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Abstract Cardiovascular magnetic resonance (CMR) is a
versatile imaging modality that enables aetiological assess-
ment and provides additional information to that of standard
echocardiography in a significant proportion of patients with
heart failure. In addition to highly accurate and reproducible
assessment of ventricular volumes and replacement fibrosis,
multiparametric mapping techniques have rapidly evolved to
further expand the diagnostic and prognostic applications in
various conditions ranging from acute inflammatory and isch-
aemic cardiomyopathy, to cardiac involvement in systemic
diseases such as sarcoidosis and iron overload cardiomyopa-
thy. In this review, we discuss the established role of T2*
imaging and rapidly evolving clinical applications of myocar-
dial T2 mapping as quantitative adjuncts to established qual-
itative imaging techniques.
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Iron overload - Myocarditis - Sarcoidosis - Transplant
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Introduction

Cardiovascular magnetic resonance (CMR) has developed
over several decades from an ancillary research tool to an
evidence-based imaging modality that remains not only the
gold standard assessment of cardiac morphology and ventric-
ular function, but also has the additional benefit of in vivo
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tissue characterisation. Whilst limited in acutely decompen-
sated states where patients may not tolerate lying flat, CMR
plays a central role in the diagnostic evaluation and risk strat-
ification of patients with heart failure [1, 2].

Conventional CMR imaging

Biological systems of magnetic resonance imaging measure the
energy released by protons during the relaxation phase as they
recover back towards equilibrium after a radio-frequency pulse.
The relaxation consists of two types: recovery of the longitudinal
component of magnetisation (the T1 relaxation time) towards
equilibrium (‘spin-lattice’ coupling transferring energy out of
the nuclear magnetisation) and the decay of the measurable trans-
verse magnetisation (the T2 relaxation time) by irreversible ef-
fects (as opposed to others described later), known as spin-spin
coupling. The T1 and T2 values vary depending on the compo-
sition of different biological tissues, primarily increased by great-
er water content, and these fundamental differences form the
basis of intrinsic contrast used to generate images. Notably, cell
cytoplasm is usually more laden with large molecules and tends
to show shorter T2 than the usually purer interstitial fluid, al-
though this is usually combined within a single MRI voxel as a
complicated average [3, 4].

Conventional imaging is reliant upon qualitative visual
analysis of signal intensity on the acquired images, which
may be altered by adjusting the pulse sequence for T1 and
T2 weighting. For example, T2-weighted imaging has an
established role in depicting myocardial oedema due to the
effect of increased interstitial free water on lengthening T2
relaxation times with particular relevance to inflammatory
conditions, such as a myocarditis and sarcoidosis, and acute
ischaemic injury. Similarly, the presence of increased iron re-
duces T2 and T1 by local magnetic field distortion.
Myocardial image contrast can also be extrinsically modified
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through the intravenous administration of gadolinium contrast
agent, which usually remains extracellular, where T1-
weighted imaging shows areas of injured myocardium with
expanded extracellular space due to shortened T1 recovery
times. These findings have been confirmed by extensive his-
tological validation in past decades, with accumulating clini-
cal outcome-based studies also confirming prognostic signif-
icance, for example, in non-ischaemic dilated cardiomyopathy
[5].

However, signal intensity ratios in these conventional
CMR imaging sequences are displayed on an arbitrary grey
scale and therefore are not suited to quantitative measurement
or comparison between patients and serial examinations.
Subjective visual analysis susceptible to interobserver varia-
tion represents the main limitation of conventional CMR
imaging.

T2-STIR

T2-weighted imaging shows increased myocardial signal
from myocardial oedema based on the prolongation of the
T2 relaxation caused by the accumulation of interstitial water.
This was first demonstrated in 1983 in a canine model of acute
myocardial infarction [6]. T2 relaxation refers to the natural
interactions causing irreversible dephasing of transverse
magnetisation at atomic or molecular scale. Spin-echo se-
quences are used with a re-focusing (180°) radiofrequency
pulse to re-phase reversible loss of transverse magnetisation
due to local magnetic field inhomogeneity at larger scales,
which can be considered stationary over the relevant duration
involved during measurement. Signal from fat and the blood
pool is suppressed to improve image quality. Sequences typ-
ically use a short tau inversion recovery (STIR) nulled to
suppress the shorter T1 of fat with a double-inversion-
recovery method aiming to suppress blood signal, overall
known as ‘triple-inversion recovery,” in preparation for a fast
spin-echo sequence with T2 image contrast weighting identi-
fied loosely hereafter as T2-STIR. In this way, pronounced
contrast is created between bright oedema (longer T2) and
hypointense normal myocardium (shorter normal T2).
Preclinical and human studies have demonstrated a range
of clinical applications for this technique, for example, in
acute myocardial infarction and acute myocarditis (Fig. 1)
[7]. However, limitations are well known to include low
signal-to-noise ratio, loss of signal due to cardiac motion
(not only the spin-echo method but also the complex triple-
IR preparation sequence), imperfect blood suppression in
areas of slow blood flow and subjective visual interpretation.
Whilst focal T2 increases may be easily visualised as image
resolution of T2-STIR is finer than that of T2 mapping, larger
regions are more challenging as they are easily confounded by
myocardial signal darkening linked to motion and incorporate
many other uncontrolled factors in MRI signal brightness—as
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yet, no standardised calibration of MRI magnitude values is
routinely possible.

T2-STAR

T2* relaxation represents the inherent decay of transverse
magnetisation caused by a combination of spin-spin relax-
ation (T2) and magnetic field inhomogeneity (T2’), which
in modern systems is dominated by tissue diamagnetic
susceptibility-induced field distortions from the presence
of paramagnetic materials such as iron. Gradient echo
(GRE) sequences are optimised for T2* weighting by
using a low flip angle, long echo time (usually a series
of echo times (TE) to support T2* calculation) and, by
definition, will not include a refocusing pulse to correct
dephasing due to magnetic field inhomogeneity. A normal
mean T2* value of above 40 ms has been widely reported
in healthy volunteers [8]. The presence of increased tissue
iron results in faster T2* relaxation due to susceptibility-
induced field distortions, which reduces signal intensity
more rapidly as TE increases—this can be visualised as
darkening of myocardial (and liver) tissue proportional to
the iron concentration.

T2 mapping

T2 mapping, or T2 transverse relaxation time mapping, is
a technique used to construct a ‘parametric image’ or
‘map’ in which the intensity of each voxel is the output
of a calculation performed independently at each corre-
sponding spatial pixel from a series of input images.
The map value reflects the calculated T2 relaxation time
at each pixel. T2 maps can be analysed visually on a grey
(or colour) scale but can also be analysed quantitatively
by defining regions of interest relevant to the particular
pathology being studied. Various different sequences have
been used for T2 mapping. In principle, at least three
separate single-shot images are acquired at increasing T2
preparation times to construct a transverse relaxation
curve from these separate TE (Fig. 2) [9]. A long repeti-
tion time of two to four RR intervals is used to achieve
maximal T1 longitudinal recovery, which otherwise is ca-
pable of distorting the calculated T2 presented in the map
without any warning—caveat emptor certainly applies
[10]. Motion correction algorithms are often used given
that at least three T2-weighted images are acquired over
multiple heart beats during a single breath-hold.
Parametric mapping can be performed in any cardiac slice
and position, but most commonly, data is acquired on a
short-axis view at the basal and mid-ventricular level.
Long-axis views may also be acquired because short-
axis slices at the apical level are prone to partial volume
effects [11]. Other limitations include the need for
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Fig. 1 Standard Lake Louise
Criteria for acute myocarditis
showing focal regions of
myocardial oedema on T2-STIR,
reactive hyperaemia on early
gadolinium enhancement (EGE)
and myocyte necrosis/fibrosis on
late enhancement (LGE) in the
inferolateral wall (arrowed)

T2-STIR

increasing the number of RR intervals between each ac-
quisition at faster heart rates to allow complete T1 relax-
ation [12].

T2 mapping gives access to global T2 changes as well as
to nominally measured values for T2 rather than an uncali-
brated T2-STIR report. However, the measurement is subject
to sequence parameters without a standard, requiring care
against changes. For example, some but not all protocols
include a T2 preparation image at 0 ms to avoid potential
errors invoked by the T2 preparation. As mentioned earlier,
the spatial imaging resolution of T2-STIR is finer than T2
mapping and this could be important for detailed focal dis-
ease visualisation on T2 maps. In this review, we will eval-
uate the expanding role of T2 mapping in the assessment of
patients with heart failure, which we predict will follow a
similar trajectory as T2* imaging for iron overload, from a
specialist research technique to a clinically validated tool in
widespread general use.

T2* and iron overload cardiomyopathy

Heart failure due to iron overload is the most common
cause of death in patients with thalassaemia major
worldwide [13]. However, this form of cardiomyopathy
is reversible with prompt initiation of chelation therapy.
Serum ferritin does not provide a reliable indication of
cardiac iron and conventional imaging techniques to
monitor ejection fraction are limited by the late onset
of ventricular dysfunction, which only becomes apparent
after significant iron deposition has occurred [14]. High
cardiac output states seen in chronic anaemia can also
mask ventricular dysfunction in some patients. Invasive
approaches include endomyocardial biopsy, but this
technique is limited by sampling error and is not ideal
for serial monitoring, whilst hepatic iron concentration
does not give a reliable indication of cardiac iron in
cross-sectional studies [15].
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Fig. 2 Principles of T2 mapping with different T2 preparatory durations
with a long repetition time between the used cardiac cycles, crucial to
allow as complete T1 recovery as possible, followed by reconstruction of
the transverse relaxation curve in each pixel assuming satisfactory
registration. T2 is defined as the time in milliseconds by which the

Echo time (TE)

transverse magnetisation has decayed to 37% of the original value.
Many distorting factors are not illustrated, and many T2 mapping
sequences ‘fill the gaps’ with gradient activity without RF, so that the
patient does not consider the scan complete and start breathing too early
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Iron assessment by T2* relies on the measurement of
T2* relaxation from GRE sequences. When the storage
capacity of ferritin is exceeded, iron is deposited in myo-
cardial and hepatic tissue as particulate haemosiderin,
which is a form of ferrihydrite (hydrated iron oxide).
This disrupts the local magnetic field homogeneity short-
ening T2* values with progressive ventricular dysfunction
occurring below a T2* threshold of 20 ms [15]. T2*
values in the mid-septum have been calibrated to myocar-
dial tissue iron levels in [Fe] milligrams per gram dry
weight and indicate a strong inverse linear relationship
[8]. Based on a study of 652 thalassaemia patients, T2*
was <10 ms in 98% of patients who developed heart fail-
ure with the likelihood of left ventricular dysfunction in-
creasing progressively with lower T2* values: 14% at 8-
10 ms, 30% at 6—8 ms and 47% at <6 ms (Fig. 3) [16]. In
addition, T2* <20 ms conferred an overall relative risk for
arrhythmia (atrial and ventricular) of 4.6 (95% confidence

200{=

interval, 2.66 to 7.95), which also increased using similar
increments in T2* [16].

T2* has also effectively been used to monitor treat-
ment response and assess the efficacy of iron chelation
in a number of randomised trials [17]. Improvement in
myocardial T2* and left ventricular ejection fraction has
consistently been observed with oral deferiprone [18]
and intravenous desferrioxamine chelation therapy [19].
In cases of severe cardiac iron loading, or when LV
function is impaired, a combined treatment approach
may also be used [20].

T2* monitoring is now internationally recommended
based on these studies in the annual monitoring of
transfusion-dependent patients at risk of developing
myocardial iron loading [21]. In this way, T2* imaging
of cardiac iron loading has progressed from a research
technique to a clinically validated tool and has trans-
formed clinical outcomes in {3-thalassaemia major [22].
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Fig. 3 T2* transverse relaxation curves in three separate patients with mild >14 ms (a), moderate 1014 ms (b) and severe <6 ms (c) iron overload.
Black blood T2* imaging is used rather than white blood due to superior reproducibility and reduced imaging artefact [61]
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T2 mapping and acute inflammatory
cardiomyopathy

Acute inflammatory cardiomyopathy is a clinical entity that gen-
erally requires endomyocardial biopsy to allow assessment of
disease activity, characterised by the presence of myocardial oe-
dema arising from inflammation-related increased capillary leak-
age. Whilst T2 mapping techniques have not received the same
focus as T1 mapping in heart failure [23], a growing evidence
base indicates that T2 mapping may potentially provide a valu-
able clinical tool for the non-invasive assessment of myocardial
inflammation [24]. Acute inflammatory cardiomyopathies are
discussed in the following sections:

Acute myocarditis

Myocarditis is an inflammatory disease of the myocardium
which accounts for 12% of all sudden cardiac deaths on
post-mortem studies [25]. Spontaneous recovery of left ven-
tricular function occurs in two thirds of patients but progres-
sive left ventricular dilatation and systolic dysfunction leading
to dilated cardiomyopathy (DCM) occur in the remainder
[26]. In the acute setting, CMR is established as the imaging
tool of choice capable of assessing the distribution, nature and
severity of myocardial disease including (i) interstitial oede-
ma, (ii) hyperaemia and inflammatory infiltration and (iii)
myocyte necrosis and replacement fibrosis [27]. These fea-
tures form the CMR Lake Louise Criteria (LLC, Fig. 1) with
a diagnostic accuracy of 78% (sensitivity 67%, specificity
91%) when at least two out of three features are present
[28]. However, these criteria represent qualitative variables that
may be present or absent, guided by a threshold enhancement
ratio of >2 of myocardium relative to skeletal muscle for inter-
stitial oedema and >4 for hyperaemia. Endomyocardial biopsy
represents the gold standard tool for the assessment of acute
myocarditis [29]. However, this invasive procedure confers a
small but tangible risk and is further limited by sampling error
due to the focal nature of inflammatory infiltrates [30].

T2-STIR

Fig. 4 T2-STIR and T2 mapping at the basal short-axis level in a patient
with acute myocarditis affecting the inferoseptal wall. Some caution
would be required in cardiac walls adjoining the lung, particularly the

Endomyocardial biopsy performed in a biventricular manner
has the greatest yield but is still only ‘positive’ in ~70% of
patients [31] meeting diagnostic criteria for myocarditis by cur-
rent guidelines [32].

Whilst acute inflammatory cardiomyopathies, such as
myocarditis, may be assessed by conventional T2-STIR se-
quences, quantitative mapping techniques allow greater delin-
eation and may reveal myocardial injury not seen on conven-
tional imaging sequences (Fig. 4). T2 mapping was found to
reliably detect myocardial involvement extending beyond
areas identified by T2-STIR and late gadolinium enhancement
with a threshold cut-off value of >59 ms in 30 patients with
clinically suspected acute myocarditis [12] and >60 ms in 16
patients with biopsy-confirmed acute myocarditis [33]. The
diagnostic performance of T2 mapping was comprehensively
studied in a prospective cohort of 129 patients with biopsy-
proven acute myocarditis [34]. Diagnostic accuracy with T2
mapping was found to be 81%, which was superior to stan-
dard LLC (56%), and this remained true both in the acute and
chronic (>14 days) settings. Further studies are underway,
including new methods for segmental analysis and mean ab-
solute pixel standard deviation as a measure of tissue inhomo-
geneity [35], with an emphasis on defining the prognostic
significance of elevated T2 values on functional recovery
and clinical outcomes.

Myocarditis vs idiopathic dilated cardiomyopathy

Patients with myocarditis often present with recent-onset heart
failure with ongoing low-level myocardial inflammation [32].
In these patients, considerable overlap exists in terms of
presentation with idiopathic DCM. In a study of patients with
recent-onset heart failure (median time interval of 27
days from symptom onset to presentation), those with
biopsy-confirmed active myocarditis had significantly
elevated mean global myocardial T2 values compared to those
with normal biopsies [33]. There were no other significant
differences between groups in terms of baseline

inferolateral wall, due to BO distortion effects in some types of sequence,
particularly at 3-T field strengths. The late gadolinium enhancement
image is provided for reference
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demographics, LV ejection fraction (mean 30%), troponin and
BNP levels. A global myocardial T2 value of >60 ms was also
suggested as the optimal cut-off threshold for active myocar-
ditis, consistent with previous studies [12, 33, 34]. From these
observations, a global myocardial T2 value of <59-60 ms at
1.5 T may be used to rule out active myocarditis and serve as
the gatekeeper for stratifying patients above this threshold for
endomyocardial biopsy, with the aim of not only confirming
the diagnosis but also establishing underlying aetiology.
However, this is subject to calibration and sequence set-up,
of which there is no current standard.

Sarcoidosis

Sarcoidosis is a multisystem, granulomatous disease that most
commonly affects young adults with cardiac involvement
representing the second most common cause of death.
Whilst late enhancement readily detects non-viable myocardi-
al tissue [36], the detection of active myocardial inflammation
by T2-STIR faces similar challenges described in earlier sec-
tions. As a result, most cases of cardiac sarcoidosis continue to
be detected for the first time on post-mortem examination
[37]. However, unlike myocarditis, a strong evidence base
supports the early use of steroids and other immunosuppres-
sive agents to reverse active inflammation and prevent further
deterioration in cardiac function and scar formation [38, 39].
Fluorine-18 fluorodeoxyglucose positron emission tomogra-
phy computed tomography ([18F] FDG-PET CT) has been
explored as an alternative imaging modality, but systematic
comparisons have shown that CMR correlates better with clin-
ical disease manifestations [40] and has greater specificity
[41].

T2 mapping has been studied in a single retrospective re-
view of 50 consecutive patients with histologically confirmed
sarcoidosis undergoing CMR [42]. Amongst patients with
suspected cardiac involvement from clinically relevant elec-
trocardiographic and electrophysiological abnormalities,
global T2 values were significantly elevated; moreover, 41%
of patients showed elevated T2 despite showing no evidence
of late gadolinium enhancement. Maximum myocardial T2
exceeding 59 ms was taken as the cut-off, as previously re-
ported in myocarditis [12]. Further studies are required in this
area, including head-to-head comparison with hybrid PET-
MR-based approaches, which have also been shown to im-
prove sensitivity [43]. However, this technique remains limit-
ed by radiation exposure in young individuals, particularly
relevant for serial examination to monitor inflammation in
response to steroid therapy.

Myocardial infarction

Acute myocardial ischaemia and infarction are associated with
myocardial oedema, although the former represents a
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potentially reversible injury. For this reason, there has been
much interest in the role of T2-STIR to define the areas at risk
following acute myocardial infarction [44] and severe tran-
sient ischaemia prior to troponin elevation and detection of
late gadolinium enhancement [45]. Whilst these observations
have important clinical implications, the inherent limitations
and unreliability in image quality of T2-STIR imaging has
limited widespread use [46]. T2 mapping overcomes many
of these limitations, particularly bright signal from low flow
of blood adjacent to the subendocardium. In a study of 22
dogs that underwent coronary occlusion followed by reperfu-
sion before CMR, T2 mapping effectively distinguished in-
farcted myocardium from salvaged myocardium, both of
which exhibited T2 values significantly greater than remote
myocardium [47]. Whilst further investigation is required to
unravel the area at risk, and its dynamic nature, there is evi-
dence that greater T2 values are associated with adverse out-
comes following myocardial infarction, which has not been
shown in myocarditis or sarcoidosis [48].

Microvascular obstruction (MVO) is known to represent an
important clinical predictor of major adverse cardiac events
following acute myocardial infarction [49]. Intramyocardial
haemorrhage (IMH) occurs in severe forms of MVO and de-
tection may have additional prognostic value [50]. However,
accurate differentiation of MVO and IMH by T2-weighted
imaging is challenging due the competing effects of haemor-
rhage (shortens T2—hypointense) and oedema (lengthens
T2—hyperintense), combined with low proton density
(hypointense) in MVO without IMH [51]. In this setting,
T2* imaging was generally found to be more sensitive to
haemorrhagic by-products [52].

Takotsubo cardiomyopathy

Takotsubo syndrome is an acute reversible heart failure syn-
drome with various anatomical variants and underlying path-
ophysiological mechanisms [53]. Myocardial oedema and el-
evated T2 signal intensity have been reported in the acute
setting [54]. To date, a single preliminary study has demon-
strated that patients with Takotsubo cardiomyopathy had sig-
nificantly higher T2 values (65 + 6 ms) compared to healthy
controls and that T2 values were significantly higher in seg-
ments with wall motion abnormalities compared to
normokinetic segments [55]. Further studies are required to
elucidate the diagnostic and prognostic significance of these
findings.

Cardiac transplant rejection

Cardiac inflammation in the setting of cardiac transplant re-
jection represents a diffuse process. One of the strengths of T2
mapping is the ability to identify prolonged T2 relaxation
times in the absence of comparison with normal remote
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myocardium. Early studies have confirmed the positive corre-
lation between prolonged T2 times and biopsy-determined
grades of acute transplant rejection, but these approaches were
limited by older sequence techniques based on spin echo at
0.5 T [56]. There has been growing interest in the use of T2
mapping to guide whether (i) an endomyocardial biopsy is
required to detect transplant rejection and (ii) to monitor treat-
ment response with normalisation of an initially elevated T2
value [57]. A pilot study of 53 transplant patients using up-
dated imaging sequences based on steady-state free precession
demonstrated that T2 values were significantly elevated at
grade 2R and 3R rejection amongst the 8 patients with
biopsy-confirmed rejection [58]. Additionally, these elevated
T2 values (mean 60.1 + 2.1 ms) normalised in all patients
when re-scanned after immunosuppression therapy at
2.5 months. A multicentre study is currently in progress to
assess if T2 mapping can effectively guide selective use of
endomyocardial biopsy in the setting of transplant rejection
[59].

Emerging clinical applications

Cardiotoxicity from chemotherapy represents an important
cause of morbidity and mortality amongst patients with can-
cer. Surveillance of LV ejection fraction during treatment is
recommended but represents a late manifestation of cardiac
disease, as in the case of iron overload. T2 mapping may offer
a clinical tool with higher sensitivity than T2-STIR to detect
and quantify subclinical cardiac disease secondary to chemo-
therapy use. A single study of nine patients receiving
anthracycline-based chemotherapy showed that T2 values
were elevated amongst those with cardiac disease detected
by multigated acquisition scans [60]. Further investigation is
required, but T2 mapping in this setting may also represent an
important clinical tool to detect early cardiac involvement and
to monitor treatment response.

Future directions

In addition to exploring the role of T2 mapping across a range
of cardiovascular diseases previously studied by T2-STIR,
there is a major need to focus on defining normal ranges to
evaluate the clinical impact of a regional or global T2 value
within an individual patient. At present, various T2 mapping
sequences are used across multiple vender-specific platforms.
Whilst statistical analyses may demonstrate differences be-
tween patient groups and contribute to understanding disease
processes and responses, there is unmet need to define the
significance of a T2 value within a single patient to ultimately
guide clinical management. This is exemplified by a similar
evolution that occurred in T2* imaging.

Conclusion

Elevated T2 signal representing oedematous myocardium
may be assessed qualitatively by conventional T2-STIR im-
aging or quantitatively by T2 mapping, for which clinical
evidence is emerging across the range of acute inflammatory
cardiomyopathies. T2* signal arises from changes in tissue
iron level and now serves as a routine clinical tool for
assessing iron loading in myocardial and hepatic tissue.
Whilst further outcome-based studies are required, T2 map-
ping is likely to impact routine clinical evaluation of patients
with recent-onset heart failure given the ability to detect re-
versible myocardial inflammation.
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