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Introduction
Plant- and fungi-based psychedelics have been used for centu-
ries for healing or ritual purposes (Schultes and Hofmann, 
1980), and there is an active culture of self-medication with 
psychedelics for mental health (Carhart-Harris and Nutt, 2010). 
The classical psychedelic drugs were investigated extensively in 
psychiatry before they were placed in Schedule I of the UN 
Convention on Psychotropic Substances 1971 (United Nations 
Convention on Psychotropic Substances, 1971) and resulted in 
significant barriers to research and drug development with them 
(Johnson et al., 2008; Rucker et al., 2018; Weston et al., 2020).

Over the past two decades, research has resumed and encour-
aging early phase clinical trials assessing psilocybin-assisted 
psychotherapy have been reported in unipolar mood disorders 
and anxiety (Carhart-Harris et al., 2016, 2018; Griffiths et al., 
2016; Grob et al., 2011; Ross et al., 2016) and substance use dis-
orders (Bogenschutz et al., 2015, 2018; Johnson et al., 2014; 
Noorani et al., 2018).

The duration of action of classical psychedelics varies con-
siderably. After oral ingestion, the subjective effect of lysergic 
acid diethylamide (LSD) lasts approximately 12 h (Holze et 
al., 2019), while psilocybin lasts approximately 6 h (Hasler et 
al., 2004). Short-acting psychedelics may have therapeutic 
benefit (Nutt et al., 2020). Several survey studies have exam-
ined reports of addiction recovery prompted by the use of 
dimethyltryptamine (DMT) (Garcia-Romeu et al., 2019; 
Johnson et al., 2017). If efficacious, an advantage of short-
acting psychedelics may be lower treatment costs. This may 

allow wider delivery of treatment, if clinical trial data sup-
ports licensing.

History of discovery

5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a short-
acting serotonergic psychedelic that was first synthesised in 1936 
(Hoshino and Shimodaira, 1936) and later isolated from 
Dictyoloma incanescens in 1959 (Pachter et al., 1959). 
Subsequently, 5-MeO-DMT has been found in a large number of 
plants (reviewed in Trout, 2007), notably Anadenanthera, 
Phalaris and Virola spp. (Rätsch, 2005; Schultes et al., 2001; 
Schultes and Hofmann, 1980). 5-MeO-DMT is found in fungi 
Amanita citrina and Amanita porphyria (Tyler and Gröger, 
1964), as well as the gland secretions of the Sonoran Desert toad 
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Incilius (formerly Bufo) alvarius (Erspamer et al., 1967; Uthaug 
et al., 2019; Weil and Davis, 1994) and in mammals (Barker et 
al., 2012; Beaton and Morris, 1984).

Occurrence in nature

5-MeO-DMT is likely to be endogenously produced in humans, as 
it has been detected in blood, urine and cerebrospinal fluid 
(Christian et al., 1975; Corbett et al., 1978; Guchhait, 1976; Heller 
et al., 1970; Narasimhachari et al., 1971a, 1971b; Riceberg and 
Vunakis, 1978; Smythies et al., 1979; Tanimukai, 1967, Tanimukai 
et al., 1970), although several studies contradict this finding 
(Forsström et al., 2001; Himwich et al., 1972; Huszka et al., 1976; 
Narasimhachari et al., 1972, 1974). Pooling these studies together, 
5-MeO-DMT was detected in urine of 2 out of 113 individuals, in 
blood of 20 out of 39 individuals and in cerebrospinal fluid of 40 
out of 136 individuals. However, it is important to note that only 
the two later studies (Corbett et al., 1978; Smythies et al., 1979) 
used mass spectrometry, while the older studies used less reliable 
methods. The physiological role of 5-MeO-DMT is unknown and 
more research is needed to definitively answer if, when and where 
5-MeO-DMT is endogenously produced.

Traditional use

Indigenous peoples of South America have used 5-MeO-DMT con-
taining plants for thousands of years (Pochettino et al., 1999; Torres 
and Repke, 2006). Snuffs from the beans of Anadenanthera pereg-
rina (called cohoba, yopo) are prepared in northern South America, 
although the use of this plant in pre-Colombian times has been docu-
mented as far as the West Indies (Schultes and Hofmann, 1980). In 
central and southern parts of South America, snuffs called vilca, 
huilca and cibil produced from A. colubrina are used. Many species 
of Virola trees (e.g. V. theiodora, V. calophylla, V. elongata) are uti-
lised by the indigenous peoples in the Amazon region (Schultes et 
al., 2001). 5-MeO-DMT is present in plants that are sometimes used 
as constituents in ayahuasca (Holmstedt et al., 1980).

The popularity of toad secretions is a fairly recent phenome-
non traceable to the publication of a booklet by Albert Most 
(1984). There is no conclusive historical evidence for the indig-
enous use of Incilius alvarius toads for their psychoactive prop-
erties prior to this (Ott, 1996).

Legal status

5-MeO-DMT was included in the Schedule 1 Controlled 
Substance Act in the United States of America in 2009 (Drug 
Enforcement Administration (DEA), Department of Justice, 
2010) and is a controlled substance in the United Kingdom 
(Home Office, 2019), Australia (Federal Register of Legislation, 
2016), New Zealand (New Zealand Legislation, 2021) and sev-
eral other countries. It is not listed by the United Nations 
Convention on Psychotropic Substances, and in many countries, 
including Canada, this substance is not controlled (Canada 
Justice Laws, 1996).

Epidemiological surveys suggest increasing non-medical use 
of 5-MeO-DMT, with users often reporting improvements in out-
comes relating to mental health (Davis et al., 2018; Uthaug et al., 
2019, 2020b).

This narrative review of published 5-MeO-DMT research 
aimed to synthesise the available literature and provide a compre-
hensive overview of the pre-clinical and safety data. It is consid-
ered timely and important because interventional clinical trials 
with this compound are being initiated (Clinicaltrials.gov, 2019, 
2021a, 2021b).

Methods
References for this article were identified via a search of PubMed 
from January 1965 to October 2020 using the terms ‘5-methoxy-
N,N-dimethyltryptamine’ or ‘5-MeO-DMT’ and other variations 
on the chemical name (for full search terms, see Supplementary 
Material). Papers in English, Russian or Spanish were included, 
representing the fluent language proficiencies of the authors. The 
PubMed search was supplemented by additional articles, which 
were identified during the review of the bibliographies from the 
papers sourced through PubMed. References were then selected 
on the basis of relevance to the content of review.

As this review aims to inform future clinical research, we 
excluded studies on the chemical synthesis or forensic detection 
of 5-MeO-DMT, articles identifying 5-MeO-DMT in plants and 
others that were not providing novel information about 5-MeO-
DMT aside from its use at 5-HT agonist. The number of sources 
we identified, screened and included/excluded can be found in 
Figure 1.

Description of studies/topics

Chemical properties

2-(5-methoxy-1H-indol-3-yl)-N,N-dimethylethanamine (5-meth-
oxy-N,N-dimethyltryptamine, abbreviated to 5-MeO-DMT) is a 
tryptamine alkaloid, an aromatic ether and a tertiary amine with a 
molecular weight of 218.298 g/mol and the chemical formula 
C13H18N2O. As the freebase, 5-MeO-DMT is a white solid with a 
melting point of 69.5°C. Water solubility is >32.7 μg/mL 
(PubChem, 2021).

In vitro pharmacology

5-MeO-DMT is a non-selective serotonin (5-HT) receptor ago-
nist, with affinity to other receptors, as well as to serotonin and 
norepinephrine transporters (Halberstadt et al., 2012; PDSP 
Database, 2021; Ray, 2010; see Table 1). 5-MeO-DMT is a weak 
5-HT reuptake inhibitor but has no appreciable effects on mono-
amine release nor on noradrenaline or dopamine reuptake (Berge 
et al., 1983; Blough et al., 2014; Nagai et al., 2007). 5-MeO-
DMT has high affinity for a range of 5-HT receptors, particularly 
(inhibition constant [Ki] < 100 nM) at cloned human 5-HT1A, 
5-HT1B, 5-HT1D, 5-HT6 and 5-HT7 receptor subtypes. High affin-
ity is seen for the 7-transmembrane G-protein-coupled 5-HT 
receptors, with no affinity for the ion-channel 5-HT3 receptor. 
5-MeO-DMT’s binding affinity to sigma receptors is >10,000 nM, 
although one study indicated that 5-MeO-DMT can impact 
immune responses in human monocyte-derived dendritic cells 
via σ-1 (Szabo et al., 2014).

Receptor binding profiles based on human cloned receptors in 
cell lines presented by Halberstadt et al. (2012) and Ray (2010) 
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are shown in Table 1. Although their findings are similar for the 
5-HT receptors, they differ for others; further research is required 
to resolve these discrepancies.

Radioligand binding studies show that 5-MeO-DMT has 
about 300-fold selectivity for the 5-HT1A (3 ± 0.2 nM) versus 
5-HT2A (907 ± 170 nM) receptor subtypes (Halberstadt et al., 
2012). Other receptor types have not been studied as extensively 
(Halberstadt and Geyer, 2011).

More research is needed to resolve the full receptor binding 
profile of 5-MeO-DMT and understand the functionally selective 
pharmacology at 5-HT2A and other receptors. Precise changes in 
receptor conformation result in different signalling cascades with 
different effects (e.g. behavioural or gene expression) (Urban et al., 
2007). Put another way, every ligand has its own signalling signa-
ture, which may (or may not) be similar to the endogenous ligand.

For example, hallucinogenic and non-hallucinogenic 5-HT2A 
agonists differentially activate second messenger pathways 

(González-Maeso et al., 2007). Kurrasch-Orbaugh et al. demon-
strated that 5-MeO-DMT activated phospholipase A2 (PLA2) 
signalling 13-fold more than phospholipase C (PLC) signalling 
(Kurrasch-Orbaugh et al., 2003). Added to this, β-arrestins are 
scaffolding proteins that can attenuate or facilitate G-protein-
coupled receptor activity by, for example, receptor internalisation 
or the formation of heteroreceptors (Gurevich and Gurevich, 
2004). Schmid and Bohn demonstrated that the actions of 5-HT 
require the β-arrestin-2 signalling pathway and activation of pro-
tein kinase B, while 5-MeO-DMT activates signalling cascades 
independent of β-arrestin-2 (Schmid and Bohn, 2010). Blough et 
al. (2014) confirmed this observation, demonstrating a 100-fold 
difference in potency for the G-protein-coupled compared to the 
β-arrestin signalling pathway for 5-MeO-DMT. Overall, the 
functional selectivity of exogenous versus endogenous ligands 
for receptors is highly complex, but likely important in under-
standing their observable effects.
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Figure 1.  PRISMA flow diagram.
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Pharmacokinetics

The pharmacokinetics of 5-MeO-DMT has been studied in mice 
(Jiang et al., 2013, 2015, 2016a; Shen et al., 2010a, 2011b, 2011) 
and rats (Halberstadt, 2016; Sitaram et al., 1987a, 1987b, 1987c, 
1987d).

Absorption.  The maximum concentration (Cmax) in plasma is 
reached after 5–6 min following an intraperitoneal (IP) injection, 

and the terminal half-life (t1/2) is 12–19 min in mice (Shen et al., 
2009). A similar profile is seen in rats, with Cmax = 5–10 min and 
t1/2 = 6–16 min (Sitaram et al., 1987a, 1987d).

Tissue distribution and protein binding.  5-MeO-DMT is 
lipid-soluble (3.30 oil/water partition coefficient) and readily 
crosses the blood–brain barrier (BBB) (Gessner et al., 1968). 
5-MeO-DMT distributes to the liver, kidneys and brain similarly 
in different animal models: rabbit, rat and mouse (Berger et al., 

Table 1.  Receptor binding profiles for 5-MeO-DMT.

Binding sites Binding affinity, Ki (nM)
Ray (2010)

Binding affinity, Ki (nM)
Halberstadt et al. (2012)

Binding affinity, Ki (nM)
PDSP Ki database

Serotonin (5-HT) receptors
  5-HT1A 1.9 3.0
  5-HT1B 74 14 351
  5-HT1D 6.3 2.3
  5-HT1E 360.2 376
  5-HT2A 2011 907 14
  390
  207
  600
  616
  617
  620
  5-HT2B 3884 36 1300
  5-HT2C 538 418 87.1
  100
  5-HT5A 276.6 505
  5-HT6 35.2 6.5
  5-HT7 3.9 4.5
Dopamine receptors
  D1 79.5 >10,000
  D2 3562 >10,000
  D3 497.6 >10,000
  D4 3120 >10,000
  D5 >10,000 >10,000
Norepinephrine receptors
  α1A >10,000 4373
  α1B >10,000 2188
  α2A 1890 938
  α2B 2640 430
  α2C 508.1 206
  β2 >10,000 2679
Other receptors and transporters
  σ-1 >10,000 >10,000
  σ-2 >10,000 3689
  H1 ND 7580
Serotonin transporter protein (SERT) 2032 3603
Dopamine active transporter (DAT) >10,000 >10,000
Norepinephrine transporter (NET) 2859 >10,000

The raw Ki data is from Supplementary Table S2, Ray (2010) or Table 1, Halberstadt et al. (2012), both based on cloned human receptors in cell lines. 5-MeO-DMT also 
binds to the trace amine-associated receptor 1 (TAAR1), but the Ki is not provided (Wallach, 2009). 5-MeO-DMT bound to the following sites with Ki values >10,000 nM: 
5-HT3, Ca2+ channels, β1, β3, DOR, MOR, KOR, EP3, EP4, GABAA, H2, H3, H4, M1, M2, M3, M4, M5 (Halberstadt, 2012). Additionally, we present older data, based on rat 
or pig brain homogenates, retrieved from PDSP Ki database (Roth et al., 2000) in January 2021 (https://pdsp.unc.edu/databases/kidb.php).

https://pdsp.unc.edu/databases/kidb.php
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1978; Sitaram et al., 1987c, 1987d; Sitaram and McLeod, 1990). 
Brain concentrations of 5-MeO-DMT in the rat are 1.7-fold 
higher compared to plasma 45 min after IP injection, with highest 
concentrations in the cortex, thalamus, hippocampus, basal gan-
glia, medulla, pons and cerebellum (Barker et al., 2001; Sitaram 
et al., 1987c). In the mouse brain, 5-MeO-DMT distributes to the 
cortex, hippocampus, hypothalamus and striatum after IP admin-
istration (Shen et al., 2010b).

Metabolism and excretion.  Shen et al. (2011) demonstrated 
that the pharmacokinetics of 5-MeO-DMT is non-linear for both 
IP and intravenous (IV) administration of high doses in mice. The 
estimated parameters for both IP and IV routes are as follows: 
maximum rate of reaction (Vmax), Michaelis constant (Km), clear-
ance (CL) and additional clearance (CLCYP2D6) values are 
2.76 mmol/min per kg, 13.2 mM, 0.21 min−1 kg−1 and 0.0256 L/
min per kg, respectively. The CLCYP2D6 value represents the addi-
tional linear clearance of 5-MeO-DMT from the central compart-
ment that is dependent on CYP2D6 protein.

5-MeO-DMT is extensively metabolised through oxidative 
deamination catalysed by monoamine oxidase A (MAOA). 
O-demethylation, N-demethylation and N-oxygenation are 
involved to a much smaller extent (Sitaram and McLeod, 1990). 
Metabolic studies performed in rats showed that 5-methoxyin-
doleacetic acid (5-MIAA) is the main urinary metabolite of 
5-MeO-DMT (54%), followed by 5-hydroxy-N,N dimethyl-
tryptamine glucuronide (23%), 5-hydroxyindoleacetic acid 
(5-HIAA, 14%) and bufotenine (9%) (Agurell et al., 1969; 
Ahlborg et al., 1968; Sitaram et al., 1987d; Squires, 1975; Suzuki 
et al., 1981; Yu et al., 2003; see Figure 2).

When doses of 10 or 20 mg/kg of 5-MeO-DMT (IP and IV) 
are administered to mice, a 50% decrease in systemic clearance is 
observed, indicating that MAOA-mediated metabolism becomes 
saturated. This non-linearity is also reflected in corresponding 

increases in brain concentration of 5-MeO-DMT (Shen et al., 
2010b, 2011).

The extent of O-demethylation depends on the genetic variant 
of the cytochrome P450 2D6 enzyme (CYP2D6). This enzyme 
mediates production of the psychoactive metabolite bufotenine 
from 5-MeO-DMT (Shen et al., 2010b).

In vivo pharmacology

Studies of 5-MeO-DMT have been conducted in mice, rats, ger-
bils, hamsters, guinea pigs, rabbits, goldfish, cats, dogs, sheep, 
pigs and primates. The most common route of administration for 
rodents was subcutaneous or intraperitoneal. For a summary of 
the doses, routes of administration and behavioural effects by 
species, see Tables 2 and 3.

Behavioural effects

The behavioural effects of 5-MeO-DMT have been best charac-
terised in rodents and are similar to those of other classic halluci-
nogens, although rodent strain differences have been observed 
(Cazala and Garrigues, 1983; Gudelsky et al., 1985; Shephard 
and Broadhurst, 1983; Stoff et al., 1978). Rats quickly learn to 
discriminate 5-MeO-DMT from saline (Glennon et al., 1979, 
1982a, 1982b; Spencer et al., 1987), but not from another classic 
psychedelic, including partial generalisation with a more selective 
5-HT2A, 2B and 2C agonist 2,5-Dimethoxy-4-methylamphetamine 
(DOM) (Glennon et al., 1979, 1980, 1982a, 1982b; Spencer et 
al., 1987; Winter et al., 2000; Young et al., 1982). The 5-MeO-
DMT discriminative stimulus involves both 5-HT1A- and 5-HT2A-
mediated components, although the latter plays a less important 
role as the discriminative stimuli induces by 5-MeO-DMT are 
diminished by 5-HT1A antagonists (Schreiber and de Vry, 1993; 
Spencer et al., 1987; Winter et al., 2000). A signature behavioural 

Figure 2.  Metabolism of 5-MeO-DMT.
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response to 5-HT2A receptor stimulation and a behavioural mode 
of hallucinogenic effect in rodents, the head-twitch, is induced by 
5-MeO-DMT over a comparable dose range to 5-HT1A-mediated 
behaviours, is attenuated by selective 5-HT2A receptor antago-
nists and is absent in 5-HT2A-knockout mice (Halberstadt, 2016; 
Halberstadt et al., 2011; Matsumoto et al., 1997).

Other behavioural effects of 5-MeO-DMT are predomi-
nantly 5-HT1A mediated, although 5-HT2A receptor activation 
is also involved (Berendsen et al., 1989; Eison and Wright, 
1992; Halberstadt and Geyer, 2011; Krebs-Thomson et al., 
2006; Lucki et al., 1984; Smith and Peroutka, 1986; Tricklebank 
et al., 1985). Activity at the 5-HT2C receptor serves to modify 

some of the behavioural effects of hallucinogens (Halberstadt 
et al., 2011). 5-MeO-DMT dose dependently reduces locomo-
tor activity, reduces investigatory behaviour but induces fore-
paw treading, flat-body posture, Straub tail response and 
hindlimb abduction. This appears to be mainly mediated 
through 5-HT1A receptors, with some contribution of 5-HT2A 
receptors (Bedard and Pycock, 1977; Castellanos et al., 2020; 
Eide and Tjølsen, 1988; Halberstadt, 2016; Halberstadt et al., 
2008, 2011, 2012; Jiang et al., 2016b; Krebs-Thomson et al., 
2006; Matsumoto et al., 1997; Matthews and Smith, 1980; 
Rigdon and Weatherspoon, 1992; Smith and Peroutka, 1986; 
Tricklebank et al., 1985; Van den Buuse et al., 2011). 

Table 2.  Doses and routes of administration in different species.

Species References Threshold dose Effective dose High dose LD50

Goldfish Abramson et al. (1979) NA 5 µg IC for a 1.5–3 g 
fish

NA NA

Mouse* Jiang et al. (2016a, 2016b); Winter 
et al. (2011); Martin et al. (1985); 
Moser and Redfern (1985); Gillin et al. 
(1976); Ho et al. (1970); Benington  
et al. (1965)

NA 0.3–5 mg/kg IP, SC >8 mg/kg IP, IV
>32 mg/kg IP 
toxicity

75–115 mg/kg IP
48 mg/kg IV
113 mg/kg SC
278 mg/kg O

Rat* Halberstadt et al. (2008, 2012); Krebs-
Thomson (2006); Critchley and Hand-
ley (1987); Winter and Petti (1987); 
Gudelsky et al. (1986); Tricklebank 
et al. (1985); Trulson and MacKenzie 
(1981); Bedard and Pycock (1977)

<0.1 mg/kg IP, SC 0.5–2 mg/kg IP, SC >3 mg/kg IP NA

Gerbil Eison and Wright (1992) 0.5 mg/kg SC NA 8 mg/kg SC NA
Guinea-pig Evenden (1994); Nielsen (1998) NA 1–10 mg/kg SC NA NA
Hamster Richter and Löscher (1995) NA 1–4 mg/kg IP >5 mg/kg IP NA
Rabbit Romano et al. (2010) NA 0.29 mg/kg NA NA
Cat Trulson and Jacobs (1979); Benington 

et al. (1965)
0.025 mg/kg IM 0.25–0.5 mg/kg IM

0.1–0.3 IV
>1–5 mg/kg IM, IV, 15 mg/kg IM

Dog Gessner et al. (1961) NA 0.1 mg/kg IV NA NA
Sheep Bourke et al. (1990); Bourke et al. 

(1988); Gillin et al. (1976); Gallagher 
et al. (1964)

0.02 mg/kg IV
>18 mg/kg O

0.1–0.7 mg/kg IV
40 mg/kg O

>1 mg/kg IV
>40 mg/kg O

1–5 mg/kg IV
1–2 mg/kg SC
85 mg/kg O

Pig Löscher et al. (1990) NA 0.5–1.8 mg/kg IV NA NA
Grivet monkey Nielsen (1985) NA 0.45 mg/kg SC NA NA
Stumptail ma-
caque monkey

Schlemmer and Davis (1981, 1981); 
Schlemmer et al. (1977)

0.05 mg/kg IM 0.1–0.25 mg/kg IM NA NA

Rhesus monkey Gillin et al. (1976) >0.1 mg/kg IV 0.25 mg/kg IV 8–16 mg/kg IV NA
Human Erowid (2021); Metzner (2013); 

Shulgin and Shulgin (1997); Ott 
(2001); Davis et al. (2018); Uthaug et 
al. (2020a)

1–2 mg S
3–5 mg IN
0.25 mg IV

2–10 mg S
5–15 mg IN
10 mg SL
10–30 mg O
0.5–2 mg IV
1.4–10 mg IM

10–20 mg S
10–25 mg IN
>30 mg O
>2 mg IV

NA

IC: intracranial; IM: intramuscular; IN: intranasal; IP: intraperitoneal; IV: intravenous; MAOI: monoamine oxidase inhibitor; NA: information not available; O: oral; S: 
smoked or vapourised; SC: subcutaneous; SL: sublingual.
Minimal (or threshold) dose is defined as the dose after which any difference in behaviour or physiology compared to baseline is observed. Effective dose is defined in a 
similar way to ED50 and reliably produces hallucinogenic-like and other characteristic behavioural effects in animal models. High dose is the one leading to marked sero-
tonin syndrome or other serious adverse effects. Note that these dose ranges are an approximation, depend on particular behaviour/task, and in some species based on 
only one or two studies and drug administrations. The species differences could be due to the pharmacokinetics and metabolism differences, as well as the physiology of 
the specific animal models. It is also likely that direct mg/kg comparison is not appropriate across species and interspecies scaling factor is necessary for the meaningful 
comparison.
*Representative references, selecting studies containing multiple doses.
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5-MeO-DMT at high doses inhibits shock-elicited fighting in 
rats (Walters et al., 1978). 5-MeO-DMT at medium doses stim-
ulates male sexual behaviour in rats (Ahlenius and Larsson, 
1991; Kolbeck and Steers, 1992; Rényi, 1986a, 1986b). See 
Table 3 for the full list of behavioural effects in different ani-
mal models.

Neurobiological effects

In a healthy volunteer field study evaluating EEG and psyche-
delic experience correlates, Acosta-Urquidi observed that 
smoked 5-MeO-DMT suppressed alpha frequencies acutely, 
followed by a rebound increase in alpha-power ~20 min post 
inhalation. The time course and intensity of the subjective expe-
rience correlated with the magnitude of the observed EEG 
effects (Acosta-Urquidi, 2015). Other effects were an emergent 
increase in the delta/theta power. The findings are broadly con-
sistent with those from a DMT study (Timmermann et al., 
2019).

Riga et al. (2016, 2014, 2018) have investigated the neurop-
harmacology of 5-MeO-DMT in various rodent models and pro-
pose that effects on medial prefrontal cortex (mPFC) oscillatory 
activity and cortico-thalamic coherence underpin its antidepres-
sant-like effect. 5-MeO-DMT disrupted low-frequency mPFC 
oscillations in a similar way to other 5-HT2A-mediated classic 
psychedelics and decreased blood oxygen level–dependent 
(BOLD) responses in visual cortex (V1) and mPFC. The effects 
observed in both normal and 5-HT2A knockout mice were 
reversed by a 5-HT1A receptor antagonist, indicating the impor-
tance of 5-HT1A receptors in the effects of 5-MeO-DMT (Riga et 
al., 2016, 2018). In rats, 5-MeO-DMT altered the frequency and 
pattern of firing of level V pyramidal neurons in mPFC and 
reduced the amplitude of low-frequency oscillations (Riga et al., 
2014).

Winne et al. (2020) found that pre-treatment with 5-MeO-
DMT prevented anxiety-like behaviour (measured in the open 
field test and elevated plus maze) and abnormal neural activity 
(increase in theta 2 and slow gamma oscillations in the hip-
pocampus and mPFC) triggered by tinnitus in mice.

Lima da Cruz et al. demonstrated that 5-MeO-DMT 
increases neuronal progenitor cell proliferation and survival in 
the mouse hippocampus. A single dose of 5-MeO-DMT 
increased the number of progenitor cells in the dentate gyrus, 
which survived better and matured faster (i.e. had more com-
plex dendrites and greater capacity for high-frequency firing) 
compared to those of saline-treated animals (Lima da Cruz et 
al., 2018).

Earlier studies examined the effects of 5-MeO-DMT on cat 
and rat neuron firing in the central and peripheral nervous sys-
tems. Generally, 5-MeO-DMT in cats produces a rapid, dose-
dependent inhibition of 5-HT neuronal activity (Adrien and 
Lanfumey, 1986; Fornal et al., 1985, 1994; Heym et al., 1982; 
Jacobs et al., 1983; Kodama et al., 1989; Rasmussen et al., 1984; 
Trulson et al., 1984a, 1984b) and antiepileptic effects (Wada et 
al., 1992). 5-MeO-DMT increases the excitability of several 
types of spinal neurons, including motoneurons, and conse-
quently influences the locomotor pattern as well as the reflex 
responsiveness in cats with severed spinal cords (Barbeau and 
Rossignol, 1990). In rats, 5-MeO-DMT dose dependently 
increases the activity of motoneurons through 5-HT2 receptors, 

but it has an inhibitory action on the pathway of the monosynap-
tic reflex (Yamazaki, 1992).

Cardiovascular effects

Psychedelics may increase heart rate and blood pressure via the 
sympathomimetic effects of 5-HT2A receptor agonism. 5-HT1A 
agonists however, decrease blood pressure and heart rate via 
peripheral vasodilation and vagus nerve stimulation (Dabiré, 
1991; Kaumann and Levy, 2006). In healthy anaesthetised dogs 
and cats, 0.1 mg IV 5-MeO-DMT had a triphasic effect on blood 
pressure; an immediate rapid fall, followed by a brisk rise and 
finally a more prolonged fall (Gessner et al., 1961). A modest 
biphasic blood pressure response, with initial dose-dependent 
increase followed by a decrease, accompanied by a slight 
decrease in heart rate has also been demonstrated in rats (Dabiré 
et al., 1987). Bradycardia was also observed in rhesus monkeys, 
but otherwise electrocardiography measures were normal with 
doses up to 8 mg/kg. However, it is important to note that in addi-
tion to the direct cardiovascular effects described above, there are 
also likely to be indirect, psychosomatic effects of anticipating or 
having an intense psychedelic experience.

5-MeO-DMT, like psilocybin, binds to 5-HT2B receptors 
(Halberstadt et al., 2012). Some 5-HT2B agonists are associated 
with valvular heart disease (Roth, 2007; Rothman et al., 2000). 
However, to date, no research studies link classic psychedelic use 
and valvular heart disease. Any potential toxicity would likely be 
dose and frequency dependent.

Thermoregulatory effects

Stimulation of different 5-HT receptors can have opposing 
effects on thermoregulation: Hypothermia can be triggered by 
5-HT1A receptor agonists while 5-HT2A stimulation can cause 
hyperthermia (Gudelsky et al., 1986a, 1986b). 5-HT2A receptor-
related vasoconstriction is thought to be a main effector site of 
serotonergic thermoregulation (Ootsuka et al., 2004). Using an 
experimental drug administration and mathematical pharma-
cokinetic/pharmacodynamic (PK/PD) model, Jiang et al. 
(2016b) demonstrated that 5-MeO-DMT induces transient 
hyperthermia in mice. However, another study showed that 
3 mg/kg 5-MeO-DMT reduced tail-skin temperature in mice by 
1.8°C (Eide and Tjølsen, 1988). In rats, 5-MeO-DMT has a non-
linear effect on body temperature: at low (0.5–1.0 mg/kg) doses 
causing hypothermia but hyperthermia at high doses (3–10 mg/
kg). The hyperthermic effect may be completely attenuated or 
even converted into hypothermia by the 5-HT2A antagonist, ket-
anserin (Gudelsky et al., 1986a, 1986b). 5-MeO-DMT at 0.5–
1.8 mg/kg also caused hyperthermia in pigs. Administration of 
higher doses to pigs genetically susceptible to malignant hyper-
thermia was fatal (Löscher et al., 1990).

Effects on nociception

The analgesic effects of 5-MeO-DMT are also non-linear: 
Nociception in rats is enhanced after very low doses (1.6–25 µg) 
and then becomes biphasic at medium doses (hyperalgesia fol-
lowed by analgesia at 50–100 µg) and reduced after higher doses 
(400 µg) of 5-MeO-DMT (Berge et al., 1980).
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Endocrine effects

5-MeO-DMT causes increased prolactin levels, dose depend-
ently in both male and female rats (Carlsson and Eriksson, 1986; 
Meltzer et al., 1978; Seeman and Brown, 1985), although there is 
one report of a biphasic response, with initial increase followed 
by decrease (Simonovic and Meltzer, 1983). Repeated adminis-
tration of 5-MeO-DMT (5 mg/kg, every 3 h for a total of four 
injections) potentiated its prolactin-releasing effect (Simonovic 
and Meltzer, 1979).

A prospective examination of 5-MeO-DMT inhalation in 
humans demonstrated that a single inhalation of 5-MeO-DMT 
increases cortisol levels in saliva (Uthaug et al., 2020b).

Immunological effects

5-MeO-DMT can modulate immune responses in human primary 
immune cell cultures (Szabo et al., 2014). Treatment of immune-
challenged, human monocyte-derived dendritic cells with 
5-MeO-DMT resulted in a marked decrease in gene expression 
and secretion of various inflammatory cytokines and chemokines 
(IL-1β, IL-6, IL-8 and TNF-α), while strongly increasing the lev-
els of the cytokine interleukin-10 (IL-10), an anti-inflammatory 
cytokine, mediated via the σ-1 receptor. In two different models, 
5-MeO-DMT had strong immune modulating effects, with no 
impact on antibody production, immune homeostasis interleu-
kins IL-4, IL-5 or T helper 2 cells. In a human study, a single 
inhalation of 5-MeO-DMT decreased the levels of circulating 
IL-6 (Uthaug et al., 2020b).

Effects on gene expression

Dakic et al. (2017) studied the effects of 5-MeO-DMT on pro-
teins in human brain organoids. Using mass spectrometry and 
shotgun proteomics, they identified more than 900 proteins (out 
of ~6700 sampled) differentially expressed after treatment with 
5-MeO-DMT. These proteins impact anti-inflammatory effects, 
long-term potentiation, the formation of dendritic spines, micro-
tubule dynamics and cytoskeletal reorganisation.

Drug interactions

Jiang et al. (2013) examined 5-MeO-DMT interactions with 
MAOA inhibitors. Coadministration of even a relatively low dose 
of harmaline (an inhibitor of monoamine oxidase) readily blocks 
MAOA-dependent elimination in mice, shifting 5-MeO-DMT 
metabolism to alternative pathways such as O-demethylation. 
This leads to a greater rate of conversion to bufotenine and sig-
nificantly extends systemic and central exposure to 5-MeO-DMT 
(Halberstadt, 2016; Halberstadt et al., 2008, 2012; Jiang et al., 
2016b; Shen et al., 2010b). In contrast, chronic treatment with 
MAO inhibitors suppresses response to 5-MeO-DMT in rodents 
(Gudelsky et al., 1986b; Lucki and Frazer, 1982).

Potential drug interactions with tetrahydrocannabinol (THC), 
mitragynine, lithium, haloperidol, benzodiazepines and antidepres-
sants have been investigated in rodents. Small doses of 5-MeO-
DMT rescue memory impairments produced by THC (Egashira et 
al., 2002). Mitragynine suppresses 5-MeO-DMT-induced head-
twitch response in mice (Matsumoto et al., 1997). Chronic lithium 

treatment potentiates the serotonin behavioural syndrome in rats, 
particularly flat posture and tremor but attenuates head-twitch and 
‘wet-dog shake’ response (Goodwin et al., 1986a, 1986b; Harrison-
Read, 1979; Kofman and Levin, 1995). Acute benzodiazepine treat-
ment potentiates 5-MeO-DMT-induced head-twitch response 
(Moser and Redfern, 1988), but attenuates hyponeophagia 
(Shephard and Broadhurst, 1982). Chronic administration of tricy-
clic antidepressants consistently attenuates 5-MeO-DMT-induced 
analgesia (Danysz et al., 1986), head-twitch response (Friedman et 
al., 1983; Metz and Heal, 1986) and behaviour response (Stolz et 
al., 1983). However, enhanced responsiveness to 5-MeO-DMT was 
observed upon 24–48 h withdrawal from the last dose of some tricy-
clic antidepressants (Friedman et al., 1983; Stolz et al., 1983). 
Chronic treatment with fluoxetine, a selective serotonin reuptake 
inhibitor, reduced response to 5-MeO-DMT, which remained atten-
uated for 3 days following fluoxetine withdrawal (Stolz et al., 1983) 
and, in a different study, continued to be attenuated until day 9, 
returning to control levels on day 14 (Rényi et al., 1986b). 
Citalopram inhibited response to 5-MeO-DMT acutely, but had no 
effect after 4 h to 7 days (Rényi et al., 1986b). Acute fluoxetine 
enhanced response to 5-MeO-DMT (Winter, 1999). Chronic halop-
eridol treatment had no effect on 5-MeO-DMT response (Friedman 
et al., 1983).

Toxicology

The LD50 in sheep is 1 mg/kg (see Table 2), ranges from 48 to 
278 mg/kg in mice (depending on route of administration) (Gillin 
et al., 1976; Ho et al., 1970) and in cats is 15 mg/kg (Benington et 
al., 1965).

There have been studies of 5-MeO-DMT toxicity in mice, rats, 
cats, sheep and monkeys (Benington et al., 1965; Gillin et al., 
1976). High doses of 5-MeO-DMT produce ataxia, mydriasis, 
head nodding, lateral head weaving, tremor, convulsions, shiver-
ing, tachycardia and loss of consciousness and in toxic doses res-
piratory failure (Grahame-Smith, 1971; Lucki et al., 1984).

Tolerance

Tolerance develops to some (but not all) behavioural and physi-
ological effects of 5-MeO-DMT in rats, cats and monkeys. 
Studies with once-daily dose regimens reported no tolerance to 
5-MeO-DMT-induced changes in neuronal activity in the raphe 
nucleus (Larson, 1984) or ataxia, decrease in movement and 
unresponsiveness to loud noise/touch in rhesus monkeys (Gillin 
et al., 1976). No tolerance was observed in behavioural effects in 
macaque monkeys administered 0.25 mg/kg IM 5-MeO-DMT 
every day for 8–12 days. With more frequent drug administration 
of 0.25 mg/kg IM 5-MeO-DMT administered every 30 min for 9 
and 26 h subsequently, tolerance developed to limb jerks, body 
shakes and checking behaviour and persisted for 26 h (Heinze et 
al., 1983; Schlemmer and Davis, 1986). Likewise, when 5-MeO-
DMT was administered every 30 min for 4 h (at 2 mg/kg IP) to 
rats, tolerance to the serotonergic behavioural syndrome devel-
oped and persisted for 4 h (Trulson and Keltch, 1985). Chronic, 
frequent administration of 5-MeO-DMT diminishes the respon-
siveness of 5-HT1A receptor-mediated changes in body tempera-
ture and corticosterone secretion without altering the responses 
mediated by 5-HT2 receptors (Nash et al., 1989).
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Physical dependence or withdrawal signs have not been 
reported in any of the repeated dose-administration studies 
(Gillin et al., 1976; Larson, 1984; Nash et al., 1989; Schlemmer 
and Davis, 1986; Sills et al., 1985; Trulson and Keltch, 1985).

Abuse potential and prevalence of use

No studies have investigated whether laboratory animals self-
administer 5-MeO-DMT. However, similar studies with other 
classical psychedelics failed to induce self-administration, or did 
so only marginally and transiently (Fantegrossi et al., 2004; 
Yanagita, 1986). There is evidence that 5-HT2C receptor agonists 
possess anti-addictive properties (Canal and Murnane, 2017).

5-MeO-DMT is not specifically mentioned by the United 
Nations Office on Drugs and Crime (2020) World Drug Report or 
the European Drug Report of the European Monitoring Centre for 
Drugs Drug Addiction (EMCDDA, 2019) or the Global Drug 
Survey (GDS, 2020; Global Drug Survey, 2021). When it is men-
tioned, it is often subsumed under the moniker of ‘novel psycho-
active substances’, rendering estimation of prevalence of use 
problematic. A large annual cross-sectional population survey in 
the United States, National Survey on Drug Use and Health 
(NSDUH), includes data on 5-MeO-DMT (see Supplementary 
Information). Over the last 18 years (2002–2019) and 722,653 
total respondents aged 12 and older, 33 and 13 respondents 
(0.0046% and 0.0018% unweighted estimate) reported the life-
time use of 5-MeO-DMT or bufotenine/toad secretions, respec-
tively (Substance Abuse Mental Health Services Administration 
(SAMHSA), 2021a), and the rates of reporting were steady at 2–3 
per year (Palamar and Le, 2019). Because of rarity and possible 
underreporting, it is difficult to accurately extrapolate prevalence 
in the general population, but the estimate is around 0.003% for 
5-MeO-DMT (Palamar and Le, 2019; SAMHSA, 2021a; Sexton 
et al., 2020). According to a survey of Australian ecstasy users, 
only 2% have ever tried 5-MeO-DMT (Bruno et al., 2012).

It is likely appropriate to consider 5-MeO-DMT to have lim-
ited abuse liability given anecdotal reports of behaviourally 
impairing effects (i.e. intoxicating effects that could result in 
harm) similar to other classic psychedelic compounds (Johnson 
et al., 2018).

Epidemiological studies of human 
recreational/spiritual use

There are no published human clinical trials of 5-MeO-DMT. 
The published data include a case report of improved outcome 
measures following sequential administration of ibogaine and 
5-MeO-DMT in a veteran with alcohol use disorder (Barsuglia et 
al., 2018); epidemiological studies and surveys of recreational/
spiritual/medicinal use (Barsuglia et al., 2018; Davis et al., 2018, 
2019, 2020; Lancelotta and Davis, 2020; Palamar and Acosta, 
2020; Uthaug et al., 2019, 2020a, 2020b); and accounts of self-
experimentation and recreational/spiritual use (Erowid, 2021; 
Metzner, 2013; Ott, 2001; Shulgin and Shulgin, 1997).

Reported recreational dose ranges are inhalation: ~6–20 mg; 
intravenous injection: ~0.7–3.1 mg; sublingual or intranasal 
routes: ~10 mg; intramuscular: ~5–10 mg; and oral: ~10–30 mg; 
although Shulgins report it is inactive without a MAO inhibitor 
(Erowid, 2021; Ott, 2001; Shulgin and Shulgin, 1997). 

5-MeO-DMT has a rapid onset when smoked or vapourised: 
effects peak in 2–5 min, last 15–20 min and return to baseline by 
30 min (Davis et al., 2018a). Insufflated, the experience lasts 
longer, up to 45 min, and the onset is slower (5–7 min) (Metzner, 
2013). Users report that smoking/vaporising 5-MeO-DMT elicits 
more intense effects compared to most other psychedelics 
(Barsuglia et al., 2018; Davis et al., 2018). Although no qualita-
tive studies so far directly compared phenomenology of 5-MeO-
DMT-elicited experience with other short-lasting psychedelics 
frequently referred to as intense, such as DMT or Salvia divino-
rum, anecdotal reports describe that 5-MeO-DMT feels very dis-
tinct. The subjective experience is generally described as 
transcendent, often involving ego-dissolution, non-dual aware-
ness and an increased range and intensity of emotions, spanning 
the feeling of love, unity and awe to panic and terror. Notable is 
the frequent absence of visual effects (Erowid, 2021). It is pos-
sible that the absence of visual effects is due to 5-HT1A receptor 
action, as it was demonstrated that 1A receptor agonists reduce 
visual imagery induced by psilocybin (Pokorny et al., 2016). In 
contrast to highly detailed DMT or salvia trips, users of 5-MeO-
DMT often describe content-free experiences, associate with loss 
of sense of self and bodily awareness, and sensory deprivation 
(described as all-white light, or all-black), with common descrip-
tors such as: ‘emptiness’, ‘nothingness’ or ‘void’ (Millière et al., 
2018). Dose, set and setting have considerable impact on the per-
ceptual and emotional experience and, in common with all 
psychedelics, adequate preparation has been reported to be 
important (Lancelotta and Davis, 2020; Metzner, 2013). 
Anecdotal reports and surveys indicate that repeated dosing with 
5-MeO-DMT is possible, with almost no desensitisation or toler-
ance to psychedelic effects reported (Davis et al., 2018; Trout, 
2007; Uthaug, 2020a, 2020b).

Retrospective surveys examined 5-MeO-DMT patterns of 
use, motivations for consumption, subjective effects and poten-
tial benefits and consequences associated with use. It is worth 
noting that survey data is likely biased towards positive outcomes 
due to selection bias.

The main reasons for trying 5-MeO-DMT were spiritual 
exploration (68%), recreation (18%) or healing (14%); most peo-
ple used it less than 4 times in their life (59%). 90% reported 
positive and/or transcendent experiences, 57% fit the criteria for 
complete mystical experience (scored as reaching ⩾60% on each 
of the subscales of the Mystical Experience Questionnaire, 
MEQ-30; Barrett et al., 2015) with around 37% having challeng-
ing experiences (measured by the Challenging Experience 
Questionnaire; Barrett et al., 2016; Davis et al., 2018a).

In a subsequent survey, Davis et al. (2019) collected self-
report measures of depression and anxiety in 362 people who 
took 5-MeO-DMT in a group setting. Of those diagnosed with 
depression (41%) or anxiety (48%), most reported these condi-
tions were improved (depression = 80%; anxiety = 79%) follow-
ing 5-MeO-DMT use, and fewer reported they were unchanged 
(depression = 17%; anxiety = 19%) or worsened (depression = 3%; 
anxiety = 2%). Associations were reported between improvement 
in depression/anxiety, and greater intensity of mystical experi-
ences (as measured by MEQ-30) and higher ratings of the spirit-
ual significance/personal meaning of the 5-MeO-DMT 
experience (Davis et al., 2019). Moreover, supportive setting in a 
group was associated with much higher ratings of complete mys-
tical experience – 83%, compared to 54% of respondents who 
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had 5-MeO-DMT experience in the recreational setting, and 
inverse relationship was noted for challenging experiences 
(Sepeda et al., 2019).

Several countries where 5-MeO-DMT is unregulated offer 
retreats and treatment programmes. A survey of 51 US Special 
Operations Forces Veterans from one such retreat, with combined 
5-MeO-DMT and ibogaine treatments, indicated the experience 
was therapeutic for their traumatic experiences, suicidal ideation, 
depression and anxiety (Davis et al., 2020). Another case study 
presents brain imaging data from one participant (31-year-old 
military veteran with alcohol use disorder) of a similar treatment 
centre in Mexico (Barsuglia et al., 2018). Single-photon emission 
computed tomography (SPECT) neuroimaging after treatment 
with ibogaine and 5-MeO-DMT showed increases in brain perfu-
sion in bilateral caudate nuclei, left putamen, right insula, as well 
as temporal, occipital and cerebellar regions compared to base-
line. The patient reported improvement in mood, cessation of 
alcohol use and reduced cravings at 5 days post-treatment, effects 
which were sustained at 1 month, with a partial return to mild 
alcohol use at 2 months (Barsuglia et al., 2018). In a survey of 20 
individuals from the same retreat centre, 75% reported a ‘com-
plete mystical experience’, as measured by MEQ-30 (Barsuglia 
et al., 2018).

Two prospective studies examined the effects of vapourised 
5-MeO-DMT inhalation (11 participants) (Uthaug et al., 2020b) 
and the effects of toad secretions (42 participants) (Uthaug et al., 
2019). In both studies, compared to baseline, the ratings of mind-
fulness facets increased (measured with Five Facets Mindfulness 
questionnaire, FFMQ-15; Gu et al., 2016), while ratings of 
depression and anxiety decreased (measured with Depression, 
Anxiety and Stress scale, DASS-21 (Henry and Crawford, 2005) 
or with Brief Symptom Inventory, BSI-18 (Derogatis, 2001)) 
immediately after the session and remained so at follow up. 
Whether there are any potential clinical implications of this is 
unclear.

Acute adverse effects of 5-MeO-DMT reported in some of the 
above studies (Barsuglia et al., 2018; Davis et al., 2018, 2019; 
Uthaug et al., 2020b) include fear, sadness, anxiety, confusion, 
profound experience of one’s own death, crying, paranoia, shak-
ing/trembling, vomiting, nausea, transient headache, pressure or 
weight in the chest or abdomen and loss of body perception 
(Table 4). Dissociative experiences with memory loss (blackout) 
have been reported (Metzner, 2013). Delayed adverse effects (up 
to 1 week) included somatic tension in muscles, difficulties sleep-
ing, ‘flashbacks’ or ‘reactivations’ – re-experiencing some of the 
effects felt during the drug session (Uthaug et al., 2020a, 2020b), 
and in rare cases – psychosis (Metzner, 2013; Sauras Quetcuti et 
al., 2019; Shulgin and Shulgin, 1997). In an online retrospective 
survey, flashbacks were reported as more common with higher 
doses and with vaporised rather than intramuscular administra-
tion (Uthaug et al., 2020a).

In the published mortality and morbidity reports mentioning 
5-MeO-DMT, it had been taken as toad secretions, concurrently 
with other drugs of abuse or together with monoamine oxidase 
inhibitors (MAOIs). One of the earliest toxicity reports is of a 
5-year-old child hospitalised with profuse salivation and continu-
ous seizures after licking Incilius alvarius toad (Hitt and Ettinger, 
1986). A 17-year old was hospitalised with extreme agitation, 
hyperthermia, tachycardia and rhabdomyolysis after consuming 
5-MeO-DMT and the MAOI harmaline (Brush et al., 2004). 

There are reported fatalities, including a 25-year old who ingested 
ayahuasca with 5-MeO-DMT (Sklerov et al., 2005).

There are no reports of deaths related to 5-MeO-DMT from 
the Office for National Statistics (2020) (England and Wales), 
DAWN 2011 report/2020 preliminary data (Drug Abuse Warning 
Network, SAMHSA, 2021b), the Report of the American 
Association of Poison Control Centers’ National Poison Data 
(Gummin et al., 2020) or the National Programme on Substance 
Abuse Deaths (NPSAD, 2021). This could be because use is still 
relatively limited, the toxicity is very low, this substance is not 
routinely tested for and/or because 5-MeO-DMT is not included 
in most national databases or epidemiological surveys (Palamar 
and Le, 2019).

Discussion
In this review we have summarised and synthesised the data on 
5-MeO-DMT thus far to inform controlled clinical trials of its 
basic safety, pharmacokinetic and pharmacodynamic profiles in 
humans.

5-MeO-DMT is a naturally occurring tryptamine derivative 
found in gland secretions of the Sonoran Desert toad, in a variety 
of plants, and endogenously in mammals. It is also available as a 
pure compound. There have been no published laboratory studies 
in humans on the effects of 5-MeO-DMT, except for a case study 
with a single individual (Barsuglia et al., 2018).

Animal studies have demonstrated paradoxical (non-linear or 
biphasic) effects of 5-MeO-DMT on pharmacokinetics, ther-
moregulation, nociception, heart rate and blood pressure. Dose 
finding studies with different routes of administration of 5-MeO-
DMT in humans are required to establish the therapeutic dose 
range and safety profile. The pharmacokinetic profile of the ther-
apeutic dose range in humans needs to be determined, as studies 
with rodents indicate that higher doses result in non-linear PK 
profile, and subjective effects at higher doses might depend on 
the CYP2D6 genotype.

The available data indicate that established safety measures 
for psychedelic research should be implemented for 5-MeO-
DMT human clinical trials. Concomitant use of MAOIs and lith-
ium should be avoided. Flashbacks or ‘reactivations’ have been 
reported in surveys of recreational use of psychedelics including 
5-MeO-DMT. Such effects have not been observed in clinical 
studies of psychedelics to date indicating the importance of 
screening, monitoring and other safety measures. Hallucinogen-
persisting perception disorder (HPPD) describes a nebulous set 
of symptoms persisting weeks, months or years after psychedelic 
use that are associated with anxiety or distress. The prevalence of 
HPPD is estimated to be very rare among classical psychedelic 
users (Halpern et al., 2018), with one estimate being that it is 
present in 1 in 50,000 psychedelic users (Grinspoon and Bakalar, 
1998). The clinical concept is sufficiently vague to make true 
estimate of prevalence very difficult. This is further complicated 
by recreational users taking psychedelics with other drugs includ-
ing alcohol. An analysis of people reporting symptoms of HPPD 
found that symptoms were more frequently preceded by use of 
non-psychedelic substances such as alcohol, tobacco and canna-
bis than by the use of psychedelics and that some individuals 
with these symptoms had never taken a psychedelic (Halpern et 
al., 2018). These data call into question whether HPPD is pecu-
liar to psychedelic use and suggest that it may instead constitute 
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a syndrome aetiologically related to many different psychoactive 
substances, occurring in those with a pre-existing vulnerability. A 
direct neurotoxic effect appears unlikely.

The therapeutic potential of 5-MeO-DMT is hypothetical, but 
intriguing. Surveys of recreational users suggest rapid anxiolytic 
and antidepressant properties not dissimilar to those being probed 
in early-phase studies of psilocybin and LSD, as well as later 
phase studies of ketamine and its analogues. 5-MeO-DMT shares 
similar pharmacology to other classical psychedelics; however, 
the specific pharmacokinetic and pharmacodynamic properties 
of the drug may confer clinical advantages. One of these is a 
short duration of action, which may require less healthcare 
resource utilisation and thus increasing access to treatment. 
Another is the absence of visual effects, which could be distract-
ing. Their absence might lead to higher rates of mystical experi-
ences. As such, it deserves further investigation as a putative 
rapid-acting antidepressant. A key step will be establishing a 
pharmacokinetic profile and safety profile of 5-MeO-DMT in 
healthy volunteers in a controlled trial design.

Conclusion
5-MeO-DMT is a short-lasting psychedelic substance with a 
unique subjective effect profile making it an intriguing com-
pound to research. The available data indicate the risk profile of 
5-MeO-DMT is similar to other classic psychedelics, such as 
psilocybin and that established safety precautions for psychedelic 
research be followed. A notable feature of 5-MeO-DMT is the 
reportedly high rates of the ego-dissolution and mystical experi-
ences, which in studies with other psychedelics are related to 
long-term positive therapeutic outcomes, calling for clinical 
exploration.
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