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Ubiquitination is a three-step enzymatic cascade for posttranslational protein modification. It includes the ubiquitin-activating
enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). RING-type E3 ubiquitin ligases catalyse the
posttranslational proteolytic and nonproteolytic functions in various physiological and pathological processes, such as
inflammation-associated signal transduction. Resulting from the diversity of substrates and functional mechanisms, RING-type
ligases regulate microbe recognition and inflammation by being involved in multiple inflammatory signalling pathways. These
processes also occur in autoimmune diseases, especially inflammatory bowel disease (IBD). To understand the importance of
RING-type ligases in inflammation, we have discussed their functional mechanisms in multiple inflammation-associated
pathways and correlation between RING-type ligases and IBD. Owing to the limited data on the biology of RING-type ligases,
there is an urgent need to analyse their potential as biomarkers and therapeutic targets in IBD in the future.

1. Introduction

Ubiquitination is a crucial part of a diverse range of physiolog-
ical and pathological processes, such as protein degradation
and inflammation-associated signalling [1, 2]. It is a three-
step enzymatic process that consists of ubiquitin-activating
enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiqui-
tin ligase (E3) [3]. E3 ligases transfer activated ubiquitin from
E2 to specific substrates, thereby forming mono- or polyubi-
quitinated proteins to activate proteasome-mediated proteoly-
sis, signal transduction, endocytosis, etc. [3]. E3 ligases are
crucial as they catalyse target ubiquitination and enable the
formation of polyubiquitin chains that enhance the complex-
ity of ubiquitination in physiological and pathological pro-
cesses. Although dysregulated ubiquitination is involved in
the development of various types of immune pathologies
(e.g., systemic lupus erythematosus, rheumatoid arthritis,
and inflammatory bowel disease [IBD]) [1, 4], there is limited
knowledge regarding the role of RING-type ligases in
inflammation-associated pathways. In this review, we have
focused on IBD owing to its complex pathogenesis involve-

ment in a wide range of etiological factors, including dysregu-
lated ubiquitination. The term IBD is used for a group of
chronic autoimmune gastrointestinal disorders, including
mainly Crohn’s disease (CD) and ulcerative colitis (UC) [5].
Chronicity of IBD often causes intestinal complications, hos-
pitalisation, steroid dependency, and surgery in diagnosed
patients [6]. Although significant progress has been made in
understanding the nature of IBD, the underlying interacting
mechanism involving ubiquitination, RING-type ligases, and
onset of IBD remains to be fully understood.

2. Ubiquitination Mediated by RING-
Type Ligases

Human cells express more than 600 E3 ubiquitin ligases that
are classified into three types based on their catalytic
domains: RING, HECT (homologous to the E6AP carboxyl
terminus), and a recently identified RBR- (RING-between
RING-RING-) type of E3 ligases [7, 8]. The RING domain
has a crossbraced structure with two atoms of zinc that catal-
yse the direct transfer of ubiquitin from the E2-Ubiquitin
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thioester to the substrate [9] (Figure 1). Apart from catalys-
ing monoubiquitination, RING-type E3 ligases also elongate
homotypic polyubiquitin chains with varying linkage specific-
ities, such as that on Lys48 during the proteasomal targeting of
substrates and Lys63 in signal transduction, thereby modulat-
ing proteins for proteolytic and nonproteolytic activity [10].
However, their roles in catalysing other (less common) types
of ubiquitination, including atypical homotypic (e.g., Lys6,
Lys11, Lys27, Lys29, Lys33, and Met1 [11]), heterotypic, and
branched polyubiquitination, remain ambiguous. The effi-
ciency of RING-type E3 ligases in ubiquitination depends on
multiple factors, such as substrate modification, phosphoryla-
tion of E2/E3 enzymes, autoubiquitination by E3 ligases, and
pseudosubstrate competition [10]. The role of the RING-
type ligases and their sophisticated functional mechanism of
ubiquitination will be discussed in the following sections.

3. Signalling Pathways Regulated by RING-
Type Ligases

3.1. Pathogen Recognition. Under physiological conditions,
pattern recognition receptors (PRRs) comprise toll-like
receptors (TLRs), retinoic acid inducible gene- (RIG-) I-like
receptors (RLRs), C-type lectin-like receptors, and
nucleotide-binding oligomerisation domain-like receptors.
PRRs recognise pathogen-associated molecular patterns
(PAMPs) and trigger the activation of downstream effectors
in innate immune responses [12]. For inflammatory diseases
that are closely associated with microbiome dysbiosis, such as
IBD [13, 14], dysregulation of PRRs and relevant RING-type
ligases may be involved in pathogen-induced inflammation.

3.1.1. TLR Signalling. Upon recognising a wide range of
microbial components, such as lipopolysaccharides, flagellin,
and microbial nucleic acids, activated TLRs expressed on
antigen-presenting cells trigger effector T cell responses in
inflammatory diseases [15–17]. RING-type ligases modulate
the activation of PAMP-induced TLRs. By directly binding
with TLR3, ring finger protein 170 (RNF170) catalyses the
Lys48-linked ubiquitination and proteasomal degradation
of TLR3, thereby suppressing TLR3-mediated innate immu-
nity in macrophages [18]. On the other hand, Fcγ receptor
(FcγR) IIb, an inhibitory FcR on antibody-dependent mono-
cyte phagocytosis, is targeted by MARCH3 (RNF173) for
ubiquitination and degradation in lipopolysaccharide-
induced TLR4 activation [19].

3.1.2. RIG-I Signalling. RIG-I is a cytoplasmic PRR that rec-
ognises viral RNA and triggers the activation of downstream
immune responses that are associated with both viral infec-
tions and noninfectious autoimmune diseases, such as
enterocolitis [20]. The deficiency of RIG-I aggravates virus-
induced cell death in intestinal epithelial cells and induces
susceptibility to chemically induced colitis in mice, suggest-
ing the importance of RIG-I signalling in intestinal antiviral
immune response [20, 21]. E3 ligases, like RNF122 and
RNF125, mediate Lys48-linked RIG-I ubiquitination and
proteasomal degradation, leading to the reduced expression
of infection induced-proinflammatory cytokines, including

IL-6 and type I interferons (α and β) [22, 23]. In contrast,
independent of its E3 ligase activity, RNF123 binds with the
CARD domain of RIG-I and melanoma differentiation-
associated gene 5 to compete with the mutual downstream
adaptor mitochondrial antiviral signalling protein (MAVS)
and inhibit RLR-mediated antiviral response [24]. Unlike
the aforementioned RING-type ligases that directly target
RLRs, RNF114 negatively regulates RLR signalling by polyu-
biquitinating and inducing the proteasomal degradation of
MAVS [25].

3.2. Proinflammatory Pathways

3.2.1. Nuclear Factor Kappa B (NF-κB) Signalling. The NF-κB
pathway is one of the most well-studied proinflammatory
pathways regulated by ubiquitination [26]. TRAF6 (RNF85)
ubiquitinates the evolutionarily conserved signalling inter-
mediate in TLR activation that is essential for TLR4-
dependent NF-κB activation [27]. RNF183 promotes NF-κB
signalling by inducing the ubiquitin-dependent degradation
of IκBα [28]. TRAF2 (RNF117) and TRAF3 (RNF118)
induce Lys48-linked ubiquitination and proteasomal degra-
dation of c-Rel and interferon regulatory factor 5, thereby
prohibiting the synthesis of proinflammatory cytokines in
macrophages [29]. MKRN2 (RNF62) mediates the polyubi-
quitination and degradation of the p65 subunit of NF-κB,
thereby inhibiting NF-κB signalling [30]. RNF114 negatively
regulates NF-κB signalling and T cell activation by ubiquiti-
nating and stabilising NF-κB signalling inhibitors A20 and
IκBα [31, 32]. It has also been reported that RNF20 downreg-
ulation decreases histone H2B monoubiquitination and leads
to the NF-κB-dependent transcription of proinflammatory
cytokines, such as IL-6 and IL-8 [33]. Nevertheless, despite
the formation of heterodimers of RNF40 with RNF20,
RNF40 alone activates NF-κB signalling and upregulates
NF-κB-dependent transcription by promoting IκB kinase
(IKK) phosphorylation and p65 nuclear translocation, indi-
cating the involvement of NF-κB-dependent transcription
in the ubiquitination of substrates other than H2B [34].
MARCH3 (RNF173) mediates Lys48-linked ubiquitination
and lysosomal degradation of IL-1 receptor I and thereby
inhibits IL-1β-triggered NF-κB activation [35]. Independent
of its E3 ligase activity, RNF8 inhibits TNF-α-induced NF-κB
activation by directly binding with the kinase domain of IKK
and interfering with IKKα/β phosphorylation [36]. RNF11
also exerts a noncanonical role in negatively regulating NF-
κB signalling. RNF11 has high affinity for the E2 enzyme
Ubc13 and minimal E3 ligase activity that subsequently out-
competes E1 enzymes and other E3 enzymes, such as TRAF6
[37], and impedes the activation of NF-κB signalling [38].

3.2.2. Mitogen-Activated Protein Kinase (MAPK) Signalling.
MAPKs are another family of proteins closely related to
inflammation-associated pathologies, such as IBD [39].
Upon stimulation by TNF-α, TRAF2 is autoubiquitinated
on the Lys63 residue that enables its translocation to the
cytoskeletal fraction and activates JNK signalling [40, 41].
In vitro experiments have shown that JNK signalling is
suppressed and enhanced in cells overexpressing RNF213
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and RNF186, respectively [42, 43]; however, the mechanisms
involved in this regulation remain to be understood. TRAF7
(RNF119) upregulates the kinase activity of mitogen-
activated protein kinase 3 via the WD40 domain and poten-
tiates cell apoptosis via the RING finger domain [44].
Similarly, RNF13 mediates endoplasmic reticulum (ER)
stress-induced JNK activation and subsequent cell apoptosis

by binding with and promoting the phosphorylation of
the ER stress sensor endoplasmic reticulum to nucleus
signalling 1 [45].

3.2.3. Janus Kinase (JAK)/Signal Transducer and Activator of
Transcription 3 (STAT3) Signalling. JAK/STAT3 is one of the
major proinflammatory signalling pathways that orchestrate
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Figure 1: Functional mechanisms of RING-type E3 ligase. Acting as a scaffolding, RING-type E3 ligase recruits a E2-ubiquitin thioester and a
substrate and allows the lysine of substrate to attack the thioester for ubiquitin transfer. RING-type E3 ligases catalyse monoubiquitination or
multiple monoubiquitination by transferring a single ubiquitin to one or several residues of the substrate. For polyubiquitination, ubiquitins
form eight different linkage types including Met1, Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, and Lys63. Apart from homotypic chains, RING-
type E3 ligases also catalyse heterotypic chains and branched ubiquitin chains by adopting multiple linkage types and branched topology in
the formation of polyubiquitin chains.
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the progression of inflammatory and autoimmune diseases
[46]. A number of RING-type ligases modulate JAK/STAT3
signalling. RNF6 and RNF38 function in catalysing the
ubiquitination-induced proteasomal degradation of SH2-
containing protein tyrosine phosphatase 1 that targets
phosphorylated STAT3, thereby maintaining STAT3 phos-
phorylation and activating STAT3 signalling [47, 48]. In
contrast, TRAF6 promotes Lys63-linked ubiquitination of
STAT3 and represses STAT3-mediated transcription of
downstream inflammation-related genes, such as C-reactive
protein [49]. Interestingly, RNF41 modulates the cell surface
expression of JAK2-associated cytokine receptors by block-
ing the cleavage of receptors and enhancing receptor shed-
ding in a ubiquitination-dependent manner [50].

3.2.4. Phosphatidylinositol 3-Kinase (PI3K) Signalling. PI3K is
another classical pathway involved in inflammation wherein
RING-type ligases are of crucial importance. MKRN1
(RNF61) functions in the positive-feedback regulation of sus-
tained PI3K/AKT activation upon stimulation by epidermal
growth factor: AKT activation phosphorylates and stabilises
E3 ligase MKRN1 that further ubiquitinates and degrades
phosphatase and tensin homologue (a PI3K/AKT inhibitor)
[51]. MKRN2 (RNF62) induces the ubiquitin-dependent deg-
radation of the p85α subunit of PI3K and downregulated AKT
phosphorylation, suggesting a negative regulatory role of
MKRN2 in PI3K/AKT signalling [52]. Downregulation of
UHRF1 (RNF106) represses the phosphorylation of PI3K
and AKT, which reveals an underlying interaction between
UHRF1 and PI3K/AKT signalling [53].

3.3. Transforming Growth Factor-β (TGF-β) Signalling. TGF-
β signalling functions in immunosuppression and inhibiting
the activity of effector T cells, maintaining Treg differentia-
tion, reducing B cell responsiveness, and inducing macro-
phage anergy [54]. RNF11 plays a dual role in the
modulation of TGF-β signalling. By competing with Smad7
for Smurf2, RNF11 is a positive regulator for TGF-β signal-
ling and reduces the formation of Smad7/Smurf2 complexes
that degrade TGF-β receptors [55]. RNF11 is also responsible
for the ubiquitination-mediated stabilisation of Smad4 that
enhances Smad4-dependent TGF-β signalling by direct
interaction [56]. Notably, RNF11 may negatively regulate

TGF-β signalling by enabling the formation of
Smurf2/RNF11 complexes and inducing the ubiquitination
and degradation of the associated molecule with the SH3
domain of STAM that promotes TGF-β signalling [57].
PRAJA (RNF70) mediates the ubiquitination-induced pro-
teasomal degradation of embryonic liver fodrin (a Smad4
adaptor protein), thereby negatively regulating TGF-β sig-
nalling [58].

3.4. Autophagy. Accumulating evidence reveals that autoph-
agy contributes extensively to immune cell development
and cell death, and its dysregulation has been implicated in
many autoimmune diseases [59]. TRAF6 catalyses Lys63-
linked ubiquitination of BECN1 and stimulates TLR-
induced autophagy in macrophages upon proinflammatory
stimulation [27, 60]. RNF166 has a novel role in antibacterial
host defence owing to its function in inducing the Lys29- and
Lys33-linked ubiquitination of autophagy adaptor p62,
which mediates the recruitment of p62 to bacteria and initi-
ates bacteria engulfment [61].

3.5. Noncoding RNAs. Since dysregulated noncoding RNAs
are involved in the progression of inflammatory diseases
[62], the posttranscriptional regulation of RING-type ligases
by noncoding RNAs may play critical roles in potential
inflammation-relevant signalling pathways. Until now, quite
a few microRNAs have been proved to posttranscriptionally
regulate RING-type ligases by hampering translation or
inducing mRNA degradation (Table 1) [28, 63–71]. Never-
theless, although the other two major types of noncoding
RNAs (long noncoding RNAs and circular RNAs) also have
diverse functions in inflammatory diseases (e.g., competing
endogenous RNA [ceRNA], transcription regulation, and
RNA-binding protein sponges) [72, 73], to what extent they
modulate RING-type ligases awaits further analysis.

4. RING-Type Ligases in IBD

4.1. Pathogenesis of IBD. The pathogenesis of IBD has been
elucidated over the past years. More than 200 loci have been
implicated in increased genetic risk for IBD that correlate with
the functioning of cellular processes, such as innate/adaptive
immune response, intestinal mucosal barrier homeostasis,

Table 1: RING-type ligases targeted by noncoding RNAs and the relevant pathways.

RING-type ligase Noncoding RNA Relevant pathway Reference

RNF11 miR-19b-3p NF-κB signalling [63]

RNF183
miR-7 NF-κB signalling [28]

ER stress-induced apoptosis [64]

RNF2 miR-139-5p MAPK signalling [65]

RNF135 miR-485-3p MAPK/ERK signalling [66]

RNF125 miR-15b RIG-I signalling [67]

TRAF6
miR-124 TLR signalling [68]

miR-146 TLR signalling [69]

c-Cbl miR-216a PI3K/AKT signalling [70]

ZNRF2 lncRNA TTN antisense RNA 1 acts as a ceRNA for miR-153-3p PI3K/AKT signalling [71]
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and autophagy, suggesting the involvement of multiple factors
in shaping the procolitogenic environment during the devel-
opment of IBD [74, 75]. IBD patients manifest with abnormal-
ities in the composition of gut microbiota, such as decreased
bacterial diversity, increased proportion of harmful bacterial
strains, and decreased proportion of protective probiotics,
which trigger proinflammatory intestinal pathogenic immune
responses and contribute to the pathogenesis of IBD [14, 76].
Elevated levels of proinflammatory cytokines (e.g., IL-1, IL-6,
and IL-23) and activation of adaptive (e.g., Th1, Th2, Th9,
and Th17 cells) and innate immune cells (e.g., neutrophils
and NK cells) constitute a synergistic inflammatory network
that induces intestinal mucosal inflammation and sustained
activation of multiple proinflammatory signalling pathways
[17, 77]. IL-1 family-induced NF-κB, IL-6-induced STAT3,
MAPK, and PI3K signalling pathways are pivotal in intestinal
inflammation [39, 78, 79]. TGF-β signalling can mitigate
immune cell hyperactivation but also causes the formation of
intestinal strictures in chronic intestinal inflammation [54].
Autophagy is involved in the regulation of immune cell func-
tion; thus, defective autophagy also plays an important role in
IBD pathogenesis [59]. A dysfunctional gut barrier and subse-
quent increased intestinal permeability are also considered
important etiologic factors in the development of IBD that

result in the uncontrolled exchange of materials between the
intestinal lumen and internal environment. A compromised
gut barrier is often attributed to the proinflammatory stimula-
tion and subsequent downregulation of sealing tight junction
proteins (e.g., claudin-5 and claudin-8) and upregulation of
pore-forming tight junction proteins (e.g., claudin-2) [80–83].
Since multiple etiologic factors function in the pathogenesis
of IBD in a synergistic manner, further research is warranted
to understand the dynamics between these players.

4.2. Role of RING-Type Ligases in IBD. Despite the limited
knowledge on RING-type ligases in IBD, research suggests
a correlation between RING-type ligases and IBD pathogen-
esis (Table 2). Genome-wide association studies have identi-
fied RNF186 as one of the genes associated with susceptibility
to UC; the disease-coding variant of RNF186 involves an
altered RING domain [84, 85]. The truncated RNF186 lack-
ing the second transmembrane domain is associated with
protecting individuals against developing UC by inhibiting
the ER localisation of RNF186 and subsequent Lys29- and
Lys63-linked polyubiquitination of proapoptotic BCL2 inter-
acting protein 1 under ER stress [86, 87]. Notably, RNF186
functions differently in a dextran sulfate sodium- (DSS-)
induced mouse model of colitis: RNF186-deficient mice

Table 2: Roles of RING-type ligases in IBD patients and animal models of colitis.

RING-type
ligase

Role IBD patients Animal model of colitis Reference

RNF186 Controversial
Increase risk of UC and ER
stress-induced apoptosis

Attenuate ER stress and maintain intestinal
permeability in DSS-induced mouse model

of colitis
[84–88]

RNF20 Anti-inflammatory
Decrease in the colonic tissue

from UC patients
Protect mice from DSS-induced colitis and

maintain intestinal barrier
[33]

RNF40 Proinflammatory —
Activate NF-κB signalling in DSS-induced

mouse model of colitis
[34]

RNF183 Proinflammatory

Increase in the colonic tissue
from CD and UC patients
correlate with endoscopic
index of disease severity

Increase in TNBS-induced mouse model
of colitis

[28]

UHRF1 Anti-inflammatory —

Regulate TNF-α expression in mice with
DSS-induced colitis and zebrafish
Modulate the proliferation and
differentiation of Treg cells

[89–94]

TRAF2 Anti-inflammatory
Increase in the colonic tissue
from CD and UC patients

Modulate colonic microbiota
composition, proinflammatory

cytokine expression, and immune
cell infiltration in mice with

DSS-induced colitis

[29, 96, 97]

TRAF3 Anti-inflammatory
Increase in the plasma and
colonic tissue from CD and

UC patients

Regulate proinflammatory cytokine
expression and mitigate inflammatory

damage in DSS-induced mouse
model of colitis

Inhibit IL-17-mediated proinflammatory
pathway in TNBS-induced mouse

model of colitis

[29, 95, 98]

TRAF5 Anti-inflammatory
Increase in the plasma and
colonic tissue from CD and

UC patients

Control proinflammatory cytokine
expression and protect mice against

experimental colitis
[99–101]
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develop more severe colitis during DSS administration, and
their colonic epithelial cell exhibits enhanced signs of ER stress
and apoptosis [88]. RNF186 also modulates intestinal barrier
function by mediating the Lys48-linked ubiquitination of tight
junction protein occludin, and RNF186 deficiency increases
intestinal permeability in RNF186 knockout mice [88]. Thus,
RNF186 targets different substrates and has a complex associ-
ation with gut inflammation.

Apart from the reduced expression of RNF20 in the colon
samples from UC patients, homozygous RNF20-knockout
mice die due to embryonic lethality, and heterozygous mice
are susceptible to DSS-induced colitis with increased intesti-
nal permeability, suggesting the anti-inflammatory role of
RNF20 [33]. RNF40 knockout mice exhibit mitigated gut
inflammation upon treatment with DSS; this can be attrib-
uted to the attenuated activation of NF-κB signalling [34].
The upregulation of RNF183 in the colonic tissue from IBD
patients and 2,4,6-trinitrobenzenesulfonic acid- (TNBS-)
induced mouse model of colitis indicates its proinflamma-
tory function, probably by promoting the ubiquitination-
induced degradation of IκBα [28].

Because UHRF1-catalysed histone H3 monoubiquitina-
tion recruits and stimulates DNA methyltransferase 1 to
DNAmethylation sites, and thereby maintains DNAmethyl-
ation, UHRF1 participates in the epigenetic control of multi-
ple genes, such as TNF-α [89, 90]. Mice with macrophages
deficient for UHRF1 manifest with TNF-α overexpression
and aggravated DSS-induced colitis. Also, the loss of function
in UHRF1 reduces the methylation of the TNF-α promoter
in macrophages, indicating the regulatory role of UHRF1 in
the mouse model of colitis [91]. Similarly, an in vivo study
in zebrafish has revealed that loss in function of UHRF1 leads
to defects in the epigenetic regulation of TNF-α promoter
methylation and elicits elevated TNF-α expression in inflam-
matory processes, including intestinal epithelial cell apopto-
sis, neutrophil recruitment, and weakened intestinal barrier
function [92]. However, UHRF1 may effect differently
among subtypes of regulatory T (Treg) cells, as UHRF1 main-
tains the proliferation and maturation of colonic Treg cells
but inhibits the differentiation of peripheral induced Treg
cells in the development of colitis [93, 94].

Studies have shown the diverse roles involved with the
upregulation of TRAFs, including TRAF1/2/3/5, in the blood
or colonic mucosa of IBD patients [95, 96]. DSS-induced
colitis models of TRAF2- and TRAF3-deficient mice reveal
similar functions of TRAF2 and TRAF3 as negative regula-
tors of experimental colitis by decreasing proinflammatory
cytokines and reducing the infiltration of immune cells in
the colon [29]. In another study, TRAF2-deficient mice
develop severe spontaneous colitis and exhibit altered colonic
microbiota composition, indicating the anti-inflammatory
role of TRAF2 in controlling colonic microbiota [97]. TRAF3
also acts as a colitis regulator by binding with the IL-17
receptor and interfering with the IL-17-mediated proinflam-
matory pathway in mice with TNBS-induced colitis [98].
Although TRAF5 (RNF84) promotes the ubiquitination
and stabilisation of the retinoic acid-related orphan receptor
γt that mediates proinflammatory Th17 cell differentiation
and IL17A/IL17F expression [99, 100], TRAF5-deficient

mice exhibit aggravated experimental colitis and upregula-
tion of proinflammatory cytokines [101]. The complex func-
tion of TRAF5 needs further analysis.

5. Discussion

As the importance of RING-type E3 ligases is gradually
unveiled, there are still problems to be solved. Firstly, apart
from the canonical role of RING-type ligases in modulating
key signalling pathways and their downstream adaptors as
E3 ubiquitin ligases, some RING-type ligases interfere with
the ubiquitination cascade by competition or direct interac-
tion with other E3 ligases [102]. Owing to the variety of
RING-type ligases and substrate specificity of E3 ligases, the
potential competition among RING-type ligases in regulating
immune response remains to be fully understood. Secondly,
differences in RING E3 ligase-mediated target ubiquitination
can also be attributed to the variance in length and linkage
type of ubiquitin chains. Although RING-type ligases func-
tion in proteolytic degradation and signal transduction by
catalysing Lys48-linked and Lys63-linked ubiquitination,
respectively, their roles in catalysing less common linkage
types of homotypic polyubiquitin chains, such as Lys11-
linked ubiquitination [103], and the outcome of such polyu-
biquitination are still obscure.

RING-type ligases form a sophisticated but important
ubiquitination network, wherein the expression and function
of RING-type ligases are also influenced reciprocally in phys-
iological and pathological processes. Understanding the
mechanisms employed by RING-type ligases in modulating
inflammation-associated pathways by catalysing atypical
linkages and affecting signal transduction may further
explain the interaction between RING-type ligases and IBD.
Similarly, research on heterotypic polyubiquitin chains is
also important to unveil these underlying mechanisms.

In this review, we have highlighted the roles of RING-
type ligases in PAMP recognition and modulation of
inflammation-associated pathways that are crucial etiological
factors in the development of autoimmune diseases. Accu-
mulating evidence shows that many RING-type ligases are
involved in inflammation-associated pathways, such as pro-
inflammatory NF-κB, MAPK, JAK/STAT3, and PI3K signal-
ling and anti-inflammatory TGF-β signalling. Subsequently,
we have discussed the role of RING-type ligases in the path-
ogenesis of IBD via inflammation-related pathways. Patients
with IBD exhibit the differential expression of specific RING-
type ligases, such as TRAFs. However, there are limited stud-
ies on the potential clinical value of RING-type ligases in
predicting or treating IBD. Thus far, there have been a few
attempts to use RING-type ligases as predictive biomarkers
and therapeutic targets in treating cancer; RNF43 modulates
Wnt signalling and has been used to target colorectal cancer
and pancreatic ductal carcinoma [104, 105]. Nevertheless,
the potential of RING-type ligases in autoimmune diseases,
especially in IBD, needs to be understood in greater detail.
Therefore, future research on the expression profile of
RING-type ligases in the gastrointestinal tract and the
detailed mechanisms is warranted.
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