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Abstract

Metabolic and epigenetic reprogramming are characteristics of cancer cells that, in many cases, 

are linked. Oncogenic signaling, diet, and tumor microenvironment each influence the availability 

of metabolites that are substrates or inhibitors of epigenetic enzymes. Reciprocally, altered 

expression or activity of chromatin-modifying enzymes can exert direct and indirect effects on 

cellular metabolism. In this article, we discuss the bidirectional relationship between epigenetics 

and metabolism in cancer. First, we focus on epigenetic control of metabolism, highlighting 

evidence that alterations in histone modifications, chromatin remodeling, or the enhancer 

landscape can drive metabolic features that support growth and proliferation. We then discuss 

metabolic regulation of chromatin-modifying enzymes and roles in tumor growth and progression. 

Throughout, we highlight proposed therapeutic and dietary interventions that leverage metabolic-

epigenetic cross talk and have the potential to improve cancer therapy.
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INTRODUCTION

The development and progression of cancer involves the acquisition of several hallmark 

features, including altered metabolism (Hanahan & Weinberg 2011). Both genetic and 

epigenetic mechanisms can contribute to metabolic reprogramming in cancer cells. 

Reciprocally, ample evidence identifies metabolite abundance as a relevant factor in 

regulating the tumor epigenome, highlighting the substantial bidirectional cross talk between 

cellular metabolism and epigenetics in the context of cancer cell biology (Figure 1). 

Understanding the metabolism-epigenetics cross talk in distinct cancer types and how it is 

influenced by dietary and tumor microenvironmental factors may help to identify context-

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original author and source are credited. See credit lines of images or other third-party 
material in this article for license information

wellenk@upenn.edu. 

DISCLOSURE STATEMENT
The authors declare no financial interests, memberships, affiliations, or funding that would affect the objectivity of their review.

HHS Public Access
Author manuscript
Annu Rev Cancer Biol. Author manuscript; available in PMC 2021 June 08.

Published in final edited form as:
Annu Rev Cancer Biol. 2021 March ; 5(1): 235–257. doi:10.1146/annurev-cancerbio-070820-035832.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specific targetable vulnerabilities. The goals of this article are to review the mechanisms that 

link metabolic and epigenetic reprogramming in cancer cells and to discuss possible 

therapeutic strategies leveraging this interplay.

ROLES OF EPIGENETIC ALTERATIONS IN MEDIATING METABOLIC 

REPROGRAMMING

Metabolic reprogramming occurs essentially universally in malignancy, although different 

tumors have distinct metabolic characteristics, driven by their genetic and epigenetic 

features, microenvironment, and cell of origin (Pavlova & Thompson 2016, Vander Heiden 

& DeBerardinis 2017). Epigenetic reprogramming is widespread in tumors, with mutations 

in genes encoding epigenetic regulators found in roughly 50% of human cancers. Even 

tumors without such mutations exhibit altered DNA or histone modification profiles, 

coinciding with changes in expression or activity of chromatin modifiers. Epigenetic 

alterations may result in more restrictive or permissive chromatin, modulating cellular 

capacity to differentiate or adapt (Flavahan et al. 2017). Here, we discuss roles of the tumor 

epigenome in mediating metabolic alterations, focusing on potential metabolic 

vulnerabilities resulting from tumor epigenetic features (Table 1).

Histone Methylation

Histone methylation is regulated by histone methyltransferases and demethylases that add 

and remove histone methyl marks, respectively. In this section, we discuss evidence that 

mutations in or overexpression of histone methyltransferases or demethylases mediates 

metabolic reprogramming in cancer cells, focusing on enhancer of zeste homolog 2 (EZH2), 

euchromatic histone lysine methyltransferase 2 (EHMT2), lysine methyltransferase 2D 

(KMT2D), and lysine-specific histone demethylase 1 (LSD1).

Loss of metabolic gene silencing mediated by repressive histone methylation represents one 

mechanism through which epigenetic alterations can remodel metabolism in cancer cells. 

This is exemplified by aberrant expression of branched-chain amino acid transaminase 1 

(BCAT1) (Gu et al. 2019, Wang et al. 2019), an enzyme that catalyzes the reversible 

interconversion of branched-chain amino acids (BCAAs) (leucine, isoleucine, and valine) 

and branched-chain alpha-keto acids (BCKAs), utilizing alpha-ketoglutarate (αKG) and 

glutamate as the amino group acceptor or donor, respectively (Figure 2). In NRASG12D-

mutant myeloproliferative neoplasms, EZH2 deficiency is associated with elevated 

expression of BCAT1 (Gu et al. 2019). EZH2 is the catalytic subunit of polycomb repressive 

complex 2 (PRC2), which methylates lysine 27 of histone H3 (H3K27) (Comet et al. 2016), 

a mark associated with transcriptional repression. Increased BCAT1 expression in this 

context drives BCKA consumption and elevates intracellular BCAA levels, potentiating the 

mTORC1 signaling pathway. Critically, inhibition of either BCAT1 or mTOR is selectively 

detrimental to EZH2-null cells and prevents the transition of myeloproliferative neoplasms 

to leukemia (Gu et al. 2019). Similarly, loss of H3K9 methylation at the BCAT1 gene 

promoter coincides with increased BCAT1 expression in tyrosine kinase inhibitor (TKI)-

resistant epidermal growth factor receptor (EGFR)-mutant lung cancer cells. In this case, 

BCAT1 predominantly consumes BCAAs, with concomitant production of glutamate, 

Izzo et al. Page 2

Annu Rev Cancer Biol. Author manuscript; available in PMC 2021 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increasing synthesis of glutathione, a tripeptide of cysteine, glycine, and glutamate. BCAT1 

inhibition or treatment with reactive oxygen species–inducing agents improves TKI 

sensitivity (Wang et al. 2019). Thus, derepression of BCAT1 owing to loss of repressive 

histone methylation results in distinct metabolic vulnerabilities (Figure 2).

Loss of function of the H3K4 methyltransferase KMT2D is also frequently observed in 

cancers. Loss of KMT2D in lung cancer disrupts enhancer signatures genome wide, 

including one regulating the circadian clock gene period circadian regulator 2 (PER2). 

Downregulation of PER2 due to the loss of KMT2D increases the expression of glycolysis 

genes and confers sensitivity to the glycolysis inhibitor 2-deoxyglucose (Alam et al. 2020). 

KMT2D repression in pancreatic cancer cells similarly promotes glycolytic gene expression 

(Koutsioumpa et al. 2019). KMT2D protein level is also regulated by the ubiquitin E3 ligase 

FBXW7, with loss of KMT2D promoting growth of diffuse large B cell lymphoma cells. 

FBXW7 deficiency increases KMT2D stability, leading to suppression of oxidative 

phosphorylation genes and sensitizing cells to mitochondrial inhibition (Saffie et al. 2020).

Elevated expression of the H3K9 mono- and dimethyltransferase EHMT2 occurs in several 

cancers (Casciello et al. 2015). Transcriptomic analysis of non-small-cell lung cancer 

(NSCLC) cell lines upon EHMT2 inhibition revealed its role in regulating the serine-glycine 

synthesis pathway. EHMT2 inhibition suppresses H3K9me1 at relevant gene promoters, 

including PSAT1 (phosphoserine aminotransferase 1) and PHGDH (D-3-phosphoglycerate 

dehydrogenase), reducing expression of these genes (Figure 3). The serine-glycine synthesis 

pathway is required for EHMT2-dependent proliferation (Ding et al. 2013). Interestingly, 

H3K9me1 mediated by EHMT1/2 is implicated in maintenance of heterochromatin when 

exogenous methionine is limited (Haws et al. 2020), although the implications of this 

mechanism for tumorigenesis are not yet known.

The H3K4 demethylase LSD1 is overexpressed in hepatocellular carcinoma (HCC), and 

LSD1 silencing suppresses xenograft tumor growth. The data suggest that LSD1 supports 

dependence on glycolysis in HCC cells, at least in part through reducing H3K4 methylation, 

a mark of active gene transcription, at genes associated with mitochondrial metabolism 

(Sakamoto et al. 2015).

Histone Acetylation

Deregulation of histone acetylation is also frequently observed in cancer. Acetylation is 

regulated by histone acetyltransferases (HATs), which deposit the acetyl marks, while 

histone deacetylases (HDACs) remove them. Bromodomains and YEATS domains are 

readers of acetyl-lysine. HATs and HDACs are mutated and aberrantly expressed in cancer, 

but in most cases the impact of alterations in their expression and activity on cellular 

metabolism has been little studied (Attar & Kurdistani 2017, Han et al. 2019). One key 

exception is Sirtuin 6 (SIRT6), a deacetylase and tumor suppressor with roles in metabolic 

regulation, discussed below. Additionally, bromodomain and extraterminal motif (BET) 

inhibitors, which target proteins that recognize histone acetylation, have become promising 

therapies (Stathis & Bertoni 2018). Effects of these drugs on cellular metabolism have been 

identified, illuminating the potential to combine metabolic inhibitors with BET inhibitors.
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SIRT6 is a potent tumor suppressor that is downregulated in nearly 20% of all human 

cancers (Sebastián et al. 2012). High SIRT6 expression is predictive of better survival in 

human pancreatic and colon cancers (Sebastián et al. 2012, Lin et al. 2013, Kugel et al. 

2016), and SIRT6 deficiency enhances tumorigenesis in vivo in mice (Sebastián et al. 2012). 

SIRT6 serves as a corepressor for transcription factors including hypoxia-inducible factor 1-

alpha (HIF-1α) and MYC, and its loss enhances expression of glycolysis genes including 

glucose transporter 1 (GLUT1), phosphor-fructokinase 1 (PFK1), pyruvate dehydrogenase 

kinase 1 (PDK1), and lactate dehydrogenase A (LDHA) (Zhong et al. 2010, Sebastián et al. 

2012). PDK1 phosphorylates and inhibits pyruvate dehydrogenase, inhibiting pyruvate entry 

into the mitochondrial TCA (tricarboxylic acid) cycle and enforcing aerobic glycolysis. 

Silencing of PDK1 suppresses tumor growth in the context of SIRT6 deficiency (Sebastián 

et al. 2012). SIRT6 also regulates gene expression by binding RNA polymerase II (Pol II) to 

promote transcriptional pausing, thereby restraining expression of its target genes 

(Etchegaray et al. 2019).

BET bromodomain-containing proteins such as BRD4 bind acetyl-lysine to exert biological 

functions. MYC-driven transcription is particularly sensitive to BET inhibition (Zaware & 

Zhou 2019), and accordingly, the BET inhibitor JQ-1 was shown to downregulate LDHA in 

ovarian cancer (Qiu et al. 2015). Evidence also suggests that BET inhibitor efficacy may be 

enhanced in combination with specific metabolic inhibitors. For example, BRD4 interacts 

with MTHFD1, an enzyme in folate metabolism. The combination of JQ-1 and the antifolate 

methotrexate synergizes to slow cancer progress in a variety of models (Sdelci et al. 2019). 

Additionally, combining JQ1 with a statin, which targets the mevalonate pathway, 

suppresses pancreatic cancer cell proliferation in vitro and tumor growth in vivo (Carrer et 

al. 2019). While further mechanistic data are needed, these studies indicate the potential for 

cotargeting metabolic and epigenetic processes.

Ubiquitination

Several enzymes involved in depositing or removing ubiquitination are characterized as 

tumor suppressors or oncogenes (Jeusset & McManus 2019). Recent work has shown that 

BRCA-associated protein 1 (BAP1), which functions as part of the polycomb repressive 

deubiquitinase complex that removes monoubiquitination on H2AK119, regulates 

SLC7A11, a subunit of the heterodimeric system xc
− cystine-glutamate antiporter. BAP1 

deficiency causes an increase in H2A ubiquitination in the promoter and gene body of 

SLC7A11, promoting its expression (Zhang et al. 2018). Cystine (the oxidized dimeric form 

of cysteine) imported by cells can be used for glutathione synthesis, protecting cells from 

oxidative stress and ferroptosis, a form of cell death resulting from iron-dependent lipid 

peroxidation (Dixon & Stockwell 2019). Accordingly, BAP1 mutations associate with high 

SLC7A11 expression and resistance to ferroptosis induction (Zhang et al. 2018). Notably, 

NADPH is required to reduce imported cystine to cysteine, and tumors with high SLC7A11 
expression are sensitive to inhibition of the uptake of glucose, which supports NADPH 

production via the pentose phosphate pathway (Liu et al. 2020). (Figure 2).
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SWI/SNF Chromatin Remodeling Complex

SWI/SNF chromatin remodeling complexes use ATP hydrolysis to physically alter DNA-

histone interactions, either shifting the location of or removing nucleosomes from DNA 

(Helming et al. 2014). Genes encoding SWI/SNF subunits are mutated in approximately 

20% of human cancers. Alterations in two SWI/SNF components, ARID1A and BRG1, 

result in distinct metabolic dependencies (Wu et al. 2016, Ogiwara et al. 2019). A small-

molecule screen found that ARID1A-deficient ovarian cancer cells exhibit increased 

sensitivity to inhibition of glutathione synthesis. Mechanistically, ARID1A facilitates 

expression of SLC7A11, and ARID1A-mutant cells are thus deficient in cystine import, 

resulting in sensitivity to further glutathione depletion (Ogiwara et al. 2019) (Figure 2). 

BRG1 is an established tumor suppressor in several types of cancer but is overexpressed in 

some breast cancers. In BRG1-overexpressing breast cancer cells, knockdown of BRG1 

suppresses expression of lipogenesis genes and moderately sensitizes them to fatty acid 

synthesis inhibition (Wu et al. 2016).

Enhancer Regulation

Acquisition of cancer-specific enhancers may also drive changes in expression of metabolic 

genes. Enhancers are DNA segments that interact with linked gene promoters to stimulate 

transcription. Superenhancers (SEs) are large clusters of enhancers that typically drive cell 

identity and disease-related gene expression. These regions are enriched in H3K27ac, are 

sensitive to BET inhibition, and are typically occupied by numerous transcription factors, 

cofactors, enhancer-associated proteins and RNAs, signaling factors, and Pol II (Bradner et 

al. 2017).

Recent studies have identified roles for oncogenic SEs in metabolic gene regulation (Nguyen 

et al. 2015, Gimple et al. 2019, Tsang et al. 2019). Interrogation of H3K27ac ChIP-seq 

(chromatin immunoprecipitation followed by sequencing) data sets identified SE regions 

enriched in glioma stem cells (GSCs). A GSC-specific SE regulates the expression of 

elongation of very long-chain fatty acids protein 2 (ELOVL2), an endoplasmic reticulum 

transmembrane protein that functions in long-chain polyunsaturated fatty acid (LC-PUFA) 

metabolism. In GSCs, PUFAs promote EGFR signaling, and inhibition of LC-PUFA 

metabolism suppresses EGFR signaling and GSC growth (Gimple et al. 2019). Similarly, 

analysis of publicly available H3K27ac ChIP-seq data sets comparing the SE landscapes in 

liver cancer cell lines to normal liver tissues identified that sphingosine kinase 1 (SPHK1) 

acquires an SE in liver cancer cell lines. SPHK1 converts sphingosine to sphingosine-1-

phosphate, a signaling molecule that can promote cell survival. SPHK1 mRNA is 

upregulated in human HCC, and its expression negatively correlates with survival. Silencing 

of SPHK1 attenuates liver cancer xenograft tumor growth and metastasis (Tsang et al. 2019). 

Finally, endocrine therapy–resistant breast cancer cells acquire SEs at cholesterol synthesis 

genes, such as CYP27A1 (Nguyen et al. 2015). CYP27A1 generates 27 hydroxycholesterol 

(27HC) from cholesterol. 27HC can act as a modulator of the estrogen receptor (ER) 

(Warner & Gustafsson 2014), enabling estrogen-independent ER binding to regulatory 

regions. Importantly, targeting of cholesterol biosynthesis with statins suppresses ERα 
binding and cell invasion (Nguyen et al. 2015). These data together indicate that SEs 
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acquired during tumorigenesis or the development of therapeutic resistance can contribute to 

oncogenic phenotypes in part through regulation of metabolism genes.

METABOLIC REWIRING IN CANCER IMPACTS THE TUMOR EPIGENOME

In addition to epigenetic alterations driving metabolic reprogramming, metabolites 

reciprocally influence chromatin modification through their use as substrates or inhibitors of 

epigenetic enzymes. Cancer cell metabolism is influenced by cell-intrinsic (oncogenic 

signaling and genetic and epigenetic features) and -extrinsic (diet, exogenous growth factors, 

tumor microenvironment) factors, each of which has potential to impact metabolic 

regulation of the epigenome (Figure 1). In this section, we discuss how alterations in cellular 

metabolism or nutrient availability impact the cancer cell epigenome, with an emphasis on 

resultant vulnerabilities.

Metabolic Regulation of 2-Oxoglutarate-Dependent Dioxygenases

2-Oxoglutarate-dependent dioxygenases catalyze hydroxylation reactions utilizing iron 

(Fe2+) as a cofactor and molecular oxygen and αKG (2-oxoglutarate) as cosubstrates (Islam 

et al. 2018) and have emerged as highly sensitive to metabolic regulation in cancer. Within 

this family of enzymes, the tumor suppressor TET2 oxidizes 5-methylcytosine (5-mC) to 5-

hydroxymethylcytosine (5-hmC), and subsequently to 5-formylcytosine and 5-

carboxylcytosine, ultimately facilitating DNA demethylation (Kohli & Zhang 2013). Lysine 

demethylases (KDMs) of the Jumonji-C domain–containing protein family hydroxylate 

methylated lysines to hydroxymethyl intermediates, mediating histone demethylation with 

the release of formaldehyde (Mosammaparast & Shi 2010). Metabolites with chemical 

structures similar to αKG, including D-2-hydroxyglutarate (D-2-HG) and L-2-

hydroxyglutarate (L-2-HG), succinate, and fumarate, can competitively inhibit these 

enzymes, rendering them sensitive to shifts in the balance of these metabolites in cells.

D-2-hydroxyglutarate.—Isocitrate dehydrogenase 1 and 2 (IDH1/2) catalyze the 

interconversion of isocitrate and αKG. IDH1 and IDH2 are frequently mutated in cancer, 

and the IDH1/2-mutant (IDHm) enzymes acquire a neomorphic activity that results in the 

conversion of αKG to D-2-HG (Dang et al. 2009, Ward et al. 2010). D-2-HG has been 

described as an oncometabolite and has been shown to inhibit 2-oxoglutarate–dependent 

dioxygenases, including the TET enzymes (Golub et al. 2019). Extensive work, reviewed 

previously (Losman & Kaelin 2013, Raineri & Mellor 2018), has revealed that elevated D-2-

HG as a consequence of IDH1/2 mutation drives aberrant DNA and histone methylation. 

Currently, there are two FDA (US Food and Drug Administration)–approved IDHm 

inhibitors (enasidenib, an inhibitor of IDH2m, and ivosidenib, an IDH1m inhibitor), with 

several other compounds under investigation (Golub et al. 2019).

In addition to direct targeting of the mutant IDH enzymes, IDHm tumors have distinct 

vulnerabilities based on their metabolic and epigenetic characteristics (Park & Turcan 2019, 

Stuani et al. 2019). Glutamine feeds into D-2-HG pools, and thus glutaminase (GLS) 

inhibitors have been investigated for IDHm cancers (Seltzer et al. 2010, Emadi et al. 2014). 

D-2-HG also inhibits αKG use by BCAT1 and BCAT2, rendering IDHm cells deficient in 

glutamate and, consequently, glutathione production (Figure 2). IDHm cells are thus reliant 
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on glutamate synthesis from glutamine and are particularly sensitive to GLS inhibition in 

combination with oxidative stress–inducing radiation, revealing a unique therapeutic point of 

leverage for treating IDHm cancers (McBrayer et al. 2018). The clinical strategy of targeting 

GLS in combination with radiation and temozolomide is currently being tested in a clinical 

trial for IDHm diffuse or anaplastic astrocytoma (https://clinicaltrials.gov/ identifier 

NCT03528642).

L-2-hydroxyglutarate.—The L enantiomer of 2HG, L-2-HG, is also elevated in some 

cancers, due to either loss of L-2-HG dehydrogenase (L2HGDH) or microenvironmental 

conditions including hypoxia and acidity. L2HGDH deficiency leads to L-2-HG 

accumulation, which drives loss of 5-hmC and aberrant DNA methylation in clear cell renal 

cell carcinoma (ccRCC) (Creighton et al. 2013, Hu et al. 2014, Shim et al. 2014, Shenoy et 

al. 2015). L-2-HG production also increases in hypoxia due to the promiscuous activity of 

lactate and malate dehydrogenase enzymes (Intlekofer et al. 2015, Oldham et al. 2015), 

which is promoted by acidic pH (Intlekofer et al. 2017). Hypoxia-induced L-2-HG 

accumulation inhibits αKG–dependent enzymes, resulting in elevated histone methylation, 

as well as HIF-1α accumulation, thereby potentiating the hypoxic response (Intlekofer et al. 

2015, 2017).

Succinate and fumarate.—Fumarate hydratase (FH) or succinate dehydrogenase (SDH) 

loss-of-function mutations lead to a buildup of fumarate or succinate, respectively, and are 

found in paragangliomas, pheochromocytomas, leiomyomatosis, and renal cell cancer 

(Favier et al. 2015, Yong et al. 2020). The accumulation of succinate resulting from SDH 

mutations inhibits αKG-dependent HIF prolyl hydroxylases, resulting in stabilization of 

HIF1 and HIF2 (Selak et al. 2005). Accumulation of succinate in SDH-null cells also 

inhibits TET enzymes, leading to DNA hypermethylation (Letouzé et al. 2013). Notably, 

combined activation of HIF2 and inhibition of TET enzymes mimics the metastatic 

phenotype seen in SDHB-mutant cells (Morin et al. 2020). Inactive FH in renal cancer cells 

promotes fumarate accumulation, reducing TET enzyme activity, leading to increased DNA 

methylation. DNA methylation occurs at regulatory regions controlling the antimetastatic 

mir-200 cluster, decreasing its expression and increasing expression of epithelial-

mesenchymal transition (EMT)-related genes (Sciacovelli et al. 2016).

α-Ketoglutarate.—In addition to aberrant accumulation of inhibitory metabolites, the 

production of the TET cosubstrate αKG itself is a point of regulation of TET enzymes in 

cancer cells. Tumor suppression by p53 in a mouse model of KrasG12D-driven pancreatic 

cancer depends on control of the αKG:succinate ratio (Morris et al. 2019). Using a model 

with doxycycline-inducible p53 expression, Morris et al. showed that re-expression of p53 

after tumor formation triggers differentiation and tumor suppression. Intriguingly, this is 

associated with an increase in the αKG:succinate ratio, along with elevated 5-hmC levels, 

consistent with an increase in TET activity. Remarkably, manipulation of enzymes that 

modulate αKG mirrors p53 reactivation. Silencing of oxoglutarate dehydrogenase (OGDH), 

the enzyme that converts αKG to succinyl-CoA (coenzyme A), increases the αKG:succinate 

ratio, enhances 5-hmC levels, and reduces tumor growth in p53-null tumors in vivo (Morris 

et al. 2019).
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αKG is also produced or consumed in the cell in several transaminase reactions, and recent 

evidence suggests that transaminases such as BCAT1 may also sufficiently impact αKG 

availability to modulate TET enzyme activity. Proteomic analysis in acute myeloid leukemia 

(AML) found enrichment for BCAT1 in leukemia stem cells. BCAT1 knockdown increases 

αKG levels, increasing TET activity and impairing cell growth and colony-formation in cells 

derived from AML patient samples. Notably, high BCAT1 expression inversely correlates 

with survival only in AML patients whose cancers were wild-type for TET2 and IDH, 

consistent with BCAT1 overexpression promoting tumorigenesis via suppression of TET2 

function (Raffel et al. 2017).

αKG availability is further subject to constraints dictated by the tumor microenvironment. 

Low glutamine availability in the tumor microenvironment limits αKG levels and the 

activity of 2-oxoglutarate–dependent dioxygenases, resulting in hyper histone methylation 

within the interior of melanoma tumors (Pan et al. 2016). Glutamine-deprived melanoma 

cells are resistant to BRAF inhibitors but can be sensitized by inhibition of the 

methyltransferase EZH2 (Pan et al. 2016), pointing to a direct mechanism through which 

microenvironmental nutrient gradients induce therapeutic resistance.

In the lethal pediatric malignancy posterior fossa A (PFA) ependymoma, hypoxia plays a 

key role in driving metabolic and epigenetic reprogramming and is required for the 

maintenance of PFA ependymoma cells in culture. H3K27me2 and me3 are suppressed 

under hypoxia, enforced by a high αKG:succinate ratio, which promotes the activity of the 

H3K27 demethylases KDM6A and 6B. PFA ependymoma cells are sensitive to inhibition of 

these demethylases as well as inhibition of GLS, which feeds αKG pools. Increased 

availability of the methyl donor SAM in these cells can similarly drive an increase in H3K27 

methylation and suppress PFA growth (Michealraj et al. 2020).

Metabolic strategies to enhance TET activity.—With accumulating evidence that 

impairment of TET2 function may be a major mechanism through which metabolic 

reprogramming promotes cancer progression, metabolic strategies to enhance TET activity 

have been investigated. These strategies include metabolic manipulations to boost αKG 

levels, stimulation of TET activity through ascorbate supplementation, and enhancement of 

the stability of TET2 via AMPK-dependent phosphorylation. Increasing αKG through 

inhibition of OGDH increased TET enzyme activity and 5-hmC levels in breast tumors and 

inhibited metastatic spread (Atlante et al. 2018). In vivo administration of membrane-

permeable dimethyl-αKG promoted cellular differentiation and suppressed tumor growth in 

a mouse model of colorectal cancer (Tran et al. 2020). Additionally, ascorbate is a cofactor 

of 2-oxoglutarate-dependent dioxygenases, and its supplementation promotes TET enzyme 

activity to exert anticancer effects (Agathocleous et al. 2017; Cimmino et al. 2017; Shenoy 

et al. 2017, 2019; Mingay et al. 2018; Mustafi et al. 2018). Finally, metabolic control of 

posttranslational modification of TET2 is also reported. AMPK-dependent phosphorylation 

of TET2 results in its stabilization. Intriguingly, hyperglycemia suppresses AMPK activity 

and destabilizes TET2, providing a possible mechanism linking diabetes and cancer. 

Metformin, a diabetes drug that promotes AMPK activation, slows growth of xenografted 

tumors in a TET2-dependent manner (Wu et al. 2018a).
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Metabolic Regulation of Methyltransferases

Methyltransferases can act either on nucleic acids, methylating cytosine to generate 5-mC, 

or on lysine and arginine residues within proteins such as histones. All methyltransferase 

enzymes utilize S-adenosyl-L-methionine (SAM) as the methyl donor, and the abundance of 

SAM can impact DNA and histone methylation (Reid et al. 2017, Campbell & Wellen 

2018). SAM is produced within the methionine cycle from methionine and ATP (Figure 3). 

After SAM is used for methylation, the product S-adenosylhomocysteine (SAH) can be 

recycled to regenerate methionine and SAM via acquisition of a methyl-group provided by 

5-methyl THF (tetrahydrofolate) from the integrated folate cycle and serine-glycine 

metabolism. The serine-glycine biosynthesis pathway branches off from glycolysis at 3-

phosphoglycerate. Serine is synthesized in three steps requiring the enzymes PHGDH, 

PSAT, and phosphoserine phosphatase. Glycine is produced from serine by serine 

hydroxymethyltransferase (SHMT) enzymes, which carry out the reversible transfer of a 

one-carbon unit from serine to THF (Figure 3). Additionally, SAM can be decarboxylated 

and used for polyamine biosynthesis, which generates the by-product methylthioadenosine 

(MTA). MTA can be recycled through the methionine salvage pathway, for which the rate-

limiting enzyme is MTA phosphorylase (MTAP), to regenerate methionine (Avila et al. 

2004) (Figure 3). Here, we discuss how oncogenic and microenvironmental cues, changes in 

metabolic enzyme expression, and the availability of dietary methionine or folate can impact 

SAM-dependent histone and DNA methylation. Potential therapeutic targets that leverage 

this metabolic-epigenetic cross talk are highlighted.

Oncogenic signaling and drug resistance.—Activation of the serine-glycine one-

carbon network in response to oncogenic signaling in cancer cells is linked to regulation of 

DNA methylation. In a pancreatic cancer context, cells expressing oncogenic KRAS and 

lacking the tumor suppressor LKB1 (referred to as KL cells) exhibit increased flux through 

the serine-glycine arm of one-carbon metabolism, promoting SAM synthesis and elevated 

DNA methylation. KL tumors become reliant on these metabolic and epigenetic features, 

and either silencing of PSAT or DNMT inhibition suppresses KL tumor growth in mice 

(Kottakis et al. 2016). Similarly, reduced expression of the atypical protein kinase PKCλ/ι is 

characteristic of neuroendocrine prostate cancer (NEPC), and murine prostate tumors 

lacking PKCλ/ι exhibit transcriptional upregulation of the serine-glycine biosynthesis 

pathway, mediated via mTORC1-dependent activation of the transcription factor ATF4. 

SAM abundance is elevated in PKCλ/ι-deficient tumors, resulting in DNA 

hypermethylation and NEPC differentiation. DNMT inhibition or silencing of PHGDH 

suppresses the growth of tumors lacking PKCλ/ι (Reina-Campos et al. 2019). Serine 

biosynthesis pathway enzymes including PHGDH and PSAT1 are upregulated in Burkitt’s 

lymphoma as a result of upregulated MYC/ATF4-controlled transcription. Inhibition of 

PHGDH decreases DNA and histone methylation, although it did not alter tumor growth 

(Białopiotrowicz et al. 2020). Thus, in several distinct cancer types, activation of serine-

glycine biosynthesis promotes SAM synthesis and DNA hypermethylation, which in some 

contexts results in enhanced sensitivity to DNA methyltransferase inhibitors.

Chemotherapy-resistant breast cancer cells conversely exhibit low abundance of methionine 

cycle intermediates, including SAM. This corresponds with reduced DNA methylation and 
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genome-wide compensatory reprogramming of H3K27me3, rendering cells sensitive to 

inhibition of the H3K27 methyltransferase EZH2 (Deblois et al. 2020).

Metabolic gene expression changes.—Changes in the expression of metabolic 

enzymes also drive changes in one-carbon metabolism and methylation in tumors. A prime 

example is MTAP, the rate limiting enzyme in the methionine salvage pathway (Figure 3), 

which is deleted in a variety of cancers along with the neighboring tumor suppressors 

CDKN2A and ARF (Mavrakis et al. 2016). MTAP-inactivating mutations are also associated 

with an autosomal-dominant bone dysplasia and cancer syndrome in humans, and MTAP 

heterozygous knockout in mice is sufficient to cause lymphoma, indicating that MTAP itself 

is a tumor suppressor (Kadariya et al. 2009, Camacho-Vanegas et al. 2012). Accordingly, in 

glioblastoma, MTAP-null cells exhibit enhanced expression of stemness genes and GSC 

formation, linked to DNA hypomethylation (Hansen et al. 2019). In addition, MTAP 

deficiency results in distinct vulnerabilities owing to MTAP’s metabolic role in recycling the 

polyamine metabolic product MTA. MTAP deficiency leads to a buildup of MTA, which can 

compete with SAM for binding to the type II (symmetric) arginine methyltransferase 

PRMT5, reducing histone arginine methylation. The resultant low-PRMT5 activity renders 

MTAP-deficient cancer cells highly sensitive to further PRMT5 inhibition (Kryukov et al. 

2016, Marjon et al. 2016, Mavrakis et al. 2016). Interestingly, combined PRMT5 and type I 

(asymmetric) PRMT inhibition exhibit combinatorial effects in blocking cancer cell 

proliferation and xenograft tumor growth. MTAP-deficient cells are thus also more sensitive 

to type I PRMT inhibition (Fedoriw et al. 2019, Gao et al. 2019a). Altogether these data 

indicate that MTAP loss elicits widespread epigenetic changes that both contribute to 

tumorigenesis and create targetable epigenetic dependencies.

Nicotinamide N-methyltransferase (NNMT), which methylates nicotinamide using SAM, is 

overexpressed in a variety of cancers including lung, liver, kidney, bladder, and colon. 

NNMT overexpression depletes SAM pools, promoting hypomethylation of histones and 

driving protumorigenic gene expression (Ulanovskaya et al. 2013). NNMT is also highly 

expressed in metastasis-associated cancer-associated fibroblasts (CAFs) in the context of 

ovarian cancer. NNMT-dependent depletion of SAM pools and histone methylation 

facilitates expression of CAF markers and promotes tumor growth and metastasis (Eckert et 

al. 2019).

Elevated IDH3α expression was recently found to promote glioblastoma growth. In contrast 

to IDH1/2, IDH3α, a subunit of the heterodimeric TCA cycle enzyme IDH3, is not mutated 

but is overexpressed in glioma, and it exerts its effects at least in part through interaction 

with the cytosolic SHMT (cSHMT). cSHMT is a reversible enzyme that converts THF and 

serine to glycine and 5,10-methylene THF (Figure 3). 5,10-methylene THF provides one-

carbon units needed to regenerate methionine from homocysteine for SAM synthesis and to 

synthesize thymidylate needed for DNA synthesis. The cSHMT-IDH3α interaction promotes 

the partitioning of one-carbon units towards nucleotide synthesis during S phase and away 

from SAM production. IDH3α depletion promotes hypermethylation of cancer-relevant 

genes and reduces cancer progression, suggesting that targeting IDH3 or the interaction of 

cSHMT and IDH3α could hold therapeutic potential for glioblastoma (May et al. 2019).
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Nutrition.—Folate plays a critical role in methylation and nucleotide metabolism, and thus 

it is studied in numerous processes from embryonic development to tumorigenesis. 

Nutritional epidemiology studies have tied folate consumption to cancer incidence, although 

the directionality appears to be highly context dependent (Pieroth et al. 2018). Studies in 

liver, colon, and prostate cancer also yield varying results as to the extent to which dietary 

folate impacts DNA methylation (Kim et al. 1996, Song et al. 2000, Kim 2005, Pogribny et 

al. 2006, Bistulfi et al. 2011). More recently, work in prostate cancer xenografts finds that 

both folate supplementation and depletion have dramatic effects on DNA methylation due to 

changes in the ratio of SAM to SAH. Interestingly, timing of dietary folate manipulation is 

important, whereby dietary folate restriction starting at the same time of androgen 

withdrawal therapy reduces the recurrence rate of castration-resistant prostate cancer, while 

folate restriction prior to xenograft implantation does not (Affronti et al. 2017). Thus, dietary 

folate abundance appears to have both timing- and context-dependent effects on methylation 

in tumors, and further work is needed to clarify optimal strategies for therapeutic dietary 

folate manipulation.

SAM pools and histone methylation are also impacted by dietary methionine content. 

Methionine restriction can reduce SAM pools and histone methylation both in vitro and in 

vivo, and beneficial effects of methionine restriction are reported in the contexts of aging, 

obesity, and cancer (Sanderson et al. 2019, Wanders et al. 2020). Methionine deprivation 

may be most effective as part of a combinatorial strategy; chemotherapy and radiation 

therapy efficacy are improved by methionine restriction in preclinical models (Gao et al. 

2019b). Recent evidence also indicates that avid methionine consumption by cancer cells 

may promote immune evasion by reducing T cell methionine uptake and H3K79 

dimethylation, which regulates STAT5 expression. Methionine supplementation or inhibition 

of tumor cell methionine uptake boosts T cell immunity (Bian et al. 2020).

High-fat diet, which is used to model diet-induced obesity in rodents, may also impact SAM 

pools and histone methylation in cancer cells. In a mouse model of MYC-driven prostate 

cancer, a diet high in fat promotes cancer progression via potentiation of the MYC 

transcriptional program (Labbé et al. 2019). MYC expression reduces SAM and increases 

SAH levels in prostate cancer, and these effects are exacerbated by high-fat diet. Histone 

methylation dynamics are altered accordingly, including pronounced hypomethylation of 

H4K20 globally and at the promoters of MYC target genes. Importantly, the augmented Myc 

signature in mice can be reversed by switching to a control diet. In addition, clinical samples 

from prostate cancer patients stratified by saturated fat intake reveal enrichment of a MYC 

target gene signature and greater overall mortality in those consuming high amounts of 

saturated fat. These data thus suggest that diet has the potential to impact disease 

progression in part by modulating the epigenome.

Metabolic Regulation of Acetylation

Histone acetylation is associated with active gene transcription and is determined by the 

respective activities of acetyltransferases and deacetylates. Histone lysine acetyltransferases 

transfer the acetyl group from acetyl-CoA to the ε-amine of the lysine side chain, 

neutralizing the positive charge of the unmodified residue. Histone acetylation is highly 
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sensitive to the availability of acetyl-CoA. HDACs are also subject to metabolic regulation. 

Sirtuin (class III) HDACs rely on nicotinamide adenine dinucleotide (NAD+) for their 

activity, while the metabolites butyrate and β-hydroxybutyrate (BHB) can inhibit class I and 

IIa HDACs.

Acetyl-CoA.—Acetyl-CoA availability for histone acetylation is determined by its 

production and utilization within the nuclear-cytosolic compartment. Extramitochondrial 

acetyl-CoA is primarily generated from citrate or acetate via ACLY and ACSS2, 

respectively, and abundant evidence has linked each of these enzymes to the regulation of 

histone acetylation in diverse contexts. Data have also emerged supporting the notion that 

nuclear production of acetyl-CoA by ACLY, ACSS2, or the pyruvate dehydrogenase 

complex (PDC) is important for processes, including transcription of specific genes and 

DNA damage repair. These findings and concepts are extensively covered in previous 

reviews (Shi & Tu 2015, Li et al. 2018, Sivanand et al. 2018). Here we focus on evidence 

that (a) oncogenic or stress-induced signaling pathways and (b) altered expression or 

localization of acetyl-CoA metabolic enzymes regulate acetyl-CoA production and histone 

acetylation in cancer.

Signaling.: Both ACLY and ACSS2 have been shown to be directly regulated by signaling 

cascades that respond to growth factor stimulation or nutrient availability. The regulation of 

these enzymes, as well as acetyl-CoA-consuming enzymes, directly impacts acetyl-CoA 

levels and alters histone acetylation. AKT and AMPK are two major signaling factors that 

have emerged as regulators of acetyl-CoA metabolism and histone acetylation. The PI3K-

AKT signaling pathway promotes cell survival, growth, and proliferation and is commonly 

activated in cancer cells (Manning & Toker 2017). AMPK is a sensor of intracellular energy 

stress, which exerts broad effects to inactivate anabolic processes and stimulate nutrient 

uptake and catabolism (González et al. 2020). Both signaling nodes regulate acetyl-CoA 

levels and histone acetylation, as we discuss below.

Substantial evidence points to the phosphorylation of ACLY at serine 455, which increases 

its activity (Potapova et al. 2000), as a key point of control for this enzyme. Several kinases 

phosphorylate this site, including AKT, PKA, and BCKDK (Guy et al. 1980, Berwick et al. 

2002, White et al. 2018), with AKT being the most extensively studied in recent years. 

Interestingly, ACLY is a mTORC2-dependent AKT substrate (i.e., dependent on AKT-S473 

phosphorylation, the site phosphorylated by mTORC2) (Martinez Calejman et al. 2020).

AKT signaling is a key regulator of ACLY-S455 phosphorylation and histone acetylation in 

cancer cells. ACLY-S455 phosphorylation promotes global histone acetylation in cancer 

cells, and pAKT-S473 correlates positively with histone acetylation levels in human prostate 

tumors and gliomas (Lee et al. 2014). Oncogenic KRAS signaling in murine pancreatic 

acinar cells also promotes elevated histone acetylation in an AKT- and ACLY-dependent 

manner, even prior to tumor formation, and genetic deletion of Acly suppresses pancreatic 

carcinogenesis (Carrer et al. 2019). Insulin signaling, which activates the PI3K-AKT 

pathway, can also drive an increase in histone acetylation in cancer cells (Carrer et al. 2019, 

Senapati et al. 2019). In addition to oncogenic signaling, DNA damage signaling also 

promotes ACLY-S473 phosphorylation within the nucleus in an ATM- and AKT-dependent 
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manner. ACLY facilitates histone H4 acetylation near sites of DNA double-strand breaks, 

promoting DNA repair by homologous recombination (HR). Consistent with a role in HR, 

ACLY silencing sensitizes cells to PARP inhibition (Sivanand et al. 2017). Thus, AKT-

ACLY signaling is an important determinant of histone acetylation within cancer cells, 

although more work is needed to understand the functional consequences and potential for 

therapeutic intervention.

AMP-activated protein kinase (AMPK) impacts acetyl-CoA pools and histone acetylation in 

cancer through phosphorylation of at least two relevant targets: acetyl-CoA carboxylase 

(ACC1) and ACSS2. Inhibitory phosphorylation of ACC1 increases acetyl-CoA abundance 

by preventing its conversion to malonyl-CoA and increases global histone acetylation 

(Galdieri & Vancura 2012, Galdieri et al. 2016). Activating AMPK with metformin also 

boosts histone acetylation and improves efficacy of the HDAC inhibitor panobinostat in a 

subcutaneous bladder tumor model (Okubo et al. 2019). Reciprocally, in AML cells, AMPK 

deficiency reduces acetyl-CoA pools and histone acetylation, decreasing BET protein 

recruitment to chromatin. Treatment with AMPK and BET inhibitors synergistically inhibits 

leukemogenesis in mice (Jiang et al. 2019). The AMPK-ACC1 axis may also contribute to 

obesity-linked breast cancer. Elevated leptin and TGFβ levels in the context of obesity 

activate AMPK-dependent ACC1 phosphorylation in breast cancer cells, increasing acetyl-

CoA and protein acetylation levels including acetylation of the transcription factor SMAD2. 

Acetylated SMAD2 drives expression of an EMT gene expression program, along with 

increased migration and invasion (Rios Garcia et al. 2017). In addition to regulating acetyl-

CoA pools through ACC1 phosphorylation, AMPK phosphorylates ACSS2, promoting its 

nuclear localization and interaction with the transcription factor TFEB to promote histone 

acetylation at autophagy and lysosome biogenesis genes (Li et al. 2017). Cumulatively, the 

data identify AMPK as a key signaling molecule in control of acetyl-CoA pools.

Finally, PDC can also provide acetyl-CoA for histone acetylation. Growth factor signaling 

and mitochondrial stress promote translocation of PDC to the nucleus where it can provide 

acetyl-CoA for histone acetylation (Sutendra et al. 2014). However, the underlying 

mechanisms governing PDC nuclear localization remain poorly understood.

Altered expression.: Aberrant expression of acetyl-CoA producers or consumers may also 

impact histone acetylation. ACLY and ACSS2 are both regulated by SREBP transcription 

factors, and expression of each is elevated in numerous cancer types (Hatzivassiliou et al. 

2005, Comerford et al. 2014, Mashimo et al. 2014, Schug et al. 2015, Carrer et al. 2019). 

ACSS2 is also upregulated under hypoxic conditions and plays a key role in recycling 

HDAC-derived acetate to sustain histone acetylation (Schug et al. 2015, Bulusu et al. 2017). 

Additionally, a recent study reported that an unexpected source of acetyl-CoA for histone 

acetylation is nuclear glycogenolysis. In lung cancer cells, low expression of the E3 

ubiquitin ligase malin, which targets glycogen phosphorylase to the nucleus, results in 

accumulation of nuclear glycogen and suppression of the contribution of glycogen to histone 

acetylation. Malin re-expression promotes nuclear glycogenolysis and histone acetylation, 

while suppressing tumor growth (Sun et al. 2019).

Izzo et al. Page 13

Annu Rev Cancer Biol. Author manuscript; available in PMC 2021 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The cytosolic acetyl-CoA hydrolase ACOT12 has been recently identified as another 

regulator of acetyl-CoA pools for histone acetylation in HCC. ACOT12 is expressed in 

normal liver but downregulated in HCC tumors, and expression of ACOT12 correlates 

negatively with HCC metastasis and decreased survival. Mechanistically, it was found that 

accumulation of acetyl-CoA in the absence of ACOT12 promotes EMT and metastasis, 

corresponding with increased histone acetylation globally and at the promoter of the EMT 

gene TWIST2 (Lu et al. 2019).

Butyrate and β-hydroxybutyrate.—In addition to aberrant acetyl-CoA levels, inhibitors 

of HDACs such as butyrate can also dramatically impact histone acetylation. Butyrate is a 

short-chain fatty acid produced by fermentation and breakdown of fiber by the gut 

microbiota and used by colonocytes as a primary source of oxidizable carbon. Butyrate may 

produce a protective effect in inhibiting the development of colorectal cancer (Wu et al. 

2018b). Buildup of butyrate, resulting in HDAC inhibition, occurs when colonocytes 

transform into cancerous cells as their metabolism shifts from the oxidation of butyrate to 

aerobic glycolysis (Donohoe et al. 2012). In studies using gnotobiotic mouse models 

colonized by bacteria that do or do not produce butyrate, a high-fiber diet protects animals 

from colorectal cancer in a manner dependent on butyrate production. Butyrate triggers 

elevated histone acetylation and alters gene expression in cancer cells to promote cell death 

and suppress proliferation (Donohoe et al. 2014). Recent work has also identified specific 

butyrate-producing bacteria that are suppressed in the presence of tumors and exert 

antiproliferative effects (Zagato et al. 2020). Notably, short-chain fatty acids produced by 

microbiota may impact histone modifications even outside of the colon, including in liver 

and adipose tissue (Krautkramer et al. 2016). More work is needed to optimize dietary and 

pharmacological strategies to leverage butyrate production by the microbiota in the context 

of cancer treatment.

BHB, a ketone body, was more recently identified as an endogenously produced inhibitor of 

HDACs. Serum levels of BHB can rise to low-millimolar concentrations during extended 

fasting or through consumption of a ketogenic diet. Although less potent than butyrate in 

inhibiting HDACs, BHB administration to mice increases histone acetylation and impacts 

gene expression in tissues (Shimazu et al. 2013). Interestingly, BHB may also be produced 

locally within the tumor microenvironment. Isolation of mammary gland–derived adipocytes 

from mastectomy patients revealed that adipocytes secrete BHB into media ex vivo, driving 

increased colony formation and proliferation of breast cancer cell lines (Huang et al. 2017). 

The improved growth correlates with an increase in H3K9 acetylation and expression of 

protumorigenic genes, highlighting that metabolic cross talk among cells in the 

microenvironment can promote tumor enhancement through epigenetic regulation.

Nicotinamide adenine dinucleotide.—Nicotinamide adenine dinucleotide (NAD+) is a 

redoxactive cofactor utilized by multiple enzymes including the sirtuin class of deacetylases 

and PARP enzymes. NAD+ metabolism appears to play a role in chemoprevention, 

potentially via the PARP DNA damage repair enzymes. A mouse model of HCC driven by 

expression of Uri (unconventional prefoldin RPB5 interactor) promotes tumorigenesis 

through downregulation of enzymes involved in NAD+ synthesis, resulting in increased 

Izzo et al. Page 14

Annu Rev Cancer Biol. Author manuscript; available in PMC 2021 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DNA damage. Dietary supplementation of an NAD+ precursor, nicotinamide riboside, 

prevents DNA damage and suppresses HCC formation (Tummala et al. 2014). While low 

NAD+ may contribute to mutational burden and tumor formation, reducing NAD+ within 

cancer cells may conversely trigger cell death and suppress stem cell features via effects on 

both SIRT1 and PARP, as has been documented with inhibition of the NAD+ salvage 

enzyme NAMPT (Thakur et al. 2012, Sharif et al. 2016, Lucena-Cacace et al. 2018). NAD+ 

metabolism therefore participates in multistep tumorigenesis, with roles in modulating both 

PARP and sirtuin enzyme activity.

FUTURE PERSPECTIVES

Metabolic and epigenetic remodeling in cancer cells are interwoven, influencing one another 

through complex mechanisms, with some common themes emerging. One theme includes 

the idea that metabolic regulation of TET enzyme activity by αKG and structurally similar 

metabolites regulate cellular differentiation and tumorigenesis. Second, AKT and AMPK 

signaling pathways act to promote histone acetylation via control of acetyl-CoA production 

by ACLY and consumption by ACC1, respectively. Third, distinct vulnerabilities arise upon 

loss of epigenetic silencing or deletion of metabolic genes, such as BCAT1 and MTAP. 

Meanwhile, it is important to keep in mind that some links between epigenetics and 

metabolism discussed here may be quite context specific. A key goal lies in understanding 

how these metabolic-epigenetics links can be exploited therapeutically, particularly in 

combination strategies.

Additional emerging links between metabolism and epigenetics are likely to also be relevant 

to cancer cells. Recent work has uncovered a connection between the reactive glycolytic 

metabolite methylglyoxal and altered chromatin structure due to glycation of histones 

(Zheng et al. 2019). This modification is detectable in breast cancer tissue and may play a 

role in cancer pathogenesis in other cancer types. Another emerging area is the discovery of 

multiple acylation modifications on histones. Since the roles of these modifications in cancer 

remain poorly understood, they fall outside of the scope of this review but have been 

discussed in depth in other recent reviews (Sabari et al. 2017, Trefely et al. 2020).

The role of diet in tumorigenesis and in modifying therapeutic responses has also emerged 

as an important frontier in cancer biology (Bose et al. 2020, Kanarek et al. 2020, Tajan & 

Vousden 2020). The availability of nutrients that can impact the epigenome, such as 

methionine, serine, and ascorbate, as well as metabolites such as acetate and butyrate, is 

directly impacted by dietary composition. Diet and systemic metabolism can modify risk of 

multiple cancers, although the underlying mechanisms are incompletely understood. Further 

study into the role of diet in determining tumor metabolic and epigenetic features has the 

potential to identify distinct vulnerabilities and provide rational strategies to combine 

nutritional interventions with other therapeutics.
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Figure 1. 
Metabolic and epigenetic reprogramming in cancer cells exert reciprocal regulation on one 

another. The tumor microenvironment, oncogenic signaling, and systemic metabolism, 

including the individual’s diet, each influence the availability of metabolites utilized by 

epigenetic enzymes. Tumor epigenetic features can reciprocally drive changes in the 

expression of genes that impact cancer metabolism. Figure adapted from images created in 

Biorender. Abbreviations: Ac, acetylation; Me, methylation; TF, transcription factor.
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Figure 2. 
Deficiency in epigenetic enzymes alters expression of metabolic genes. (a) BCAT1 

expression is suppressed by histone methylation. Loss of repressive histone methylation 

occurs with EZH2 deficiency, as well as some cancers treated with sublethal tyrosine kinase 

inhibition. BCAT1 catalyzes the reversible transamination of BCAAs to BCKAs using αKG 

as an amino group acceptor and glutamate as an amino group donor. The substrates and 

products of the reaction catalyzed by BCAT1 impact the generation of downstream 

metabolites such as GSH and impinge on TET2 and mTORC1 activity. (b) The system xc
− 

cysteine-glutamate antiporter is a dimer of SLC7A11 and SLC3A2. Expression levels of 

SLC7A11 are regulated by ARID1A and BAP1. System xc
− transports intracellular cystine, 

which is needed to synthesize glutathione. Figure adapted from images created in Biorender. 

Abbreviations: αKG, alpha-ketoglutarate; BCAAs, branched-chain amino acids; BCKAs, 

branched-chain alpha-keto acids; GPx, glutathione peroxidase; GR, glutathione reductase; 

GSH, reduced glutathione; GSSG,oxidized glutathione; PPP, pentose phosphate pathway; 

ROS, reactive oxygen species.
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Figure 3. 
Oncogenic signaling and diet impact one-carbon metabolism and methylation. One-carbon 

metabolism is composed of folate metabolism and the methionine cycle and is important for 

DNA synthesis and the SAM production needed for methylation reactions. Dietary 

availability of serine, folate, and methionine, as well as oncogenic signaling and 

microenvironmental nutrient availability, can impact the serine-glycine one-carbon network, 

leading to epigenetic alterations and exposing therapeutic vulnerabilities. Figure adapted 

from images created in Biorender. Abbreviations: 3-PGA, 3-phosphoglyceric acid; 3PHP, 3-

phosphohydroxypyruvate; 3PSer, 3-phosphoserine; dcSAM, decarboxylated SAM; GSH, 

glutathione; MTA, methylthioadenosine; MTAP, MTA phosphorylase; PHGDH, 

phosphoglycerate dehydrogenase; PSAT, phosphoserine aminotransferase; SAH, S-adenosyl 

homocysteine; SAM, S-adenosyl methionine; SHMT, serine hydroxymethyltransferase; 

THF, tetrahydrofolate.
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Table 1

Epigenetic alterations leading to targetable metabolic vulnerabilities

Genetic alteration/condition Cancer type
Rationale/epigenetic or 
metabolic consequence

Proposed therapeutic 
vulnerability

EZH2 deficiency (Gu et al. 2019) Leukemia (leukemic-
initiating cells)

Decreased histone H3K27me3 and 
increased BCAT1 expression

mTOR inhibition (rapamycin), 
BCAT1 inhibition (Gbp)

BAP1 deficiency (Zhang et al. 2018, 
Liu et al. 2020)

Renal cancer, 
mesothelioma

Increased H2Aub and increased 
SLC7A11

GLUT-1 inhibition (KL-11743 or 
BAY-876)

ARID1A deficiency (Ogiwara et al. 
2019)

Colon cancer, ovarian 
cancer

Decreased expression of SLC7A11 GSH limitation (APR-246 and 
PRIMA-1)

Tyrosine kinase inhibition (Wang et 
al. 2019)

Lung adenocarcinoma Decreased H3K9me2/3 and 
increased BCAT1 expression

BCAT1 inhibition, ROS inducers 
(piperlongumine, phenethyl 
isothiocyanate, auranofin), or 
GSH synthesis inhibition (BSO)

BRG1 overexpression (Wu et al. 
2016)

Breast cancer Increased fatty acid synthesis gene 
expression

BRG1 inhibition (ADAADi) and 
fatty acid synthesis inhibitors 
(TOFA, C75)

SIRT6 deficiency (Sebastián et al. 
2012)

Colorectal carcinoma Increased glycolytic gene 
expression

PDK1 inhibition (DCA), potential 
glycolytic dependency

LSD1 overexpression (Sakamoto et al. 
2015)

Hepatocellular 
carcinoma

Decreased H3K4me2/3, decreased 
oxidative phosphorylation gene 
expression

Potential glycolytic dependency

BET inhibition (JQ-1) (Carrer et al. 
2019, Sdelci et al. 2019)

Leukemia, lung 
adenocarcinoma

BRD4 interacts with MTHFD1 Antifolate therapy (methotrexate)

Pancreatic cancer Acetyl-CoA metabolic process 
dependencies

Statins

KMT2D deficiency (Alam et al. 2020) Lung cancer Altered superenhancers genome 
wide, downregulation of PER2, 
increased glycolytic gene 
expression

2-Deoxyglucose

Abbreviations: acetyl-CoA, acetyl coenzyme A; BSO, buthionine sulfoximine; DCA, dichloroacetate; Gbp, gabapentin; GSH, glutathione; ROS, 
reactive oxygen species; TOFA, 5-(tetradecyloxy)-2-furoic acid.
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