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Abstract

Various hippocampal and neocortical synapses of mammalian brain show both short-term plasticity and long-term
plasticity, which are considered to underlie learning and memory by the brain. According to Hebb’s postulate, synaptic
plasticity encodes memory traces of past experiences into cell assemblies in cortical circuits. However, it remains unclear
how the various forms of long-term and short-term synaptic plasticity cooperatively create and reorganize such cell
assemblies. Here, we investigate the mechanism in which the three forms of synaptic plasticity known in cortical circuits, i.e.,
spike-timing-dependent plasticity (STDP), short-term depression (STD) and homeostatic plasticity, cooperatively generate,
retain and reorganize cell assemblies in a recurrent neuronal network model. We show that multiple cell assemblies
generated by external stimuli can survive noisy spontaneous network activity for an adequate range of the strength of STD.
Furthermore, our model predicts that a symmetric temporal window of STDP, such as observed in dopaminergic
modulations on hippocampal neurons, is crucial for the retention and integration of multiple cell assemblies. These results
may have implications for the understanding of cortical memory processes.
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Introduction

Learning and memory are fundamental brain functions

supported by hippocampal neural circuits, and long-term poten-

tiation (LTP) and depression (LTD) of synapses are considered to

underlie activity-dependent modifications of hippocampal circuits

during memory processes. According to the cell-assembly hypoth-

esis [1,2], memory traces may be represented by functionally

grouped assemblies of neurons. Although the mechanism to

generate memory traces remains elusive, recent evidence suggests

that the groups of neurons activated during behavior are

reactivated and reorganized in the awake-quiet and sleep states

of animals [3,4]. These results indicate that memory traces are not

static entities driven solely by external stimuli as often assumed in

previous theoretical studies, but are actively retained and

modulated by spontaneous network dynamics. Moreover, latent

modulations, especially selective retention and integration, of

memory traces are important in various cognitive tasks [5].

In order to explore the spontaneous modulation of memory

traces, we need to model spontaneous activity states with activity-

dependent synaptic plasticity, such as spike-timing-dependent

plasticity (STDP), in which synaptic weights are modified

depending on pre- and post-synaptic spike events occurring in a

millisecond-range timescale [6,7]. Along with long-term plasticity,

cortical synapses also undergo short-term plasticity [8,9]. Short-

term plasticity, especially short-term depression (STD), can induce

dramatic changes in the characteristic dynamics of recurrent

network models such as spontaneous transitions among point

attractors [10,11] or rotational motions in ring attractors [12].

Because STDP depends on spiking activity within a timescale

comparable with that of the complex network dynamics, short-

term plasticity may significantly influence the processes of cell-

assembly formation and retention in recurrent neural networks. In

fact, recent experimental results suggest strong influences of short-

term synaptic plasticity on memory function [13,14]. Nevertheless,

little is known about interplay between short-term and long-term

synaptic plasticity in activity-dependent structuring of recurrent

neural networks.

Motivated by the cell-assembly hypothesis [1,2], here we

investigate how STD and STDP may cooperatively generate cell

assemblies in response to external stimuli to a recurrent network

model also equipped with homeostatic plasticity [15]. We ask

whether and how the network retains the memory traces of stimuli

for a significantly long period of seconds and minutes in the

absence of the stimuli. We explore interactions between multiple

cell assemblies during their formation and retention. Our model

reveals several conditions on the properties of STD and STDP for

the robust maintenance of memory traces in noisy background

network activity. In particular, we show that STD plays a crucial

role in the retention process. Moreover, we show that modifica-

tions of STDP time window, such as observed in hippocampal

synapses under dopaminergic modulations [16] or in some

neocortical synapses during the development [17], enable the
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model to dynamically combine multiple cell assemblies into stable

clusters with a finite memory capacity.

Results

We construct a recurrent circuit model consisting of 2500

excitatory neurons and 500 inhibitory neurons that are randomly

connected with each other. We introduce short-term plasticity and

long-term plasticity into synaptic connections between excitatory

neurons, where long-term plasticity is implemented as a combi-

nation of log-STDP (Figure 1A) and homeostatic plasticity

(Methods). We focus on the effect of short-term depression on

the generation and retention of cell assemblies by long-term

plasticity.

Cell assembly formation
If we neglect the effect of synaptic noise, the weight change of

synapse Jij
EE is approximately written as

dJEE
ij

dt
%rprerpost Cptp{fd JEE

ij

� �
Cdtd

� �
z

JEE{JEE
ij

th

, ð1Þ

where rpre and rpost are the firing rates of pre- and post-synaptic

neurons, respectively. The first term expresses the effect of STDP,

whereas the latter term describes the effect of homeostatic

plasticity. When LTP slightly outbalances LTD on average, at

its steady state, weights have positive correlations with the firing

rates of both pre and post neurons (Figure 1B, for a given rpost) due

to relatively strong homeostatic plasticity. If a synaptic weight is

large, on average it decreases not only for low input/output rates

but also for high firing rates due to the weight dependence of LTD

term, so the network tends to be stabilized at a finite firing rate

with robustly configured synaptic weights.

First, we consider the effect of STD on cell assembly formation

by selectively stimulating an excitatory neuron group (Figure 2A).

The weights of synaptic connections are initially random

(Figure 2C left), and the network shows an irregular spontaneous

activity state with low firing rates (rE = 1.5–2.0Hz, rI = 10–15Hz)

(Figure 2D left). Then, we apply a constant external current

Ip = 1.0 to randomly chosen 20% of excitatory neurons for

30 seconds. During this external stimulation, those 20% of

excitatory neurons constantly fire at a high firing rate of 10–

15Hz, and as a result synaptic connections among these neurons

become strong (Figure 2B, blue shadow indicates the neurons

receiving the external stimulus) due to long-term potentiation

caused by the high firing rates of presynaptic and postsynaptic

neurons (as shown in Figure 1B). After the stimulus is turned off,

the average connection strength between stimulated neurons is

significantly larger than other excitatory connections (Figure 2C

right), and the firing rates of these neurons are also higher than

others (Figure 2D). Thus, a cell assembly can be formed in a

stimulus-dependent manner. The average weight of synapses

belonging to the assembly becomes larger for stronger input

current (Figure 2E). The observed phenomena are qualitatively

the same for simulations at different values of the release

probability parameters (Figure 2F), implying that the details of

STD are not essential for the generation of cell assemblies.

Cell assembly retention
Because neurons belonging to a cell assembly interact with

neurons outside it, the stability of cell assembles in the absence of

external stimuli is not trivially ensured. In fact, this stability

crucially relies on the properties of STD, as shown below. After the

termination of stimuli, the average synaptic weights in general

return slowly toward the initial values, although they eventually

converge to certain values that may not coincide with the initial

ones. When the release probability is small (usd = 0.1), the weights

inside the cell assembly is distinctly larger than other weights

(Figure 3A left), and the trace of the cell assembly remains visible

even after 30 minutes in both synaptic weights (Figure 3B left) and

neural activity (Figure 3C left). Synaptic weights between neurons

inside the cell assembly and background cells (i.e., cells not

belonging to the assembly) are somewhat larger than those among

background cells, as the high rate of presynaptic (postsynaptic)

firing enhances synaptic weights due to the firing-rate dependency

of STDP. Background neurons also change their firing pattern

because the balance condition of the network changes after

learning. On each excitatory neuron belonging to the cell

assembly, synaptic weights from other cells in the assembly remain

large showing large fluctuations, whereas the weights from

background cells stay small (Figure 3D). Eventually, the synaptic

weights on assembly cells obey a long tailed distribution in which

the long-tail mainly consists of synapses from other neurons in the

assembly, while that of background neurons constitutes a more

Gaussian-like distribution (Figure 3E). In contrast, for strong STD

(usd = 0.5), spontaneous activity gradually erases the cell assembly

(Figure 3A right), and both neural activity and the synaptic weight

matrix become nearly random after several minutes (Figure 3B

right, Figure 3C right). These results indicate that STD is highly

Figure 1. Rate-dependent plasticity through STDP and homeostatic plasticity. (A) Spike timing dependence of log-STDP was calculated
from equation (7) for given synaptic weights (inset). See Methods for details. (B) Firing rate dependence of synaptic weights at the fixed-point of
equation (1) representing synaptic dynamics of STDP and homeostatic plasticity. The fixed weights are analytically calculated for various firing rates of
pre-neuron rpre at given firing rates of post-neuron rpost.
doi:10.1371/journal.pone.0101535.g001
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influential on the cell assembly retention: especially strong STD

disturbs the retention.

Figure 4A shows the average synaptic weight inside the cell

assembly observed after 30 minutes. The value decreases mono-

tonically as the release probability increases. When the release

probability is larger than 0.2, the assembly becomes indistinguish-

able from other synaptic weights. We studied whether the above

results are a direct consequence of STD or merely reflect the effect

of other parameters modulated by STD. We first checked the

effect of inhibitory inputs. When STD is strong, each excitatory

neuron generate fewer spikes for the same inputs, thus the

excitatory-inhibitory balance of the recurrent network shifts to an

inhibition-dominant regime. We calculated the average firing rate

of excitatory neurons for various inhibitory connection weights JEI

and release probabilities usd at a fixed value of JEE (Figure 4B).

Then, we adjusted the values of JEI such that excitatory neurons

fire at a similar average firing rate (of 1.8Hz) for simulations at

different release probabilities, and calculated the average synaptic

weight in the cell assembly after 30 minutes of exposure to long-

term synaptic plasticity. If the weight dependence on usd arises

from differences in the excitation-inhibition balance in Figure 4A,

the weights would not change their values in these simulations.

However, the average weight almost monotonically decreases as

the release probability increases (Figure 4C), indicating that

inhibitory inputs are unlikely to cause the decrease of synaptic

weights.

Next, we considered the effect of input duration. For usd = 0.1,

longer input duration resulted in slightly larger synaptic weights in

the cell assembly. In contrast, the weights were not retained for

usd = 0.5 even when the input duration was as long as three

minutes (Figure 4D). Therefore, a robust retention of cell

assemblies is possible only if STD is sufficiently weak. If LTP is

sufficiently strong compared to LTD (Cptp/(Cdtd) . 1.6) cell

assemblies also remain stable for large usd (Figure 4E). However,

such a strong LTP is highly unlikely for cortical synapses. Here, we

defined the relative weight w1 as w1~SJEE
ij Tcell assembly{SJEE

ij Tall

to evaluate the robustness of cell assemblies.

Finally, we numerically solved equation (10) to study the effect

of STD on the stability of cell assemblies. We calculated the fixed

points of equation (10) for given value of Jca, and then calculated

the weight velocity shown in equation (1) at various values of Jca.

We found that for given release probability usd, the numerical

solution typically has two stable points corresponding to a state

(with small Jca) in which background neurons are most active and

a state (with large Jca) in which neurons belonging to a cell

assembly are almost exclusively active (Figure 4F). As the release

probability is increased, the stable fixed point with large Jca moves

to the left side, while the stable point with small Jca eventually

disappears in the analytic treatment. In numerical simulations of

the network model, however, the two states become closer and less

distinguishable (data not shown), implying that they should merge

together at a critical value of usd in Figure 4F. This discrepancy

around a critical point is considered to arise from the approxi-

mations we employed for making the neural dynamics and weight

dynamics analytically tractable. For example, we used mean

synaptic weights in analyzing neural and synaptic dynamics

although the weight distribution is far from a Gaussian (Figure 3E).

These approximations presumably oversimplify the dynamics of

our network model with highly heterogeneous synaptic weights.

Figure 2. Cell assembly formation by external input for arbitrary strength of STD. In all panels, ‘‘ca’’ stands for a cell assembly and ‘‘bg’’ for
background neurons that do not belong to the assembly. The strength of STD was set as usd = 0.1 in simulations from panel B to E. (A) Schematic
illustration of the model. We stimulate some of excitatory neurons (blue shaded area) in a randomly connected recurrent neural circuit. Triangles
indicate excitatory neurons, whereas circles represent inhibitory neurons. (B) Time evolution of the average synaptic weights within the selected cell
assembly (blue), from background excitatory neurons to the assembly (green), from the assembly to background excitatory neurons (cyan), and
outside the cell assembly (black). (C) Synaptic weight matrices of excitatory connections are shown before (left) and after (right) the application of
external input (arrows in B). Excitatory neurons are separated into 100 bins to calculate the average weights. (D) Raster plots of spiking activity before
(left) and after (right) the application of external input, where red dots represent inhibitory spikes and black dots show excitatory spikes. The
temporal position of dots are represents the update timing of the spiking state. Neurons 1 to 500 belong to the cell assembly. (E) Dynamics of the
average synaptic weight within the cell assembly calculated for various magnitudes of external input Ip. Thin lines are the results from individual
simulation trials, and the thick lines are the averages of five simulation trials at each parameter value. (F) Dynamics of the average synaptic weight
within the cell assembly calculated at Ip = 1.0 for various values of the release probability usd.
doi:10.1371/journal.pone.0101535.g002
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Interferences between cell assemblies
The results shown in the previous section have revealed that

STD has strong influences on the retention of a cell assembly, but

not much on its formation. To further demonstrate the effects of

STD on the formation and retention of multiple cell assemblies,

we stimulated a randomly chosen 20% of excitatory neurons in a

recurrent network that initially had random synaptic weights.

Directly after the first stimulation, we stimulated another 20% of

excitatory neurons that do not overlap with the first group

(Figure 5A). We applied the first stimulus for 90 seconds and the

second stimulus for 30 seconds because the application of the

second one rapidly weakened recurrent synapses in the first

neuron group. During the second stimulus, inhibitory neurons

suppress the activity of the first neuron group, and then

homeostatic plasticity weakens synaptic connections between these

inactive neurons. Under these conditions, the external stimuli

generated two cell assemblies in the recurrent network. Here, we

ask whether these cell assemblies survive separately, disappear or

merge with one another when they undergo spontaneous network

activity.

Figure 3. Strong STD disturbs cell assembly retention. (A) Time evolution of average synaptic weights within the selected cell assembly (blue),
from background excitatory neurons to the assembly (green), from the assembly to background neurons (cyan), and between background excitatory
neurons (black). The left and right panel show results for usd = 0.1 and usd = 0.5, respectively. (B) Weight matrices of excitatory synaptic connections
calculated at t = 30 min are shown for usd = 0.1(left) and usd = 0.5(right). (C) Raster plots are displayed for the weight matrices shown in B. (D)
Dynamics of individual synaptic weights is shown on one excitatory neuron in the assembly. Blue lines correspond to weights from neurons
belonging to the assembly, whereas gray lines to those from background excitatory neurons. (E) Distributions of input synaptic weights were
calculated from simulation data at t = 26.7–30 min for the neuron shown in D.
doi:10.1371/journal.pone.0101535.g003
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To quantify the different wiring patterns emergent in the

network, we define the relative synaptic weight w2 as

~ww2~ J11{
1

2
J12zJ21ð Þ

� �
J22{

1

2
J12zJ21ð Þ

� �
,

w2~~ww2=
ffiffiffiffiffiffiffiffi
D~ww2D

p
,

where Jmn is the average weight of synaptic connections from cell

assembly n to cell assembly m. The relative weight is normalized

such that it has the dimension of synaptic weights. If the two

assemblies survive independently, J11 and J22 should be much

larger than J12 and J21, making w2 strongly positive. On the

contrary, if the first assembly survives and the second one

disappears, w2 may take a negative value. If the two assemblies

merge into one or both of them disappear, w2 will be close to zero.

Depending on the value of the release probability, the relative

weight acquires positive, negative or almost vanishing values when

the network undergoes spontaneous activity (Figure 5B). For small

release probability (usd = 0.1) both assemblies exhibit high firing

rates after the two stimuli, but only one of them remains active

after several minutes (Figure 5D, left). Accordingly, the synaptic

weight matrix retains memory traces only for the surviving

assembly, but not for the other (Figure 5C and 5E, left).

Interestingly, the transient state of cell assemblies can show slow

oscillations at 0.5–2 Hz (Figure 5D, left), unlike in the previous

case with a single cell assembly. If STD is slightly stronger

(usd = 0.2), the two assemblies are kept activated alternately even

15 minutes (biological time) after the termination of external

stimuli (Figure 5D, middle), and the synaptic weight matrix

indicates clearly distinct memory traces of these assemblies

(Figure 5E, middle). However, we note that these assemblies are

not permanently stable and eventually disappear, typically after 30

to 60 minutes (Figure 5E, middle). If STD is further strengthened

(usd = 0.35), the average synaptic weights rapidly decrease in both

assemblies (Figure 5C, E, right) and connections become stronger

between the assemblies. As a result, they merge into a large

assembly (Figure 5D, right) though this assembly is also unstable

and eventually disappears (Figure 5C right).

The relative weight w2 at 30 minutes takes negative values for

weak STD (usd , 0.15), positive values for intermediate strength of

STD (0.15 , usd , 0.35), and vanishes for stronger STD

(Figure 5F). If we define the lifetime of assemblies as the time at

which w2 becomes smaller than 0.1JEE, the lifetime is maximized

when STD is modestly strong (Figure 5G). Therefore, adequately

strong STD is necessary for a prolonged retention of stimulus-

induced cell assemblies. Varying the duration of the first stimulus

does not essentially change these results (Figure 5H), suggesting

that the internal dynamics of synapses and neurons determines the

lifetime of cell assembles. At usd = 0.1, the winning assembly

changes from the second to the first if the duration of the first

stimulus is about 1–1.5 minutes (data not shown). We also

performed simulation with Poisson neuron model to ensure the

universality of the results (Text S1 and Figure S1).

Stability analysis for cell assemblies
We investigate the stability conditions for dual cell assemblies.

Because the synaptic weight matrix changes much more slowly

than the membrane potentials, we first study the dynamics of

average firing rates for a given weight configuration by the mean-

field approximation. We derived the null-clines _rrca1~0, _rrca2~0 of

firing rates by numerically solving equation (9) for a network

containing two cell assemblies, that is for a synaptic weight matrix

given as: Jca1 = Jca2 = 0.3, and all other excitatory weights as 0.17.

The intersections of the two null-clines correspond to the fixed

points of the network dynamics. In general, the network has an

Figure 4. Crucial effects of STD on cell assembly retention. Unless otherwise mentioned, error bars represent the standard deviation obtained
by five simulation trials. The results shown in panel A and C to E were calculated at t = 30 min. (A) Relationship between the release probability usd

and the average synaptic weight within the cell assembly. The results were averaged over five simulation trials. The weights of synapses other than
JEE were constant. (B) Relationship between inhibitory-to-excitatory synaptic weights JEI and the average firing rates of excitatory neurons is shown in
a network model without long-term synaptic plasticity. Horizontal line indicates rE = 1.8 Hz. (C) Release probability dependence of the average
synaptic weight within the assembly is shown. Each plot was calculated using the value of JEI which sets the average firing rate of excitatory neurons
to 1.8 Hz. (D) Relationship between the average synaptic weight within the assembly and input duration is shown. (E) The dependence of the relative
synaptic weight w1 to LTP/LTD ratio g = Cptp/(Cdtd), which we varied by changing the value of Cp between 0.015 and 0.0255. (F) Mean-field
approximation gives the velocity of weight change as a function of the synaptic weight. Each line is calculated from equation (10) using the steepest
descent method from various initial conditions.
doi:10.1371/journal.pone.0101535.g004
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unstable fixed point and two stable fixed points in which one of the

two assemblies displays a non-vanishing firing rate (Figure 6A).

Making an approximation that a smaller variable between rca1 and

rca2 is slaved to a bigger one, we obtain the potential function

drca1

dt
~{

LU

Lrca1
,

U(rca1{rca2)%
1

2
r2

ca1

z
Ð rca1

0 dr0ca1H uca1 r0ca1,r�ca2 r0ca1

� �� �
=sca1 r0ca1,r�ca2 r0ca1

� �� �� �
=tud

E zU0

(ifrca1§rca2) ð2Þ

Figure 5. Retention of cell assemblies by weak STD. (A) A first external input activates 20% of excitatory neurons (ca1, blue shaded area), and
then a second input successively activates other 20% of excitatory neurons (ca2, green area). Neurons not stimulated by the external inputs are
regarded as background (bg). (B) Time evolution of relative synaptic weight w2. Blue shade indicates the interval of the first stimulus, and the green
shade denotes the second one. We defined the retention time of a cell assembly as the time at which w2 crosses threshold from above (w2 = 0.015:
dotted line). (C) Time evolution of the average synaptic weight for three values of usd. The weights were separately averaged over synapses within
and between different cell assemblies and background neurons. In the left and middle panels, black lines for bg-to-bg connections are hidden behind
purple lines. (D) Raster plots of spiking activity corresponding to the three cases shown in C. Color codes are the same as in Figure 2C. First 500
neurons belong to the first assembly and the second 500 neurons to the second assembly. (E) Synaptic weight matrices of excitatory connections are
shown for the above three cases. (F), (G) The relative synaptic weight w2 and the retention time of ca2 are shown as functions of the release
probability usd. (H) Relationship between the input duration to ca1 and the relative synaptic weight w2 at t = 30 min.
doi:10.1371/journal.pone.0101535.g005

ð2Þ
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We should exchange the indices ‘‘ca1’’ and ‘‘ca2’’ when rca1,

rca2. Note that in general we cannot derive a one-dimensional

potential function for a dynamical system of more than two

variables without such an approximation. We adjust the constant

term U0 such that U(0) = 0 for different values of the release

probability.

For a given synaptic weight matrix, the potential barrier

separating the two stable states becomes lower as the release

probability gets larger (Figure 6B). Driven by random noise,

therefore the network state tends to oscillate between the two

stable points, each corresponding to one active cell assembly, more

frequently for larger release probability. We have already observed

this alternation between active cell assemblies in the previous

simulations. We confirmed this result by numerical calculations

of the average periods of these oscillations following the

stimulus termination and a regression analysis with function

AebU usdð Þ(A = 0.0679, b= 0.0691), where U(usd) is the potential

calculated at u = usd (Figure 6C). We note that the average interval

is shorter when the amplitude of noise is larger, which typically

occurs when the average firing rate of excitatory neurons is high.

We next consider how the evolution of firing rate controls the

dynamics of synaptic weights. Synaptic weights within a cell

assembly rapidly increase when the assembly is active, and

gradually decrease otherwise (Figure 6D above). Correspondingly,

the synaptic efficiencies for STD drop sharply at the beginning of

the active epoch, and they recover slowly in the silent epoch

(Figure 6D middle). In contrast, synaptic weights between the two

assemblies undergo significant changes only when a postsynaptic

assembly is transiently active (Figure 6D above). To analyze how

STD influences this active maintenance of synaptic weights, we

investigate the relationship between the interval of cell-assembly

activation (i.e. the duration of the silent epoch), Dt, and the change

in intra-assembly synaptic weights at the beginning of an active

epoch, DJ. The two quantities are positively correlated (dots in

Figure 6E), and DJ tends to be larger for weaker STD (i.e., smaller

usd), as explained analytically below. When a cell assembly is

active, the efficiency of synapses decreases in the assembly until it

reaches the equilibrium value ~yyca~1=(1zusdtsdrca). In contrast,

during the silent period of an assembly, the efficiencies gradually

recover toward an initial level,

~yy0ca Dtð Þ~~yycaz 1{~yycað Þ 1{e{Dt=tsd

� �
,

which depends nonlinearly on the value of usd. After the silent

epoch of length Dt, the average firing rate r’ca(Dt) of the assembly

becomes higher than the average firing rate rca in the equilibrium

state, because the synaptic efficiency ~yy0ca Dtð Þ is larger than the

equilibrium efficiency ~yyca. We can calculate the firing rate r’ca(Dt)

by substituting ~yy0ca Dtð Þ into yca in equation (9) (Method). From

equation (1), we can then calculate the average weight increase

Figure 6. STD induces alternate excitations of assemblies, which enlarges synaptic weights within the assemblies. (A) Null-clines of
firing rates for a synaptic weight matrix calculated from equation (9). (B) Potential function U is calculated for the difference in firing rate between
two assemblies. The normalization factor U0 is determined to ensure U(0) = 0. (C) A monotonic relationship between the release probability and the
average interval of the alternation of cell assemblies. The interval was defined as a duration in which one assembly continuously shows higher firing
rates than the other. Firing rates were calculated in 10 milliseconds-long time bins. Error bars are the standard derivation of intervals observed during
80 seconds after the stimulus termination in a simulation trial. (D), Typical behavior of the average synaptic weights (above), synaptic efficiency for
STD (middle), and neuronal firing rates (below). The first (blue) and second (green) cell assemblies show high firing rates alternately. (E) Relationship
between the interval and synaptic weight change for usd = 0.1 (cyan) and usd = 0.2 (yellow). Inset illustrates the two quantities shown. The ordinate
shows synaptic weight change Dw in an interval (Dtw = 80 milliseconds) starting from the activation of the corresponding cell assembly. Dots are data
points obtained from simulation, while solid curves indicate analytic results. (F) Interval dependence of the synaptic weight velocity is shown, which
was defined as an expected synaptic weight change in a second. Solid curves show the analytic results calculated at Jca1 = 0.311, Jca2 = 0.287,
Jbg = 0.156, rca1 = 13.38 Hz and rca2 = 12.82 Hz.
doi:10.1371/journal.pone.0101535.g006
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DJ(Dt) between the neurons in the initial Dtw milliseconds of the

active epoch as

DJ Dtð Þ~ r’ca Dtð Þð Þ2 Cptp{fd Jcað ÞCdtd

� �
z JEE{Jcað Þ=th

h i
Dtw:

This function calculated from the numerical data observed in

simulations (Jca1 = 0.311, Jca2 = 0.287, Jbg = 0.156,

rca1 = 13.38 Hz for usd = 0.1; Jca1 = 0.317, Jca2 = 0.309,

Jbg = 0.155, rca1 = 10.14 Hz for usd = 0.2) fits the actual values

well (Figure 6E, solid lines).

We found that the firing rate r’ca(Dt) generally increases with

Dt. However, this does not imply that longer Dt, which typically

occurs for weaker STD, is advantageous for the retention of cell

assemblies because the velocity of weight change per unit time,

DJ(Dt)= DtzTactiveð Þ, where Tactive is the average interval of an

active epoch, does not increase monotonically with Dt. In

Figure 6F, we show the weight velocity calculated by using the

average intervals obtained numerically (Tca1
active~0:65,Tca2

active~0:53

for usd = 0.1). Thus, although longer intervals generate larger

weight changes, they also generate more robust stable states of the

potential function (Figure 6B), and the alternate activation of two

cell assemblies becomes more difficult (see Figure 5D). In contrast,

if the strength of STD is in an appropriate range, the two

assemblies are alternately activated by noise, enabling the synaptic

weights in a resting assembly to increase during its following active

period. Although a rigorous analysis of the stability of cell

assemblies at relatively strong STD is difficult, we can provide

intuition for the observed effects. If STD is weak, an active

assembly has a relatively long lifetime. In this case, active

assemblies switch only infrequently and the alternate activation

can be stable. In contrast, if STD is strong and an active assembly

has a short lifetime, active cell assemblies switch frequently and

synaptic connections are reciprocally strengthened between the

two assemblies, implying that they eventually merge together.

Crucial effects of STDP time window on the stability of
cell assemblies

The results shown in the preceding section reveal that cell

assemblies are metastable and can survive synaptic bombardment

in spontaneous activity only for a few tens of minutes. Although

the storage of episodic memory can be as long as hours and days,

biological processes responsible for this are considered to involve

cellular and molecular mechanisms [21]. Our results demonstrate

how cell assemblies may be maintained against noise through a

network mechanism for minutes to hours. The lifetime of

assemblies observed in the previous section is much longer than

the characteristic time scales of synaptic and neuronal dynamics.

However, the lifetime may not be long enough to induce

molecular and cellular processes to stabilize patented synapses.

Especially, as we will see later, cell assemblies are less stable when

more metastable states exist in the network. In this section, we

explore a possible solution to this problem.

As in the previous section, we define the relative weight wp as

~wwp~ min
m=n

Jmm{
1

2
JmnzJnm

� �� �
Jnn{

1

2
JmnzJnm

� �� �

wp~~wwp=
ffiffiffiffiffiffiffiffi
D~wwpD

p
,

for general cases with more than two cell assemblies, where Jmn is

the average synaptic weight from cell assembly m to n. Because it is

time-consuming to train the network with many cell assemblies,

hereafter we construct a synaptic weight matrix by hand such that

it contains p assemblies each consisting of NEa excitatory neurons

(Methods). We examine what STDP rule may retain stable cell

assemblies.

We first investigate models with a relatively small number of

assemblies (p = 3 or 5). When STDP is asymmetric-Hebbian and

usd has an adequate value (Figure 7A, B), the cell assemblies are

activated independently and randomly for a while. However, the

transient network state switches between different activation

patterns of cell assemblies until it displays a sequential activation

pattern of assemblies, which in turn evolves into synfire-like

activity (Figure 7C, at t = 60–70 sec). However, this activity is

unstable and does not persist. Thus, the network eventually returns

to random firing states. The lifetime of cell assemblies is longest at

a moderate release probability (Figure 7B). We found that such a

transient state evolution is typical for the asymmetric STDP

window.

Cortical synapses are known to change their STDP rules

[18,19]. In particular, under the presence of dopamine, the STDP

window of glutamate synapses turns nearly symmetric in rat

hippocampus [16]. Moreover, during the developmental stage,

excitatory connections from layer 4 to layer 2/3 display symmetric

STDP [17]. So, we investigated whether a symmetric window

function may change the stability of cell assemblies with the

following STDP window (Figure 7D):

DJij~Cp exp Dtpre{tpostD
� �

=tp

� �
{fd Jij

� �
Cd exp Dtpost{tpreD

� �
=td

� �
:

ð3Þ

We performed numerical simulations of this network for p = 3

or 5 and usd = 0.2. The average weights within cell assemblies

converge to stable values after several minutes (Figure 7E). The

network persistently and irregularly activates all cell assemblies one

by one, and this state remains stable even after 30 minutes

(Figure 7F). Consistent with our previous results, such irregular

stable states appear only when the strength of STD is in an

adequate range (Figure 7G). We next examined whether the

activation pattern is random or biased by analyzing spike data

taken from 10 to 30 minutes after the initiation of spontaneous

activity. We found that all assemblies are activated for nearly the

same amount of time (Figure 7H, top). The frequencies of

sequential transitions between two assemblies show no statistically

significant bias (Figure 7H, middle). In contrast, sequences

involving the reactivation of an assembly, such as 1R2R1, are

less likely to occur because STD of mutual excitation in an active

assembly suppresses the immediate reactivation of the same

assembly. Therefore, the frequencies show some bias among

triplets of assemblies (Figure 7H, bottom). The occurrence of

monotonous short sequences of cell assemblies is a typical problem

in recurrent networks with STDP [20]. It is noteworthy that

excitatory weight matrices do not develop short sequences in the

present model because synaptic efficiency does not recover in a

short time.

Does the retention of cell assemblies sustained by random

activation shown above in neural networks with small numbers of

assemblies hold for large-scale network models? To answer this, we

performed simulations of a network containing a large number of

cell assemblies. We set model parameters as usd = 0.2, p = 32,

a = 0.03, Jca = 0.7, and Jbg = 0.15. Note that the size of this
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network is the same as the previous ones, but each cell assembly

now consists of 75 neurons while 500 in previous models. The

network initially retains all assemblies by randomly visiting them

(Figure 8A, left). After 30 minutes passed, however, some cell

assemblies survived stably, but others simply disappeared or

merged into bigger stable assemblies (Figure 8A, right). Activity-

dependent reorganization of synaptic weight matrix Jmn underlies

these changes in the spontaneous activity pattern (Figure 8B). We

may define ‘‘the storage capacity’’ of the recurrent network as the

number of independent assemblies surviving the reorganization

process. This definition can be considered as a natural extension of

the storage capacity defined for associative memory model [22].

To this end, we define a binary matrix ~AAmn as

~AAmn~
1, if Jmnw1:5SJmnT
0, otherwise

	
:

We remove the columns and rows that give vanishing diagonal

elements ~AAmm~0 because cell assembly m no longer exists in such a

case. We then counted the number of disconnected subgraphs in

the graph generated from the resultant adjacency matrix (Fig. 8C:

in this case the storage capacity is 12), which should be equivalent

to the storage capacity. We found that the storage capacity

depends on the strength of STD, and vanishes for too strong STD

(Figure 8D). Furthermore, whether a particular cell assembly

survives or merges into a larger assembly strongly depends on the

initial weight matrix (Methods). If some initial cell assemblies have

weak intra-assembly connections, they are unlikely to survive

(Figure 8E). Two assemblies are likely to merge into a single

assembly if one or both directions of the inter-assembly

connections are strong (Figure 8F). Thus, when excitatory

connections obey STDP and STD, the network has a limited

capacity that is maintained by eliminating ‘‘weak’’ assemblies and

integrating strongly linked assemblies into single assemblies.

Discussion

We have shown that interplays between STDP and STD enrich

synaptic weight dynamics in recurrent neural networks, and cause

critical effects on the cell assembly retention and modulation in the

timescales of seconds and minutes. Some cell assemblies merge

into a larger assembly or others are eliminated, and the resultant

neuronal circuit is able to retain a finite number of memory traces.

In these processes, STD crucially influences the stability of

modifiable synapses against noisy background activity.

Implications in cortical memory processing
Our model proposes a possible circuit mechanism for the long-

term retention of selective memory traces encoded by external

stimuli into subnetworks of highly connected neurons. In a long

Figure 7. The retention of cell assemblies with Hebbian and symmetric STDP windows. (A) An asymmetric STDP window was calculated
for Jij

EE = 0.15. (B) The retention time significantly varies with the release probability of STD. We defined the retention time as a period with a
sufficiently large relative weights: wp.0.1JEE. (C) Raster plot of spiking activity is shown for the Hebbian STDP rule shown in A. (D) A symmetric STDP
window was calculated for Jij

EE = 0.15. (E) Dynamics of the average synaptic weights at usd = 0.2 within (blue) and between (black) assemblies. (F)
Raster plot of spiking activity for the symmetric STDP rule shown in D. (G) Relationship between the release probability usd and relative weight wp at
t = 30 min. (H) (top) We constructed a histogram of the number of activation over all cell assemblies shown in F. The abscissa shows the number of
activation of each assembly normalized by the average number of activation of all assemblies. (middle) We calculated a histogram for the occurrence
of all possible 20 (564) sequential transitions between two assemblies. The occurrence number of each transition was normalized by the average
occurrence number over all transitions. (bottom) Histograms of triplet transitions, such as assembly 1 R 2 R 1 (left) and 1 R 2 R 3 (right), are shown
after a normalization by all possible 80 (564+56463) triplet transition patterns. All three histograms are obtained from the results of five simulation
trials.
doi:10.1371/journal.pone.0101535.g007
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time scale, molecular and cellular mechanisms are necessary to

maintain synaptic memory traces [21], and it is unlikely that

constant reactivation of synapses is permanently necessary for

retaining memory. Nevertheless, many experimental results

indicate the importance of reactivation of memory traces in

learning [3,4]. During wakefulness, sensory experiences cause

positive changes in cortical circuits, and the elevated cortical

activity may generate corresponding memory traces in the

hippocampus [23]. In the present simulations, we mimicked this

encoding process by exposing the network model to external

stimuli. We showed that the strength of STD has to be kept within

an adequate range for embedding the stimuli as multiple cell

assemblies in the network.

Our results suggest that these memory traces undergo flexible

modifications through the internal network dynamics, and

consequently only strong memory traces are preserved in the

circuits (Figure 8E). Moreover, if some assemblies are initially

linked with stronger excitatory connections, where the initial

connection strength is determined by the strength of external

stimuli (Figure 2E), the internal dynamics likely integrate these

assemblies into one large assembly to co-activate them in the

equilibrium network state. These results seem to be consistent with

some properties of episodic memory processing by the brain. It is

known in humans that sleep enhances the formation of relational

memory [24] and false memory [25]. Though our model is too

oversimplified to replicate characteristic neural activity during

sleep, it explains that initially correlated memory traces can merge

together through a repeated reactivation of the corresponding cell

assemblies (Figure 8F). Direct experimental evidence supporting

this result is awaited.

Figure 8. Merging and oblivion of cell assemblies through spontaneous activity. (A) Raster plot of spiking activity in a network embedding
32 cell assemblies. Active epochs of initial assemblies are shown by different colors in the left panel, while those of merged assemblies are shown in
the right panel. (B) Synaptic weight matrix after 30 minutes of spontaneous activity. (C) A graphical representation of the merged connection matrix,
where each numbered circle corresponds to an initial assembly. (D) Relationship between the storage capacity and the release probability. (E) The
survival rate of each assembly depends on the initial magnitudes of intra-assembly synaptic weights. We separated cell assemblies into four groups
according to the initial weight values (0:55vJmmƒ0:58, 0:58vJmmƒ0:60, 0:60vJmmƒ0:62, 0:62vJmmƒ0:65: the boundaries were decided such that
each group contains 5 to 15 assemblies) and calculated the fraction of the assemblies that survived in the reorganization. See Methods for other
details of the simulations. (F) The rate of merging of a cell assembly as a function of the initial synaptic weight. As in E, we separated 992 inter-
assembly connections into five groups (0:155vJmnƒ0:165, 0:165vJmnƒ0:175, 0:175vJmnƒ0:185, 0:185vJmnƒ0:195, 0:195vJmnƒ0:205,) so that
each group contains more than 100 assemblies.
doi:10.1371/journal.pone.0101535.g008
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Possible implications in memory deficits and cortical
development

A recent study shows that mice lacking cbl-b, a cell signaling

related gene widely expressed in the hippocampus of rodents,

display an improved performance in long-term memory retention

tasks. In these mice, paired-pulse facilitation at Schaffer collateral-

CA1 synapses is enhanced, but long-term synaptic potentiation

shows no difference [13]. Because paired-pulse facilitation is

enhanced at low release probabilities [26], our model with weaker

STD may account for the enhanced memory retention of cbl-b

null mice observed in experiments. Our model may also explain

the relationship between the accumulation of amyloid-b and

pathological memory dysfunction. Accumulated amyloid-b is

known to disturb long-term potentiation in the hippocampus

[27] and this disturbance is often considered as the potential

mechanism of dysfunction. Our model implies that an enhanced

short-term depression, which actually occurs in the presence of an

excess amount of amyloid-b [14], may disturb memory retention.

It is also known that corticosterone, a hormone controlling stress-

induced memory improvement and impairment [28], modifies the

probability of presynaptic glutamate releases in the hippocampus

of mice [29]. Thus, our model suggests that modifications in short-

term plasticity may provide a universal mechanism to control the

stability of memory traces in pathological neural circuits.

Our results are possibly relevant to developmental plasticity as

well. It is known that in the primary sensory cortex of rodents,

glutamatergic synapses show a weakened short-term depression as

the animal grows up. The timing of this change typically coincides

with the critical period [30,31] in which the maturation of

GABAergic synapses also occurs [32]. A possible explanation of

this coincident timing is that the reduction of STD occurs in order

to provide more excitatory current, so that the network can keep a

balanced state, despite the growth of inhibitory current. As shown

in Figure 4B, our model supports this view. Moreover, our model

may explain why the strength of STD has to change with

successive developmental stages. If STD were strong in immature

animals, STDP would not organize any input-dependent structure

in cortical circuits: STD may effectively decouple cortical networks

from the influence of afferent inputs from thalamocortical

pathways until they are well organized.

Limitations of the model
Although we pursued biologically plausibility in the present

modeling, some assumptions of the model remain to be confirmed

by experiment. We assumed that LTD of excitatory synapses has a

logarithmic weight dependence, implying that synaptic weights

only sublinearly influence the LTD of strong synapses. However,

the weight dependence for strong synapses is still unknown. We

also implicitly assumed that synaptic weights are solely modified by

STDP and homeostatic plasticity within 30 minutes to 1 hour

from the application of external stimuli and molecular processes

for the consolidation of memory trace occur later. However, the

actual synaptic mechanism of memory consolidation is more

complicated and remains elusive [21]. In fact, cell assemblies could

not be permanently stable in the present model with STD and

STDP. Therefore, how these cell assemblies may be maintained in

a longer time scale remains open for further theoretical studies. In

addition, some predictions of the model should be examined by

experiment. Synaptic weights displayed large fluctuations in

Figure 3D, which has not been observed in previous experiments.

The large-amplitude fluctuations were partly due to our choice of

a relatively large learning rate and partly due to the inherent

nature of the present log-STDP model. Nevertheless, these

fluctuations are unlikely to be harmful to the practical function

of synapses because the oscillation amplitude of the mean weight

change was less than 1% of the mean synaptic weight (Figure 6D).

Related previous studies
There are a few recurrent network models that consider both

STDP and short-term plasticity. Del Giudice and Mattia showed

that a recurrent network with short-term depression is able to

robustly organize working memory activity by STDP without

destabilizing spontaneous activity [33]. Our results are consistent

with this result because STD generates a shallow potential well for

memory traces (Figure 6B). We have further investigated recurrent

circuits embedding multiple cell assemblies, and found that

moderate STD is beneficial to the memory retention through

interactions. Our model proposes that interplay between STD and

STDP is a possible mechanism of selective retention and

integration of memory traces in recurrent neural networks. The

role of STD was also demonstrated in recurrent neural networks

with STDP for the improvement of pattern separation and pattern

completion [34].

A recent study suggests STD is not absolutely necessary to

achieve reactivation of clustered neurons in spontaneous activity

states of cortical networks [35]. However, this model assumes that

individual neurons are in an autonomous oscillatory regime. It is

also known that STD is critically important to robustly reproduce

irregular low-firing rate persistent activity corresponding to a

shallow attractor state [36,37] in which noise-induced transition

can occur. Our study further revealed an important function of

synaptic efficiency dynamics caused by STD. During the quiet

state of an assembly, synaptic efficiencies recover to an original

level in the assembly. As a result, at the beginning of the next

reactivation, neurons in the assembly show high firing rates to

strengthen intra-assembly synaptic weights.

As for the role of STDP in cell assembly formation, many

studies exist [38]. While weight-dependent STDP degrades

memory retention compared to additive STDP [39], the log-

STDP rule (a variant of multiplicative STDP) used in this study

improves the stability of learned network structure, reproducing

experimentally observed long-tailed unimodal synaptic weight

distributions [40]. Log-normal weight distribution can also be

reproduced by network effect [41]. A recent theoretical study

showed that stable learning is also possible by considering meta-

plasticity in addition to the conventional additive STDP [42].

Multiple cell assemblies were created by inducing symmetry

breaking through synchronous spikes [43], correlated inputs

[44,45], or synaptic delays caused by topological network structure

[46]. Other models made use of additional mechanisms such as

oscillatory dynamics [47], voltage-dependence [48], triplet STDP

[49], or specific network configurations [50]. In some works short-

term plasticity was also introduced [46,50], though its functional

role was not intensively discussed in these studies. The effects of

neuromodulation were also considered, in which neuromodulators

scaled up the learning speed and scaled down the synaptic weight

[49]. Further experiments are required to select these theoretical

proposals.

Methods

Model configuration
We construct a recurrent circuit model based on the chaotic

balance network model [51,52] and extend it to include

both short-term and long-term plasticity. The network consists

of NE excitatory neurons and NI inhibitory neurons (NE = 2500,

NI = 500), connected randomly with connection probability

cXY (X,Y = E or I). We defined connection matrix
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cXY
ij

n oX ,Y~E or I

i~1,:::,NX ,j~1,:::,NY

in which cXY
ij ~1 if there is a synaptic

connection from j to i, otherwise cXY
ij ~0. For simplicity, we

consider the case where only synaptic connections between

excitatory neurons show both types of plasticity, while the weights

of excitatory to inhibitory, inhibitory to excitatory, and inhibitory

to inhibitory connections are kept at constant values JIE, JEI, and

JII, respectively. We use binary neurons taking only two states, 0

or 1. The states of the i-th excitatory and inhibitory neurons are

defined as xE
i (t), xI

i (t) [ 0,1f g. The state of each neuron is

updated at time tE
i,k

n o
k~1,2,:::

or tI
i,k

n o
k~1,2,:::

according to a

random process with the average intervals tE
ud and tI

ud,

respectively. This update procedure was asynchronous in the

sense that we updated NEh



tud
E excitatory and NI h



tud
I inhibitory

neurons at every h milliseconds (h = 0.01 milliseconds; tE
ud,

tI
ud = 5.0 and 2.5 milliseconds, respectively). The use of binary

neurons and discrete update rule reduces the computational load

of the simulation of a large recurrent network model with long-

term plasticity. The update rules are written as

xE
i tE

i,k

� �
~

h

PNE

j=i

cEE
ij JEE

ij yj tE
i,k

� �
xE

j tE
i,k

� �
{
PNI

j

cEI
ij JEI xI

j tE
i,k

� �
z

Iex
E mexzsexfE

i,k

� �
zI i

p tE
i,k

� �
{hE

2
6664

3
7775,

ð4Þ

xI
i tI

i,k

� �
~h

PNE

j

cIE
ij JIExE

j tI
i,k

� �
{
PNI

j=i

cII
ij JII xI

j tI
i,k

� �
z

Iex
I mexzsexfI

i,k

� �
{hI

2
664

3
775, ð5Þ

Where h[x] is a step function, and yj(t) is the synaptic efficiency,

representing the effect of short-term depression. The terms

IE
exmex and II

exmex are the fixed components of the amplitudes

of random external inputs to excitatory and inhibitory neurons,

respectively, while Iex
E sexfE

i,k and Iex
I sexfI

i,k are the random

components of those external inputs. The noise terms

fE
i,k

n o
, fI

i,k

n o
are Gaussian random variables with mean 0 and

variance 1. The additional external current I i
p tE

i,k

� �
is Ip only for

excitatory neurons in the stimulated assembly during the external

stimulation, and otherwise remains zero. In the present simulation,

we typically applied Ip = 1.0 to 500 selected excitatory neurons for

tens of seconds. The variables hE, hI are the thresholds of the

neurons. Once updated, each neuron keeps its state until the next

update. For instance, if tE
j,lƒtE

i,kvtE
j,lz1, then xE

j tE
i,k

� �
~xE

j tE
j,l

� �
.

We did not introduce a reset procedure mimicking a repolariza-

tion process after spiking, because inputs to a neuron are refreshed

by every update of the neuron. Excitatory neurons stay in the

spiking state for 5 msec on average, while inhibitory ones continue

to fire typically for 2.5 msec. Thus, neurons rarely stay in the

spiking state for a long time due to the randomness of update.

Note Jij
EE is normalized such that the size of the first EPSP is the

same ( = Jij
EE) for different release probabilities. This means that

the total synaptic weight Jij
EE

max is given as Jij
EE

max = Jij
EE/usd.

Under this normalization, we can investigate the effect of STD

without interference from absolute synaptic weights.

Short-term plasticity is approximately described by the spiking

activity of presynaptic neuron [9]. Namely, synaptic efficiency yj is

described with the differential equation

dyj

dt
~

1{yj

tsd

{usdyj

X
k

x(tE
j,k)d t{tE

j,kz1

� �
, ð6Þ

where usd is the release probability and tsd is the recovery time

constant (tsd = 0.6 second). In numerical simulations, we dis-

cretize the time variable such that the synaptic efficiency decreases

at the next update when a presynaptic neuron fires.

For long-term plasticity, we consider log-STDP [40] and

homeostatic plasticity. Log-STDP is a spike-pair-based STDP-

model with a logarithmic weight dependence of LTD (Figure 1A).

It was modeled to account for the long-tailed, typically lognormal,

distributions of the strength of excitatory synapses in the

hippocampus and neocortex [53] [54]. The synaptic weight

change for two spikes at tpre and tpost is written as

DJij~
Cp exp tpre{tpost

� �
=tp

� �
(if tpreƒtpost)

fd Jij

� �
Cd exp tpost{tpre

� �
=td

� �
(if tpostvtpre)

(
, ð7Þ

where fd Jij

� �
~ log 1zaJij=JEE

� �
= log 1zað Þ and, tp and td are

the decay time constants of LTP and LTD respectively (tp = 20,

td = 40 milliseconds). In calculating the time differences between

pre- and post-synaptic firing for STDP, we define the time of firing

of a neuron as the time of update at which its state becomes 1.

Conduction delays between neurons were not taken into account.

If a neuron remains in the spiking state for two consecutive bins,

those events are regarded as the generation of two spikes. In

addition, we consider the effect of homeostatic synaptic plasticity

as

dJEE
ij (t)

dt
~

JEE{JEE
ij (t)

th

zshfij(t), ð8Þ

with Gaussian random noise fij tð Þ. Time constant th of

homeostatic plasticity need to be sufficiently short in order to

stabilize the network with STDP, while that should be long

enough not to erase learned structure rapidly [55]. We set th in

order of minutes in the simulation.

Finally, to ensure the stability of the recurrent network, we set

boundary conditions for excitatory synapses as 0vJEE
ij vJmax and

for the mean excitatory synaptic weight on individual excitatory

cells as 0v
1

KE
i

PNE

j=i

JEE
ij vJtot

max, where Ki
E is the total number of

excitatory inputs to neuron i. When the mean excitatory synaptic

weight exceeds the upper limit, we subtract the excess amount

from all synapses equally.

We used discrete update rule for spiking to reduce the

computational cost, and employed differential equations only for

slow variables (i.e., synaptic efficacies and homeostatic plasticity).

This heterotic update procedure makes simulations faster and

more robust in a broad range of parameter values without

changing the essential features of network dynamics. However,

because the exact spike timing depends on the random update of

binary neurons, the update of synapses by STDP undergoes

additional noise. This large noise seems reasonable because the

in vitro synaptic modification by STDP is often highly noisy [7],

and is expected to be more noisy in vivo. To justify the heterotic

update procedure, we performed simulations in a similar network
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of Poisson neuron model. The details of this model are explained

in Text S1 and Figure S1.

We compared the behaviors of excitatory synapses for binary,

Poisson, and conductance-based integrate-and-fire (LIF) neuron

models (Figure S2). The details of LIF model are explained in Text

S1. We applied 500 excitatory inputs and 250 inhibitory inputs to

each neuron model, where presynaptic firing rates were high (rp) at

100 excitatory inputs and low (rb) at the remaining inputs (Fig.

S2A). The rate of inhibitory inputs was rI = 15.0 Hz. Inhibitory

weights were tuned to the weight of excitatory synapses fixed at

Ji
E = 1.15JEE such that the output neuron fires at 2.0 Hz when

rp = rb = 2 Hz. Poisson neuron model showed similar membrane

dynamics with LIF model (Fig. S2B). The weights of (modifiable)

excitatory synapses relative to JEE showed binary behavior in all

models and for different values of rb and STD strength usd: the

relative weights converged to large values for the high-rate input

when rp was sufficiently strong (Fig. S2C). Here, we chose different

background firing rates in different models to obtain similar

magnitudes of potentiation for the strong synapses (rb = 0.2 Hz for

binary, 0.5 Hz for Poisson and 0.8 Hz for LIF), as their behavior

depends on rb (Fig. S2D). We notice that synaptic weights for low-

rate inputs tend to be larger in Poisson and LIF models than in

binary model, which may be the potential cause of the instability

known in the self-organizing process of recurrent networks of LIF

neuron [56]. Though we obtained similar results in networks of

binary and Poisson neuron models (Fig. S1), we will not investigate

networks of LIF models in this study.

Mean-field (MF) approximation of cell-assembly
dynamics

When the firing rate of presynaptic neuron j is constant, we find

from the fixed point of equation (6) that synaptic efficiency yj

converges to yj~
1

1zusdtsdrj

. With this relation, we may use a

mean-field approximation for a given synaptic weight configura-

tion [10,57]. When excitatory neurons are separated into p

number of non-overlapping cell assemblies with the sparseness a1,

a2,…, ap (
Pp

m~1

am~1), the mean-field equations are calculated as

follows:

rm~H um=sm

� �
=tud

E , rI~H uI=sIð Þ=tud
I ,

H(x)~
1

2
erfc

{xffiffiffi
2
p

� �
, ym~

1

1zcrmtud
E

,

um~cEENE

Xp

n~1

anJmnynrntud
E {cEI NI JEI rI tud

I zIex
E mex{hE ,

uI~cIENEJIE

Xp

m~1

amrmtud
E {cII NI JII rI tud

I zIex
I mex{hI ,

sm
2%cEENE 1zsJ

2
� �Xp

n~1

Jmn
2y2

nrntud
E zcEI NI JEI

2rI tud
I z Iex

E sex

� �2
,

sI
2%cIENEJIE

2 1zsJ
2

� �Xp

m~1

amrmtud
E

zcII NI JII
2rI tud

I z Iex
I sex

� �2
,

ð9Þ

where parameter sJ is the relative variance of synaptic weight, and

Jmn is the average synaptic weight from cell assembly n to m. When

the synaptic weight distribution is not Gaussian, as in the case for

log-STDP, the mean-field approximation is not accurate unless the

correction terms representing the effect of strong synapses are

Table 1. Parameters used in the simulations.

NE, NI Number of excitatory/inhibitory neurons 2500, 500

cEE, cEI, cIE, cII Connection probabilities 0.2, 0.5, 0.2, 0.5

JIE, JEI , JII Synaptic weights 0.15, 0.15, 0.06 (In Figure 2A and 3, JEI = 0.20)

JEE Standard synaptic weight 0.15

JEE
init, sJ Initial conditions of synaptic weight 0.18, 0.3

IE
ex, II

ex Amplitude of steady external input 2.0, 0.5

mex, sex Mean and variance of external input 0.3, 0.1

hE, hI Thresholds of update 1.0, 1.0

tE
ud, tI

ud Average intervals of update 5.0, 2.5 milliseconds

H Interval of state update 0.01 milliseconds

tsd Decay time constant of STD 600 milliseconds

usd Release probability of synapse 0.05–0.5

Cp, Cd Coefficients of STDP 0.01875, 0.0075

tp, td Decay time constants of STDP 20, 40 milliseconds

a Degree of log-STDP 50.0

th Decay time of homeostatic plasticity 100 seconds

sh Noise amplitude of homeostatic plasticity 0.00015 per 10 milliseconds

Jmax, Jmax
tot Boundary conditions 0.75, 0.25

doi:10.1371/journal.pone.0101535.t001
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added [58,59]. However, here we use the above equations for

simplicity.

In Figure 6A–C, we calculate the fixed points of equation (9) for

two cell assemblies, ca1 and ca2, by substituting p = 3, a1 = 0.2,
a2 = 0.2, a3 = 0.6 (a3 corresponds to the background neurons) to

equation (9) and by setting synaptic weights as

Jmn~

Jca1 (ifm~n~1)

Jca2 (ifm~n~2)

Jbg (otherwise)

8><
>:

.

In the calculation, we assume that variables rI and r3( = rbg) are

slaved to r1( = rca1) and r2( = rca2). As shown in Figure 6E–F, we

calculate the average firing rate rca(Dt) after Dt milliseconds of a

silent epoch, by substituting the post-silent-epoch efficiency

~yy0ca Dtð Þ into the corresponding ym in equation (9). For instance,

in the derivation of r’ca(Dt), we use ~yy0ca1 Dtð Þ~
1

1zcrca1tud
E

z 1{
1

1zcrca1tud
E

� �
1{e{Dt=tsd

� �
instead of

y1~
1

1zcr1tud
E

, then calculate the fixed point. Note that we set

rca1 equal to a fixed value estimated from simulations (in Figure 6E,

rca1 = 13.38 [Hz] for usd = 0.1 and rca1 = 10.14 [Hz] for usd = 0.2.

In Figure 6F, rca1 = 13.38 [Hz] and rca2 = 12.82 [Hz]), while r1 is a

free variable.

MF approximation of weight dynamics
We extend the MF approximation to consider the weight

dynamics under long-term synaptic plasticity. For simplicity, we

assume that the average synaptic weight from a cell assembly to a

background neuron pool is the same as the average weight from

the background to the cell assembly. In this case, from the MF

approximation, the stable point of the network is described by the

three parameters rI, rca, and rbg corresponding to the average

firing rates of inhibitory neurons, excitatory neurons belonging to

a cell assembly, and other excitatory neurons (background

neurons), and the three parameters Jca, Jm, and Jbg representing

the average weights of connections inside the cell assembly,

between the assembly and the background, and among the

background neurons, respectively. Thus, the equilibrium firing

rates are expressed as

rI~H uI=sIð Þ=tud
I , rca~H uca=scað Þ=tud

E , rbg~H ubg=sbg

� �
=tud

E ,

r2
ca Cptp{fd Jcað ÞCdtd

� �
z JEE{Jcað Þ=th~0,

rcarbg Cptp{fd Jmð ÞCd td

� �
z JEE{Jmð Þ=th~0,

r2
bg Cptp{fd Jbg

� �
Cdtd

� �
z JEE{Jbg

� �
=th~0: ð10Þ

Note that the above approximation is only applicable under the

assumption that the firing rates are uniquely determined for the

given synaptic weights. When the firing rates show bi-stability for

given synaptic weights, an analytic approach to the synaptic

weight dynamics is very hard.

Initial conditions
We set the initial synaptic weight matrix for simulations as

JEE
ij t~0ð Þ~Jinit

EE 1zsJfij

� �
in simulations shown in Figures 2 to 6.

Those in Figure 7 and Figure 8A–D, the initial synaptic weight

matrix is given as

JEE
ij (t~0)~

Jca 1zsJfij

� �
(inside cell assemblies)

Jbg 1zsJfij

� �
(otherwise)

(

where each cell assembly contains NEa neurons and fij is a

Gaussian random variable. Parameter values are chosen as

Jca = 0.70, Jbg = 0.16, a = 0.03 and p = 32 for the model with a

large number of cell assemblies, while Jca = 0.30, Jbg = 0.16,

a = 0.2 and p = 3 or 5 for the models with a small number of

assemblies. In Figure 8E, we introduce an initial bias in the weights

within cell assemblies as

JEE
ij (t~0)~

Jca 1{0:2gm

� �
1zsJfij

� �
(inside cell assemblies)

Jbg 1zsJfij

� �
(otherwise)

(

where gm is an uniform random variable drawn from gm[ 0,1Þ½ for

each cell assembly m. Similarly in Figure 8F, we bias the weights

within assemblies as

JEE
ij (t~0)~

Jca 1zsJfij

� �
(inside cell assemblies)

Jbg 1z0:25gmn

� �
1zsJfij

� �
(otherwise)

(
:

In all simulations, we set other initial conditions as

yj t~0ð Þ~1= 1z6usdð Þ, Prob½xE
i (t~0)~1�~0:02, and

Prob½xI
i (t~0)~1�~0:01.

Details of simulation
In the presented simulations, every 0.01 milliseconds, 5

excitatory and 2 inhibitory randomly selected neurons are

updated. STDP is calculated for neighboring spikes within 500

milliseconds. The differential equations of synaptic efficiency for

STD is solved by Runge-Kutta method with 0.1 ms time steps,

while homeostatic plasticity is calculated by Runge-Kutta method

with 10.0 milliseconds time step in which values are updated at

every t = 10.0 milliseconds for t = 0, 10, 20 ms, …. This

approximation is reasonable as homeostatic plasticity generates

negligibly small changes in synaptic weights at each time step. The

parameters used in the present simulations are summarized in

Table 1. Code for simulations is written with C++ and Python,

and is performed on a cluster machine.

Supporting Information

Figure S1 The model with Poisson neuron model. (A) Time

evolution of the average synaptic weight for three values of usd (usd

= 0.15, 0.20, 0.25 from the left side). (B) Raster plots of spiking

activity corresponding to the three cases shown in A. (C) Synaptic

weight matrices of excitatory connections are shown for the above

three cases. Configuration of graphs are the same with Figure 5(C),

(D), (E). Details of the model are summarized in Text S1.

(TIFF)
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Figure S2 Single neuron simulation in different neuron models.

(A) Schematic illustration of simulation protocol. (B) Typical

membrane dynamics of Poisson neuron model and LIF model are

compared for the same input spike trains. The membrane

potential of Poisson model is defined as vPuissun = 10u-52 from

the dimensionless variable u. (C) Average relative synaptic weights

SJE
i



JEET are shown for high- (thick) and low-rate (thin)

excitatory inputs to binary (left), Poisson (middle) and LIF (left)

neuron models for various values of the release probability usd. (D)

Average relative synaptic weights are shown for high-rate

excitatory inputs after 10 minutes of stimulation to binary neuron

model.

(TIFF)

Text S1 Supporting Materials and Methods.

(PDF)
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53. Sjöström PJ, Turrigiano GG, Nelson SB (2001) Rate, Timing, and Cooperativity

Jointly Determine Cortical Synaptic Plasticity. Neuron 32: 1149–1164.

Interplay between Short- and Long-Term Plasticity

PLOS ONE | www.plosone.org 15 July 2014 | Volume 9 | Issue 7 | e101535
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