansion in the
blood of PD patients.

In CSF, T cell diversity was slightly reduced in PD
patients compared with healthy controls, and the statis-
tical P-value was not significant, which may be due to the
small number of detected cells and the small number of
samples (¢-test, P-value = 0.076, Supplementary Fig. S2a).
However, the number of clonotypes with the same clone
size was significantly increased in the CSF of PD patients
compared with healthy controls (100 random sampling
tests, median P-value =6.25e—3, Supplementary Fig.
S2b). And, the percentage of T cells with clone size > 2
was significantly increased in the CSF of PD patients
compared to healthy controls (¢-test, P-value =0.033,
Supplementary Fig. S2c). These results suggest that T cell
clonal expansion also occurs in CSF of PD patients.

Clonally expanded T cells were widely distributed in
each cluster, especially in CD8" T cells (Fig. 2c). T cell
composition distributed by clone size (NA, =1, >2, >20,
>100, NA means no TCR detected in these cells) in each
blood sample is shown in Fig. 2d. The percentage of
T cells with clone size 22 and =100 were significantly
increased in the blood of PD patients compared with
healthy controls (t-test, P value =0.0030 and 0.0074,
respectively) (Fig. 2d). We observed that cell type com-
position in each sample varied by clone size (Fig. 2d).
T cells without afTCR detected in scTCR-seq were
mainly Vd2 gd T cells, while the clonotypes containing
only one cell were mainly naive CD4" T cells (Fig. 2d).
Larger clonotypes exhibited a nonuniform distribution of
cell types with an enrichment for transitional and terminal
effector CD8" T cells (Fig. 2d).

Clonal linkage of CD8™ T cells form a gradient of
transcriptional states in PD

We performed in-depth analysis of CD8" T cells across
all PD patients and healthy controls. Interestingly, CD8"
T cells exhibited a nonuniform distribution of functional
states with significant enrichment for terminal effector
CD8" T cells (C6 cluster, t-test, FDR=0.015) and
depletion of naive CD8" T cells (C5 cluster, ¢-test, FDR =
0.012) in the blood of PD patients (Fig. 3a). The expression
of signature genes fluctuated significantly in these five
CD8™" T cell clusters, and terminal effector CD8"' T cells
exhibited wider and higher expression of cytotoxic genes
(Fig. 3b). Fisher’s exact test showed that clonally expanded
T cells in PD patients were significantly enriched in
transitional and terminal effector CD8" T cells, especially
in C3 and C6 clusters (Fisher’s exact test, FDR = 1.10e-46
and 1.02e-8, respectively).

To further understand the relationships among CD8" T
cell clusters, we used diffusion maps to visualize these cells
on a pseudotime trajectory (Fig. 3c). Interesting, the first
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diffusion component separated central memory cells from
activated CD8" T cells and was highly correlated with
cytotoxic-related genes, such as GZMH, PRF1, FGFBP2, as
well as proteins regulating cell migration and adhesion,
such as CX3CR1, and ADGRG1 (Fig. 3c; Supplementary
Fig. S3a—b). The second diffusion component showed two
different differentiation directions of terminal effector
CD8" T cells (Fig. 3c). The upper branch (C6 cluster) was
highly correlated with cell adhesion proteins, such as
ITGAM and ITGBI, and the tissue-resident T cell tran-
scription regulator protein ZNF683 (encodes for Hobit),
whereas the lower differentiation branch (C11 cluster) was
highly correlated with killer-like receptors, such as KLRC3
and KLRF1, and killer cell immunoglobulin-like receptors,
such as KIR2DL3 and KIR3DL2 (Fig. 3c; Supplementary
Fig. S3c, d).

To further understand the functional differences
between terminal effector CD8" T cells, we analyzed dif-
ferentially expressed genes between the upper and lower
differentiation branches (C6 and C11 clusters) (Supple-
mentary Fig. S3e). The upper branch (C6 cluster) highly
expressed cell adhesion and migration genes, such as
ITGAM, ITGB1, CD226 and S100A4; T-cell activation and
proliferation markers, such as CD52 and S100A6; and
tissue-resident T cell transcription regulator protein
ZNF683 (Hobit) (Supplementary Fig. S3e). The KEGG
pathway analysis results revealed that the C6 up-regulated
genes were highly associated with cell adhesion molecules
(KEGG: hsa04514, FDR = 0.0015) and leukocyte transen-
dothelial migration (KEGG: hsa04670, FDR = 0.0047)
(Supplementary Fig. S3f), suggesting that these cells may
be involved in tissue immunity. Genes related to cell
survival and cytotoxic function, such as PRSS23%,
SPON2*° and ZNF683 (Hobit)*"*?, were also highly
expressed in the C6 cluster (Fig. 3b; Supplementary Fig.
S3e). The lower branch (C11 cluster) highly expressed
genes enriched in the natural killer cell-mediated cyto-
toxicity pathway (KEGG: hsa04650, FDR =2.78e—10,
Supplementary Fig. S3g), including killer-like receptors
KLRC3, KLRF1, and KLRB1 and killer cell
immunoglobulin-like receptors KIR3DL1, KIR3DL2 and
KIR2DL3 (Supplementary Fig. S3e). This group of CD8"
T cells functioned more like nonclassical NKT cells®.

Moreover, the sample composition distribution of the
cells in diffusion trajectory reveals that the proportion of
CD8" T cells in the blood of PD patients gradually
increased with the process of differentiation, especially in
the upper differentiation branch (Fig. 3d). Larger clono-
types tend to be located at the end of the effector branch
(Fig. 3e). A process of transformation from central
memory CD8" T cells (C15 cluster) to transitional CD8"
T cells (C3 cluster) followed by terminal effector CD8"
T cells (C6 cluster) in the blood of PD patients (Fig. 3d) is
clearly observed. The distribution of T cell clonotypes
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Fig. 3 Relationship among CD8" T cell clusters based on both transcriptome and TCR data. a Percentage of CD8" T cells in each sample
shows reduction of naive CD8" T cells (C5 cluster) and expansion of terminal effector CD8" T cells (C6 cluster) in the blood of PD patients. b Dot plot
shows the expression of the Top 5 highly expressed genes in each cluster. The size of the dot corresponds to the percentage of cells expressing the
gene in each cluster, and the color represents the average log normalized gene expression. ¢ Pseudotime ordering of CD8" T cells in a diffusion
trajectory using the first two diffusion components. Each dot represents a cell colored by different cell cluster. The main trajectories were indicated
with arrows. d Cell sample composition in the diffusion trajectories. The diffusion trajectory in ¢ was divided into 10 x 10 square grids according to
the horizontal and vertical coordinates, and each pie chart reflects the sample composition of cells in each grid area. e Clonotypes distributed in the
diffusion trajectories. Each dot represents a unique clonotype in each cluster. The size of the dot reflects the clone size in each cluster. Clonotypes
with clone size >1 were colored by cluster. Nonclonal clonotypes are colored in gray. The coordinates of each clonotype were calculated by the
average coordinates of the cells in the clonotype. f Examples of clonally expanded CD8™ T cells in different cell types. Cells from 4 clonotypes

(clonotype23, clonotype24, clonotype38 and clonotype103) were highlighted in the diffusion trajectories. Each dot represents a cell colored based on

its cluster.

sharing the same TCRs further supported this transfor-
mation (Fig. 3f). Tracking T cell clonotypes and tran-
scriptional phenotypes, we found that 55 clonotypes
contained cells distributed in central memory CD8"
T cells (C15 cluster), transitional CD8" T cells (C3 clus-
ter), and terminal effector CD8" T cells (C6 cluster), such
as clonotype23, clonotype24, clonotype38 and clono-
typel03 (Fig. 3f), suggesting that TCRs may be involved in
the process of CD8" T cell differentiation in PD. Alto-
gether, these results revealed a distinct cluster of terminal
effector CD8™ T cells (C6 cluster), which exhibits obvious
clonal expansion and cytotoxic differentiation by TCR
activation in PD patients and is distinguished by expres-
sing numerous genes involved in cell adhesion, migration,
survival and cytotoxicity.

A marked clonal expansion of cytotoxic CD4" T cells in PD

CD4" T cells are a large population of cells that play an
important role in peripheral immunity in PD'\. We
annotated 8 major CD4" T cell subtypes, including naive
CD4" T cells (C2, C4 and C8 clusters), central memory
CD4" T cells (C1 cluster), cytotoxic CD4" T cells (CD4
CTL, C13 cluster), Thl cells (C9 cluster), Th2 cells (C7
cluster), Th17 cells (C12 cluster), Tth cells (C19 cluster),
and regulatory T cells (C17 and C18 clusters). Some
highly expressed genes in each cluster were shown in
Supplementary Fig. S4a. CD4 CTLs (C13 cluster) exhib-
ited significantly higher expression of CD4 and several
cytotoxic genes, such as GZMA, GZMB, GZMH and
NKG?7 (Supplementary Fig. S4a). There is no significant
difference in the composition of CD4" T cell subtypes
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between PD patients and healthy controls (Supplementary
Fig. S4b—c). To understand the relationship among these
CD4" T cells, we constructed single-cell trajectories using
R package Monocle 2 (version 2.14.0) (Fig. 4a). Central
memory T cells (C1 cluster, Tcy) were selected as the
starting cell type of the differentiation (Fig. 4a). Consistent
with the clustering analyses, we observed a process of
transformation from central memory T cells (C1 cluster,
Tcm) to effector T cells (C9, C7 and C12 clusters, Tgpy)
followed by CD4 CTLs (C13 cluster, CTL) (Fig. 4a).
Regulatory CD4" T cells (C17 and C18 clusters, Tregs)
were reasonably located in a different branch (Fig. 4a).
Larger clonotypes tend to be located at the end of the
effector branch (Fig. 4b).

To gain insight into the clonal relationship among
CD4" T cells, we used Fisher’s exact test to identify PD-
specific clonally expanded CD4" T cell clusters. Com-
pared to healthy controls, clonally expanded CD4"
T cells were significantly increased in Th1 cells and CD4
CTLs (C9 and C13 cluster) in the blood of PD patients
(Fisher’s exact test, FDR =8.58e—28 and 3.92e—14,
respectively, Fig. 4c). Specifically, Th1 cells in the blood
of PD patients accounted for 50.2% of total Thl cells
(C9 cluster), and this proportion increased to 65.5%
when the background was reduced to clonally expanded
Th1 cells (Fig. 4e). Regarding CD4 CTLs (C13 cluster),
74.4% of this population were from the blood of PD
patients, and this percentage increased to 77.3% when
the background was reduced to clonally expanded CD4
CTLs (Fig. 4f). CD4 CTLs tend to have larger clonotypes
in PD patients with 371 clonotypes detected from
2301 cells (6.2 cells per clonotype), while the average
clone size was 3.2 (258 clonotypes from 829 cells) in
healthy controls (Fig. 4d). We used diffusion maps to
further visualize the relationships among Ty, Thl, Th2
and CD4 CTLs (Fig. 4g). Both Thl and Th2 cells ori-
ginated from Tcy cells and began to differentiate in
parallel. Thereafter, the differentiation trajectory sepa-
rated, and some Thl cells eventually transformed to
CD4 CTLs (Fig. 4g). Larger clonotypes tend to distribute
at the end of the CTL branch (Fig. 4g). The proportion
of PD cells gradually increased along the trajectory (Fig.
4h). The average expression of 4 major cytotoxic genes
GZMA, GZMB, PRF1 and NKG7, which are known to
be abundant in CD4 CTLs***, increased along the
differentiation trajectory of CD4 CTLs (Supplementary
Fig. S5a, b). The evidence of TCR sharing further sup-
ported the state transition from Th1 cells to CD4 CTLs.
In total, 81 clonotypes were identified with both
Thl cells and CD4 CTLs, such as clonotype28 and
clonotype65 (Supplementary Fig. S5c). These results
reveal that a group of CD4 CTLs derived from TCR-
activated Th1 cells were significantly clonally expanded
in PD patients.
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Th1 cells could have cytotoxic effects on dopaminergic
neurons by releasing IFNy, which activates and recruits
other immune cells to amplify local inflammation®, It has
also been reported that CD4" T cell mediated dopami-
nergic toxicity does not require the expression of IFNy in
a mouse model of PD', suggesting the presence of
cytotoxic CD4" T cells infiltration in the central nervous
system. Our study reveals that both Thl and CD4 CTL
were significantly clonally expanded by TCR-dependent
activation in the blood of PD patients, suggesting that
these two cell types in the blood may be the source of
central infiltrating CD4" T cells*®. Inhibitors that direct
or indirect target of these T cell types may block the
immune response in PD patients by preventing T cell
proliferation®.

Antigen-specific T cells and candidate antigenic epitopes
in PD

Increasing evidence indicates that abnormal processing
of self-proteins can produce antigens in PD*. T cells
recognize these antigens, coordinate local innate immune
responses, and drive dopaminergic neuronal death by
activating immune pathways®. a-Synuclein (a-syn) is a
presynaptic neuron protein that is genetically and
pathologically related to PD>®, Recent studies have shown
that fibrils of a-syn can recruit peripheral immune cells
prior to neurodegeneration in the rat brain®®. Misfolded
a-syn is not only prevalent in the central nervous system
but can also cause peripheral immune responses'®. A
group of peptides derived from a-syn have been reported
as epitopes driving T cell responses in PD patients®, In
addition, the mitochondrial antigen presentation pathway
is also associated with adaptive immunity in PD™.
Recognition of antigen-specific T cells is crucial for
understanding the adaptive immune response in PD.

TCR clustering based on CDR3 sequence similarity is an
effective approach to identify antigen-specific T cells***
as TCRs sharing similar motifs from distinct individuals
may also share antigen specificity. In total, we obtained
110,912 BCDR3s from 113,690 T cells and performed
pairwise alignment. We used an ultrafast algorithm,
iSMART*?, specifically designed to handle large amount
of TCR clustering and detected 1778 TCR specificity
groups (Supplementary Table S7). To identify PD-specific
TCRs, we screened 67 TCR specificity groups with at least
one TCR from blood and one TCR from CSF of the PD
patients (Fig. 5a, Supplementary Table S7). These groups
were considered as candidates for PD-specific TCRs, most
of which were found exclusively in PD patients (Fig. 5a).

The identification of PD-specific TCRs also enables us
to further uncover the candidate antigenic epitopes from
the PD-related proteins, such as a-syn. We used several
steps to find the relationship between PD-specific TCRs
and potential antigenic epitopes. First, high resolution
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HLA typing was obtained from the whole genome
sequencing data of our 8 PD patients (Supplementary
Table S6). Second, we searched NCBI protein database
with keywords of ‘alpha-synuclein’ and ‘mitochondrial’
and obtained all the a-syn and mitochondrial protein
sequences. After removing the redundancy, these protein
sequences were separated into 9-mer and 15-mer peptides
to predict their binding affinity with MHC I and MHC II
alleles, respectively. Finally, we used samples shared by
MHC genes and TCRs to construct the relationship
between MHC-peptides and TCRs (Fig. 5b). A relatively
strong sample sharing relationship was noted between 14
TCR specificity groups and 11 HLA alleles (Fig. 5b). These
HLA alleles were predicted to bind to at least one peptide
from a-syn or mitochondrial proteins (Fig. 5b; Supple-
mentary Table S7). Fortunately, two of our predicted
peptides ‘KTKEGVLYVGSKTKE and ‘GKTKEGV-
LYVGSKTK’ have been reported to drive helper and
cytotoxic T cell responses in PD patients® (Supplementary
Fig. S6). In summary, we used TCR clustering and
machine learning to screen a group of PD-specific TCRs
and their candidate epitopes, providing potential targets
for blood and cerebrospinal fluid T cells to participate in
neuronal degeneration.

Possible mechanism of cytotoxic T cells passing through
the BBB in PD

The blood-brain barrier (BBB) is a physical barrier
formed by endothelial cells to prevent blood proteins,
antibodies and immune cells from penetrating into the
brain parenchyma®*’. However, under the continuous
action of chronic inflammation, the tight junctions
between endothelial cells are weakened or destroyed, thus
allowing antibodies or immune cells to pass through®.
Postmortem studies of the brain have confirmed that the
infiltration of lymphocytes into the brain contributes to
the neurodegeneration of PD*'"*, Numerous adhesion
molecules are involved in the recruitment of leukocytes,
especially lymphocytes, into the central nervous system
(CNS) during inflammation. The integrin leukocyte
function-associated antigen-1 (LFA-1) plays a key role in
leukocyte adhesion cascade by binding ICAM-1 (and
ICAM-2) on the surface of endothelial cells*’. Very late
activation antigen-4 (VLA-4) mediates the adhesion of
lymphocytes and monocytes to VCAM-1 on the surface of
activated endothelial cells*®. Macrophage-1 antigen
(MAC-1) binding to ICAM-1 (and ICAM-2) regulates
intravascular crawling”. In addition, several chemokines
and their receptors are associated with the recirculation of
effector T cells to the BBB. Chemokine receptors (such as
CXCR4) on rolling leukocytes interact with chemokines
(such as CXCL12) on endothelial cells, activating several
signaling pathways (such as PI3K, PLC, RAS- and RHO-
family GTPase, and MAPK) and promoting an opened
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integrin conformation®>2. Selectins (SELE, SELP) and
their counter ligands (SELPLG) dependent rolling is the
earliest observable event of leukocyte recruitment to
inflammatory tissues”®, which plays a critical role in the
recruitment of CD8™ cells in brain vessels of patients with
multiple sclerosis during acute attacks™.

We assessed numerous molecules related to cell
migration and adhesion and found that many molecules
related to BBB penetration were highly expressed in
cytotoxic T cells (Fig. 6a; Supplementary Table S3).
Integrin family genes (VLA-4, LFA-1, Mac-1) exhibited
relatively high expression in transitional CD8" T cells (C3
cluster), terminal effector CD8" T cells (C6, C11 clusters)
and CD4 CTLs (C13 cluster) (Fig. 6a; Supplementary
Table S3). Other cellular chemokines, adhesion molecules
and their receptors, such as CCL4, CCL5, CX3CR1, CD99
and SELPLG, were also widely and relatively highly
expressed in these cytotoxic T cells (Fig. 6a). Some genes
also showed significantly upregulated expression in PD
patients (Supplementary Table S4). These genes were
significantly enriched in the leukocyte transendothelial
migration pathway (KEGG: hsa04670), which may repre-
sent a possible mechanism by which cytotoxic T cells pass
through the BBB in PD*® (Fig. 6b).

Discussion

Numerous postmortem studies have confirmed the
presence of lymphocyte infiltration in the brain of PD
patients'>*®, High levels of activated T cells have also
been detected in the cerebrospinal fluid of PD patients®®.
Moreover, lymphocyte infiltration is not a random event
caused by damage to the BBB but targeted migration to
the vicinity of dopaminergic neurons in the brain of PD
patients”'". Given the chronic inflammatory nature of PD,
T cell immunity may be important for disease onset.
Therapies targeting T cells can reduce neurodegeneration
and motor behavior disorders in animal models of PD*”.
The study of T cell populations in peripheral blood and
cerebrospinal fluid of PD patients will further improve our
understanding of the immune pathogenesis of PD.

In this study, we conducted integrative computational
analyses to investigate the immunological changes in the
blood and cerebrospinal fluid of PD patients compared to
healthy controls. We identified a distinct cluster of
terminal effector CD8" T cells significantly clonally
expanded in PD patients, which derived from central
memory CD8" T cells by TCR-dependent activation and
upregulated both cell adhesion (ITGAM, ITGB], etc.) and
cell survival (PRSS23, SPON2, ZNF683) markers. Notably,
we reported a group of cytotoxic CD4" T cells (CD4
CTLs) significantly clonally expanded in PD patients,
which may be a source of central infiltrating cytotoxic
CD4" T cells. Evidence of TCR sharing further supports
their differentiation from Thl cells. These cytotoxic
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CD8" and CD4" T cell populations are strong candidate
for potential involvement in the pathogenesis of PD. In
addition, we grouped TCRs by CDR3 sequence similarity
and provided potential TCR-antigen relationships by
MHC-peptide prediction and overlap analyses between
samples with the same MHC alleles and TCR groups. Two
of our predicted peptides ‘KTKEGVLYVGSKTKE and
‘GKTKEGVLYVGSKTK' have been reported to drive
helper and cytotoxic T cell responses in PD patients®
(Supplementary Fig. S6). These findings provide evidence
of convergent selection in PD. Future efforts can be made
to assess the antigenicity of the predicted epitopes using
effector T cells transfected with synthetic TCRs, by testing
their cytokine secretion with immunospot assay upon
antigen stimulation.

It is estimated that approximately 4 x 10" T cells cir-
culate in the adult human body®. Cells detected by single-
cell sequencing are only the tip of the iceberg and do not
completely represent all the immune diversity. It is diffi-
cult to find common TCRs from different individuals. It is
a good idea to use the similarity of BCDR3 to identify
common antigen-specific TCRs in different individuals,
but large-scale TCR repertoire sequencing data are still
needed to obtain more accurate results. In addition, the
diversity of MHC alleles in the population also hinders the
identification of antigen-specific T cells shared by the
population. Moreover, the limited number of cells detec-
ted in cerebrospinal fluid data used in this study also
hinders the identification of common clonal T cells
between blood and cerebrospinal fluid. In the future, large-
scale single cell sequencing data of lymphocytes in blood
and cerebrospinal fluid are still necessary, and mixed TCR
immune repertoire sequencing data are also needed to
assess the diversity of lymphocytes as much as possible.

Materials and methods
Human research participants

Eight PD patients (P1-P8) aged 50-70 years with stable
and effective L-dopamine medication were recruited in
this study. None of the candidates had significant somatic
disorders, such as tumor, autoimmune disorders and
chronic diseases, as well as psychiatric co-morbidities,
including mild cognitive impairment (MCI) and demen-
tia. Six age-matched healthy controls (N1-N6) were also
recruited. All participants were procured from the First
Affiliated Hospital of Harbin Medical University. This
study was approved by the Ethics Committee in the First
Affiliated Hospital of Harbin Medical University
(Approval number: No. 201985). Informed consent was
obtained from all participants.

Publicly available datasets
In this study, an additional seven healthy controls
(N7-N13) were included to enrich the datasets of health
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controls. Specifically, N7 and N8 were downloaded from
the official website of 10x genomics with both scRNA-seq
and scTCR-seq data (https://support.10xgenomics.com/
single-cellvdj/datasets), and N9-N13 (aged in their 50 to
80 years) were downloaded from Hashimoto et al.>® with
only scRNA-seq data.

In addition, publicly available single-cell immune pro-
filing datasets from cerebrospinal fluid'®, including 6 PD
patients (PD1-PD6) and 9 healthy controls (HC1-HC9),
were downloaded and used to better understand clonal
expansion of lymphocyte T cells in PD. The average age of
CSF samples was 68.71 (8.61 SD). All of these published
single-cell transcriptome and immune sequencing data
were generated on the 10x Genomics platform.

Blood sample collection and preparation

Fresh blood samples from eight PD patients (P1-P8)
and six age-matched healthy controls (N1-N6) were
collected and followed by density gradient centrifugation
on Percoll to isolate human peripheral blood mono-
nuclear cells (PBMCs). CD31 T cells were then isolated
from PBMCs by fluorescence-activated cell sorting
(FACS) analysis.

Bulk DNA isolation and sequencing

Genomic DNA of blood was extracted using Invitrogen
Genomic DNA Extraction Kits according to the manu-
facturer’s specification. The concentrations of DNA were
quantified using a NanoDrop instrument (Thermo) and
the qualities of DNA were evaluated with agarose gel
electrophoresis. DNA libraries were constructed by frag-
menting genomic DNA (approximately 0.1-1 pg) using
the NEBNext Ultra DNA Library Prep Kit. Finally, DNA
libraries were sequenced on the Illumina Novaseq 6000
with 150-bp paired end (PE150).

Single-cell 5 and V(D)J sequencing

Single-cell 5 and V(D)J libraries were prepared fol-
lowing the protocol provided by the 10x genomics
Chromium Single Cell Immune Profiling Solution. Briefly,
CD3" T cell suspensions (400-1000 living cells per
microliter determined by CounterStar) were loaded on a
Chromium Single Cell Controller (10x Genomics) to
generate single-cell gel beads in emulsion (GEMs) using
Chromium Single Cell V(D)] Reagent Kits. Captured cells
were lysed, and the released RNAs were barcoded through
reverse transcription in individual GEMs. Each single-cell
5 and V(D)] libraries were sequenced by the Illumina
Novaseq 6000 using 150 paired-end reads.

HLA genotyping

High accuracy of human leukocyte antigen (HLA)
allotype (i.e., a set of HLA alleles of an individual) of eight
PD patients were characterized by HLA-HD>® based on
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the information from whole genome sequencing. First, we
created an HLA allele dictionary from the current allele
information to increase the completeness of applicable
alleles. Then, high-quality reads were mapped to the HLA
allele dictionary using bowtie2®. Finally, suitable pairs of
HLA alleles were selected by calculating a score based on
weighted read counts®’.

Preprocessing of single-cell transcriptome data

Single-cell transcriptome data were preprocessed using
the following steps: First, we used UMI-tools®" to identify
cell barcodes and UMIs. Then, cell barcodes and UMIs
were appended to the read names to distinguish different
cells and different RNA molecules. Read adapters were
trimmed using cutadapt®®. High-quality reads were then
mapped to the GRCh38 (Release-92) human reference
genome using STAR®’. The number of reads mapping to
each genomic gene were counted using featureCounts®*,
Samtools®® were used to sort and index BAM files, which
stores mapped reads in a standard and efficient manner.
Then, the UMI-corrected molecular counts were calcu-
lated using UMI-tools®". Finally, a local Perl script was
used to construct a combined gene expression matrix
containing all the sequenced samples.

Cell quality control

Real cells from empty droplets were called using the
emptyDrops function from R package dropletUtils, which
assesses whether the RNA content associated with a cell
barcode is significantly distinct from the ambient back-
ground RNA present within each sample®®®’. Cells with
FDR<0.01 (Benjamini-Hochberg corrected) were con-
sidered for further analysis. Then, low-quality cells were
identified and removed using the isOutlier function in R
package scater®®, which identifies outliers based on the
median absolute deviation (MAD)®’. Cells were claimed
as low-quality cells if: (1) The cell library size (total UMI
counts) is smaller than 3 MADs; (2) The number of
detected genes is smaller than 3 MADs; (3) The propor-
tion of mitochondrial gene counts is bigger than 3 MADs.
Please see Zhang et al.”® for details. Doublets were iden-
tified and filtered by DoubletFinder’" with the expected
doublet rate of 0.075. Finally, genes with more than 1
transcript in at least two cells were retained for further
analysis.

Dataset integration and unsupervised clustering

Batch effects were removed, and datasets from each
sample were integrated using the standard Seurat v3
integration workflow'®'?. First, raw counts of each sample
were normalized using a global-scaling normalization
method NormalizeData in R package Seurat'®'®. This
method normalizes the gene expression values for each
cell by the total UMI counts in the sample, then multiplies
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this value by a scale factor (10,000 by default), and log-
transforms the result. Highly variable genes were identi-
fied in each sample using FindVariableFeatures function
in Seurat'®'®. To identify shared cell states that are pre-
sent across blood and cerebrospinal fluid samples,
‘anchors’ between pairs of datasets were identified and
used to harmonize the datasets. Finally, the cell-cycle
score was calculated using CellCycleScoring function and
regressed during data scaling using the ScaleData function
in Seurat'®'?,

We used a graph-based clustering approach imple-
mented in Seurat'®'® to perform unsupervised clustering
of all T cells. First, principal component analysis was
computed based on the scaled expression of variable
genes. Then, 15 principal components were used to
construct a KNN graph using the FindNeighbors function
in Seurat'®'?, in which the edge weights between any two
cells were based on the shared overlap in their local
neighborhoods (Jaccard similarity). Finally, cells were
clustered using the FindClusters function in Seurat'®'?,
which used the Louvain algorithm to iteratively group
cells together with the goal of optimizing the standard
modularity function. Additional K-means clustering was
further used to classify cytotoxic T cells into CD8 CTLs
and CD4 CTLs (C6 and C13 clusters). Cluster with less
than 500 cells were removed from downstream analysis.

Based on the gene expression profiling, a dimensionality
reduction method called Uniform Manifold Approxima-
tion and Projection (UMAP) was used to visualize T cells
in a two-dimensional space. UMAP projections were
generated by RunUMAP function in Seurat'®'® based on
the first 15 principal components.

Cell type annotation

Cluster biomarkers were identified using the FindAll-
Markers procedure in Seurat'®!®, which identified dif-
ferentially expressed genes for each cluster using a
Wilcoxon Rank Sum test. The R package SingleR”* was
then used to further annotate single cells by leveraging
reference transcriptomic datasets of pure cell types to
infer the cell of origin of each single cell independently.
Three bulk RNA-seq datasets of purified immune cells
(The Database for Immune Cell Expression (Schmiedel
et al.?®), Monaco Immune Cell Data (Monaco et al.?!), the
Human Primary Cell Atlas (Mabbott et al.**), BLUE-
PRINT database (Martens et al.?®) and Novershtern
Hematopoietic Data (Novershtern et al.**) were selected
as reference datasets for single-cell annotation.

Cell clusters were manually annotated by checking the
expression of classic marker genes and single-cell anno-
tation by the purified bulk RNA-seq datasets. For exam-
ple, C2, C4, C8 were annotated as Naive CD4" T cells
based on two evidence: (1) C2, C4, C8 highly expressed
naive T cell markers SELL, CCR7, TCF7 and LEF1 (Fig.



Wang et al. Cell Discovery (2021)7:52

1c); (2) More than 90% of cells from C2, C4, C8 were
annotated as Naive CD4" T cells by bulk dataset Martens
et al.”® (Supplementary Fig. Sla).

Differential expression analysis

Differential expression analysis was conducted by using
the FindMarkers function in Seurat'®'® with default
parameters, which used normalized gene expression
values as input. To calculate the logFC value, the average
expression values in each group added by 1 (where 1
represents a pseudocount) were divided between two
groups and then log-transformed. Genes were claimed as
differentially expressed if: (1) Genes should be detected in
at least 10% of the cells in either of the two groups; (2)
The threshold of logFC is the default value of 0.25; (3)
Bonferroni adjusted P-value is less than 0.05. Differen-
tially expressed genes (DEGs) between the blood of PD
patients and healthy controls as well as cluster biomarkers
of each cell cluster were combined to evaluate the role of
cell clusters in the immune response of PD.

Single-cell trajectory analysis

Monocle 2 (version 2.14.0) was used to investigate
transcriptional and functional trajectories of CD4" T cell
clusters (Fig. 4a). Only 7 CD4" T cell clusters were
selected to construct the trajectory due to the limitation of
the number of cells processed by Monocle. Given that the
direction of pseudotime is arbitrary, we selected central
memory CD4" T cells as the beginning of the trajectory.

Diffusion maps represent a more advanced trajectory
inference method, which was introduced by Ronald
Coifman and Stephane Lafon’?, and the underlying idea is
to assume that the data are samples from a diffusion
process. Diffusion maps are efficient, scalable and robust
and provide better details of cell trajectory’*”>. We
choose diffusion maps implemented by R package des-
tiny”® to analyze the trajectory of some specific clusters,
such as CD8 CTLs (Fig. 3c) and CD4 CTLs (Fig. 4g).
Central memory T cells were used to determine the
beginning of the trajectory.

Single-cell V(D)J data processing

Single-cell V(D)] data was processed using Cell Ranger
(10x Genomics, version 3.1.0) with —reference = refdata-
cellranger-vdj-GRCh38-alts-ensembl-3.1.0 for each sam-
ple. Paired a and p CDR3 sequences from blood and
cerebrospinal fluid were pooled together to identify
common clonotypes across samples. Cells with the same
CDR3 sequence for both the a-chain and the -chain were
considered the same clonotype.

Antigen-specific TCR groups analysis
Clustering of TCRs based on CDR3 similarity is an
effective approach to identify antigen-specific T cells***
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given that TCRs sharing similar motifs from distinct
individuals may also share antigen specificity. We grouped
all the BCDR3 sequences from blood and cerebrospinal
fluid samples and identified antigen-specific TCR groups
using iSMART*®, which performs a specially para-
meterized pairwise local alignment on T cell receptor
CDR3 sequences to group them into antigen-specific
clusters. For a given group with high similarity, the
antigen-specific TCR group needs to meet the following
conditions: (1) Only one amino acid mismatch is allowed
on CDR3; (2) Only one insertion or deletion is allowed on
CDR3; (3) V genes within the group should be the same.

HLA antigen presentation prediction

Prediction of HLA antigen presentation is a key step in
identifying antigen epitopes and understanding adaptive
immunity of PD. The accumulation of abnormal forms of
a-syn is a trigger of PD. Recent evidence suggests a strong
relationship between a-syn and adaptive immune system,
which may lead to downstream neurodegeneration’®.
Mitochondrial damage that causes mitochondrial proteins
to be presented on the neuron surface also leads to the
activation of adaptive immune responses in PD*’. There-
fore, we focused on these two types of proteins to screen
the potential epitopes that can be presented by patients’
MHC alleles. To achieve this, we first searched the NCBI
protein database with the keywords of ‘alpha-synuclein’
and ‘mitochondrial’ and obtained all the a-syn and mito-
chondrial protein sequences. After removing the redun-
dancy, these protein sequences were separated into 9-mer
and 15-mer peptides using sliding windows to predict their
binding affinity with MHC I and MHC 1II alleles using
NetMHCstabpan’” and NetMHClIpan’®, respectively.

Measures of TCR diversity

TCR diversity was calculated based on the D50 value”,
which is the percentage of dominant T cell clonotypes
that account for the cumulative 50% of the total CDR3s
counted in the sample’”. The more diverse the TCR
repertoire, the closer the value is to 50.

The D50 value is defined as follows:

argminy (Ef;l N — 32 Nf) x 100

n

D50/ =

where n is the total number of unique CDR3s, and N{ is
the frequency of the i-th CDR3 in sample j in the
following order:

N >N,>..N >N, > ..

j
i+1 = 2 er
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