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Graphical Abstract

1. This multiomics analysis identified a cardiovascular signature in carotid
atherosclerotic lesions, which provides excellent stratification of low-/high-
risk carotid plaques.

2. This study highlights the advantages ofmultiomics analysis in terms ofmodel
robustness, biological significance, and clinical translatability.

3. The prediction model pointed to an SRF-regulated disease network provid-
ing valuable new insights that expedite the design of targeted intervention in
plaque rupture.
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Abstract
Background: While single-omics analyses on human atherosclerotic plaque
have been very useful to map stage- or disease-related differences in expres-
sion, they only partly capture the array of changes in this tissue and suffer from
scale-intrinsic limitations. In order to better identify processes associated with
intraplaque hemorrhage and plaque instability, we therefore combined multiple
omics into an integrated model.
Methods: In this study, we compared protein and gene makeup of low-
versus high-risk atherosclerotic lesion segments from carotid endarterectomy
patients, as judged from the absence or presence of intraplaque hemorrhage,
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respectively. Transcriptomic, proteomic, and peptidomic data of this plaque
cohort were aggregated and analyzed by DIABLO, an integrative multivariate
classification and feature selection method.
Results:We identified a protein-gene associated multiomics model able to seg-
regate stable, nonhemorrhaged from vulnerable, hemorrhaged lesions at high
predictive performance (AUC >0.95). The dominant component of this model
correlated with αSMA−PDGFRα+ fibroblast-like cell content (p = 2.4E-05) and
Arg1+ macrophage content (p = 2.2E-04) and was driven by serum response
factor (SRF), possibly in a megakaryoblastic leukemia-1/2 (MKL1/2) dependent
manner. Gene set overrepresentation analysis on the selected key features of
this model pointed to a clear cardiovascular disease signature, with overrepre-
sentation of extracellular matrix synthesis and organization, focal adhesion, and
cholesterol metabolism terms, suggestive of the model’s relevance for the plaque
vulnerability. Finally, we were able to corroborate the predictive power of the
selected features in several independent mRNA and proteomic plaque cohorts.
Conclusions: In conclusion, our integrative omics study has identified an
intraplaque hemorrhage-associated cardiovascular signature that provides excel-
lent stratification of low- from high-risk carotid artery plaques in several inde-
pendent cohorts. Further study revealed suppression of an SRF-regulated disease
network, controlling lesion stability, in vulnerable plaque, which can serve as a
scaffold for the design of targeted intervention in plaque destabilization.

KEYWORDS
carotid atherosclerosis, multiomics integration, proteomics, transcriptomics

1 INTRODUCTION

Atherosclerosis and associated cardiovascular diseases
remain one of the leading causes of death worldwide.1 In
the clinically relevant stage, atherosclerotic lesions may
transition from a stable, low-risk to an unstable pheno-
type, at high risk of causing acute ischemic events, such as
myocardial infarction and ischemic stroke.2 Histopathol-
ogy and experimental studies and more recently, genome-
wide association studies (GWAS) and extensive omics
searches have considerably enhanced our understanding
of this disease’s pathogenesis.3
So far, the latter studies have largely relied on global pro-

filing of mRNA expression or protein abundance in plaque
tissue and were primarily designed to dissect differential
expression, leading amongst others to the identification
of plaque-contained biomarkers correlating with future
cardiovascular events (e.g., osteopontin).4–6 For instance,
based on mRNA expression data from the Biobank of
Karolinska Endarterectomies (BiKE) cohort,7 Diez et al.
were able to identify novel gene networks operating in the
atherosclerotic plaque.8

A limitation of such global approaches is that they
often fail to reveal detailed information about a par-
ticular cellular component in plaques. Laser-capture
microscopy9,10 and single-cell RNA sequencing-based
analysis of atherosclerotic plaque macrophages11–13
bypassed this pitfall. These studies allowed assessment
and deconvolution, respectively, of the expression pro-
files of relevant plaque-contained subsets, and for the
latter confirmed the strong proinflammatory nature of
non-foamy plaque macrophages.13
However, for indepth dissection of critical processes in

plaque, mere transcriptional profiling may fall short incor-
porating net biosynthesis and protein activity, whereas
proteomics profiling alone will bias toward most abun-
dant, rather than most relevant proteins, implying that
both scales have serious shortcomings.14 Moreover, pro-
tein and mRNA profiles are notorious for their rather
poor mutual correlation,15,16 complicating the translation
of genomics findings to clinical practice. Therefore, it is
important to interrogate plaques by multiple omics and to
evaluate the integrated model for biological and/or clin-
ical implications.17 To this end, significant efforts have
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already been made, and a few recent studies have illus-
trated the potential of such approaches.18–20 Applying dif-
ferential expression and intersect analyses18 and/or linking
omics with genetics data,19,20 these studies largely ignored
mutual interaction of gene and/or proteins, and, for the
former, did not truly integrate the data scales in a multi-
variate manner.21
Therefore, in the current study we set out to inte-

grate the protein, peptide, and mRNA makeup of carotid
artery lesions from the Maastricht Human Plaque Study
(MaasHPS)22 of symptomatic carotid endarterectomy
(CEA) patients. We interrogated a total of 42 carotid artery
lesions, based on the presence/absence of intraplaque
hemorrhage (IPH), a hallmark of plaque stability and event
risk.23,24 By integrative machine learning25 we were able
to identify a composite disease stage classifier, the perfor-
mance of which was benchmarked against single-omics
derived classifiers using only mRNA expression or pro-
tein/peptide abundance and validated in several indepen-
dent plaque datasets (GEO accession numbers: GSE28829,
GSE43292, and GSE21545).

2 METHODS

2.1 Sample collection and classification

Atherosclerotic plaque samples obtained during carotid
endarterectomy from 24 symptomatic patients were col-
lected. The endarterectomy specimens were cut into paral-
lel, transverse segments of 5-mm thickness. Each alternat-
ing segment was snap-frozen in liquid nitrogen and stored
at −80◦C, their flanking segments fixed for 24 h in forma-
lin, decalcified for 4 h before processing and embedding in
paraffin for histological evaluation.
Hematoxylin–eosin (H&E) stained plaque tissue was

macroscopically preclassified for plaque stage before omics
experiments. Segments were stratified into non-IPH and
IPH groups according to the absence or presence of IPH.
For each CEA specimen and patient, two samples (one
non-IPH and one IPH) were collected for omics experi-
ments (n = 24 at the start for each). However, one IPH
and four non-IPH samples did not pass the QC test and
were excluded from analysis (see the following sections).
Simultaneously with the microarray performance for the
omics experiments, but prior to bioinformatic analysis,
tissue was sectioned further for additional staining and
computer-aided quantitative measurement of plaque IPH.
Based on this indepth reinspection, the three experienced
pathologists (MJAPD, JCS, MJJG) agreed to remove one
ambiguous “non-IPH” sample, showing small but surface-
detached luminal fibrin clot, as this could represent either
a surgery artefact or bona fide IPH. In three allegedly

“non-IPH” samples, quantitative morphometry detected
minor IPH (0.43%, 0.40%, 0.33%, respectively, data not
shown), which was overlooked in the preclassification.
These three were recategorized as IPH after inspection
by the pathologists. Due to the recategorization of sam-
ples from the non-IPH to the IPH group, three pairs of
the total 26 samples of the IPH group were from three
patients, respectively. To explore the potential confounder
effects of this adjustment, we performed hierarchical clus-
tering of the samples based on the plaque traits (mea-
sured as described in Section 2.2). This analysis convinc-
ingly showed that there is no patient-specific heterogene-
ity among the samples, as well as that plaque phenotype is
dominant over sample origin (data not shown). The final
cohort for this study therefore included transcriptomics,
proteomics, and peptidomics for 16 non-IPH and 26 IPH
plaques (see Figure 1A,B for flow scheme of cohort build-
up). For detailed information on the patient cohort defini-
tion, see Table S1.

2.2 Morphometry and
immunohistochemistry

All H&E slides were photographed at a 12.5× magnifica-
tion and examined digitally using Leica Q500MC software.
Total tissue, media, cap, necrotic core, hemorrhage, and
luminal thrombus area were measured on H&E. Plaque
size was calculated by subtracting the medial and luminal
thrombus area from that of the total carotid tissue.Necrotic
core and hemorrhage area were quantified relative to the
plaque size. Cap thicknesswasmeasured at three to 15 posi-
tions throughout the entire cap region, at regular inter-
vals. In addition, we measured the relative area of the fol-
lowing histological features: CD31+ endothelial cell con-
tent (% of total plaque area), CD3+ T-cell content (%
of total plaque area), CD68+ macrophage content (% of
total plaque area), iNOS+ (M1) macrophage content (% of
CD68+ macrophage area), Arg1+ (M2) macrophage con-
tent (% of CD68+ macrophage area), collagen content (%
Sirius red of total plaque area), αSMA+ smoothmuscle cell
(SMC) content (% of total plaque area), αSMA–PDGFRα+
fibroblast-like cell content (% of total plaque area), and cal-
cification (% Alizarin red of total plaque area). These his-
tological features are denoted as plaque traits, their distri-
bution and statistical differences between paired non-IPH
and IPH plaques are shown in Figure S1. Moreover, a cor-
relation heatmap was created to explore the relationships
between the plaque traits (Figure S2).
For the MFAP4 immunohistochemistry for validation

purpose, 4-μm thick sections were cut from 35 plaques (13
non-IPH, 22 IPH plaques) left available from the total 42
plaques. Deparaffinization and rehydrationwas performed
using xylene and graded ethanol. Endogenous peroxidase
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F IGURE 1 Workflow of carotid sample collection and data analysis. (A) Entire carotid endarterectomy specimen was cut in parallel
5-mm thick slices, snap-frozen in liquid nitrogen, and stored until use. Every second slice was sectioned. After H&E staining, sections were
categorized using the criteria of Virmani et al.,41 and were further classified histologically based on the presence/absence of IPH, resulting in
16 non-IPH and 26 IPH plaques for omics analysis. Workflow for single- and multiomics integrative sPLS-DA analyses are shown in the
orange dashed square. The integrative sPLS-DA prediction model was obtained by connecting transcriptomics, proteomics, and peptidomics
as an entirety;m: number of samples; n1, n2, n3: number of features. (B) Flow scheme of the MaasHPS cohort build-up and the criteria for
sample exclusion. In total, 42 samples (16 non-IPH and 26 IPH plaques) were included in this study

was blocked with 0.3% H2O2 for 15 min, followed by heat-
induced antigen retrieval in a microwave for 10 min in
a low pH target retrieval solution (K8005, DAKO, Agi-
lent Technologies). After cooling down for 20 min, sec-
tions were incubated overnight at 4◦C with polyclonal
rabbit anti-human MFAP4 antibody (1:1000, NBP2-30439:
Novus Biologicals). After washing in TBS, sections were
incubated for 1 h at room temperature in Brightvision
poly-HRP anti-rabbit IgG (ImmunoLogic, VWR KDPVR55

HRP). After washing in TBS, staining was developed using
the chromogen 3,3′-diaminobenzide (DAB, DAKO K3468)
for 5 min, and sections were counterstained with Mayer’s
hematoxylin (VWR International B.V., Amsterdam, The
Netherlands), dehydrated, mounted, and cover slipped.
Sections were digitized using the Pannoramic 1000 scan-
ner (3DHistech Ltd.) at 20×magnification. Morphometric
analysis was done using the free software package QuPath
(v0.2.3) to measure percentage area positivity/total area.
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2.3 Sample preparation for
transcriptomics and
proteomics/peptidomics

Snap-frozen omics segments were pulverized and 5–20 mg
of material was subjected to transcriptomic, proteomic,
and peptidomic analysis.
RNA was isolated by guanidium thiocyanate extraction,

followed by further purification using theNucleospinRNA
II kit (Macherey-Nagel GmbH&Co. KG). RNA concentra-
tionwasmeasured using aNanodropND-1000 spectropho-
tometer (Nanodrop Technologies, Wilmington, DE, USA).
RNA quality and integrity were determined on the Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa
Clara, CA, USA). Pure RNA samples that had an RNA
Integrity Number (RIN) greater than 6.0 and a sample
purity A260/280 ratio greater than 1.8 were taken for tran-
scriptomic analysis (45 out of 48 samples). One analysis for
a non-IPHplaque had failed, therefore in total four unqual-
ified non-IPH samples were excluded from the microarray
experiment.
Proteomic analysiswas carried out byutilizing the 8-plex

iTRAQ reagent for relative quantification. Reference sam-
ple used for relative quantification was created by pooling
the redundant specimens derived from the equal portions
of the samples for omics experiments. Pulverized tissue
samples (5–20 mg) were homogenized in a Covaris E100
ultrasonic homogenizer using 400-μl lysis buffer of 6 M
guanidium hydrochloride, 1% Triton-114, 50 mM triethy-
lammonium bicarbonate (TEAB), 50 mM dithiothreitol
(DTT), and protease inhibitor tablets (Roche, one-fourth
tablet in 10 ml buffer). The homogenate was centrifuged
for 15min at 4000× g to remove insoluble debris. DTT con-
tent of the homogenate was raised to 100 mM and protein
reduction was completed through incubation at 70◦C for
an hour. Alkylationwas completed by adding 0.5M iodoac-
etamide and followed by a 30-min incubation at room tem-
perature. The excess alkylating reagent was quenched by
addition of 12 μl of 1 M DTT. The protein content of the
homogenate was recovered on a poros R1 column using
a Vision Chromatography Station (Applied Biosystems).
Proteins were eluted with 70% isopropanol/30% formic
acid solvent mixture and dried down in a Speedvac.

2.4 Omics data collection

Biotinylated cRNA was prepared using the Illumina Total-
Prep RNA Amplification Kit (Ambion, Inc., Austin, TX,
USA) according to the manufacturer’s specifications start-
ing with 100 ng total RNA. Per sample 750 ng of cRNAwas
used for hybridization. Hybridization and washing were

performed according to the Illumina standard assay pro-
cedure. Scanning was performed on the Illumina Bead-
Station 500 (Illumina, Inc., San Diego, CA, USA), while
image analysis and extraction of raw expression data were
done using Illumina Beadstudio v3 Gene Expression soft-
ware with default settings (no background subtraction and
no normalization). Transcripts weremeasured by Illumina
HumanRef-8 v2.0 expression BeadChip.
Proteins were resuspended in 2M freshly prepared urea,

1 M TEAB, 1% n-octyl-glucoside buffer and digested with
trypsin added at 1:20 w/w ratio to the sample, for 4 h at
37◦C.Digestionwas stopped by increasing the temperature
to 95◦C for 5 min. Digested samples were labeled by the
8-plex iTRAQ reagents following the manufacturer’s pro-
tocols (Applied Biosystems) using a sample digest quan-
tity that represents approximately 40-μg protein content.
Samples were labeled with the reagents yielding the m/z
114, 115, 116, 118, 119, 121 reporter fragments in the MS/MS
scans. Reference samples were labeled with the 113 and 117
reagents. iTRAQ labeled reactions were quenched by the
addition of 1 M ammonium bicarbonate.
Eight samples (three non-IPH, three IPH, and two

replicates for QC and reference) constituting an iTRAQ
mix were combined, desalted, and fractionated by strong
cation exchange (SCX) chromatography using an Agilent
1200 instrument. Eight SCX fractions were injected for
HPLC, and resolved over a 90-min gradient of 5% solvent
B (10% H2O/90% ACN/0.1% TFA) to 38% B (solvent A:
95% H2O/5% ACN/0.1% TFA). The elution volume was
collected onto a plate for mass spectrometric analysis
by matrix-assisted laser desorption ionization (MALDI)
as 10-s intervals, using 10 mg/ml of alpha-cyano-4-
hydroxycinnamic acid in 50%–50% acetonitrile–water as
the matrix. Each HPLC run was represented as a 500-spot
array on the MALDI plate. These plates were analyzed
on an AB4800 mass spectrometer (MDS/SCIEX, Concord,
ON, Canada).
Peptide quantification was carried out by calculating

the average ion intensity ratios relative to the m/z 113 and
117 peaks. Protein ratios were determined as the medi-
ans of all peptide ratios matching to the same protein.
Peptide sequences were identified from MS/MS fragmen-
tation spectra using the Mascot search engine (Matrix
Science, UK) and the SwissProt database. The whole
proteomic/peptidomic analysis was carried out following
the same protocols as in a previous plasma proteomics
study for cardiovascular disease.26 Experimental details
and parameters used in this analysis can be found from
the paper given above. Once all the study samples were
analyzed, the complete peptide set was remapped to a
minimum protein set, whereafter proteins and peptides
identified were mapped to genes or gene families. The
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list of protein and peptide entries used in the multiomics
integration analysis can be found in Table S2.
The corresponding microarray profile of one IPH sam-

ple with failed MS measurement (due to technical rea-
sons) was removed. The final MaasHPS cohort there-
fore included transcriptomics for 16 non-IPH and 26 IPH
plaques, with successful proteomics and peptidomics pro-
filing from the same samples.

2.5 Data preprocessing

A total of 22,184 human transcripts and variants as defined
by the NCBI Reference Sequence (RefSeq) were analyzed.
Transcriptomic data were analyzed using the R Biocon-
ductor lumi package (v2.38.0). First, we performed a vari-
ance stabilizing transformation, which is incorporated in
the lumi package. Then, the robust spline normalization
(RSN) algorithm in the lumi package was applied to nor-
malize the data. As low-variance genes and noise expres-
sion will not only reduce the effectiveness of subsequent
clustering and machine learning but also slow down com-
putations, we selected the top 10,000 most variable genes
from a total pool of 17,759 unique detectable genes, for fur-
ther analysis.
Measured values of the abundance of 1330 proteins and

4736 peptides were normalized using a procedure based
on Vandesompele et al.27 Intrinsic to the analysis method-
ology, datasets were showing a considerable rate of miss-
ing values (26.45% and 38.94%, respectively). To reduce the
noise and bias affected by features with sub- and peri-
threshold abundance, we discarded all features with ≥50%
missing values. For the remaining features, missing values
were imputed by k-nearest neighbors (k-NN) imputation
(k= 7) in an unsupervised manner, as this proved superior
to other methods in a pilot analysis.28
Finally, 10,000 genes, 943 proteins, and 2637 peptides

were detectable in the 42 samples (16 non-IPH vs. 26 IPH)
and were used for further analysis. Genes, proteins, and
peptides were mapped based on the HUGO Gene Nomen-
clature Committee (HGNC) symbols.

2.6 Single- andmultiomics data analysis

For single-omics analysis of the transcriptomic, proteomic,
and peptidomic data, we deployed sparse partial least
squares-discriminant analysis (sPLS-DA, or single sPLS-
DA),29,30 amultivariate methodology which allows sample
classification and feature selection by projecting the data
into a lower dimensional space in a supervised manner.
While applying this method on omics datasets, which typ-
ically have a high-dimensional feature space with limited

sample size, this algorithm implements LASSO31 to limit
the number of features used in the model so as to reduce
the curse of dimensionality. To enable classification based
on multiblock datasets, derived from transcriptomic, pro-
teomic, and peptidomic analysis of plaques, we deployed
integrative sPLS-DA using DIABLO provided in the
mixOmics R package (http://mixomics.org/, v6.8.5),25 a
powerful package shown to extract biologically relevant
signatures from multiple omics data by maximizing the
sum of the covariance between all pairs of latent com-
ponents from each dataset and projecting the different
omics data into a common space.32 Compared with other
multiomics machine learning algorithms, this method
has several advantages. First, it allows full integration of
multiomics data by extracting common information from
different omics layers for classification. Second, it enables
model-embedded feature selection, which is a great help
for identifying disease-specific novel biomarkers. Third,
this method provides clear and interpretable visualization,
facilitating downstream exploration and interpretation
by biologists. The inherent characteristics33 and the
successful applications of sPLS-DA on several microarray
data34,35 suggest the suitability of using this method in
our study.

2.7 Parameter optimization

SPLS-DA requires extensive optimization of both the num-
ber of components and the number of features for con-
structing each component. In brief, the number of test-
ing components was set from one to six, as in most cases,
the prediction performance deteriorates rapidly when the
number of the components increase above five. Then, the
number of features to be tested for constructing the sPLS-
DA component was configured. For single sPLS-DA on
transcriptomics, proteomics, and peptidomics, a range of
features from three to 300 (from three to 30 in steps of
three, from 30 to 60 in steps of six, from 60 to 150 in the
step of 15, and from 150 to 300 in the step of 30) were set for
each component. For integrative sPLS-DA, to achieve the
comparable number of selected features, the range of test-
ing features here for each component and each omics was
set from 10 to 100 (from 10 to 50 in steps of five, from 50 to
100 in steps of 10, in total 14 candidates per component per
omics).
Specifically, for integrative sPLS-DA, a design matrix

representing how close the datasets should be connected
to each other needs to be configured. According to Singh
et al.’s suggestion,36 we configured the design matrix C
as the correlation between omics datasets as 0.1, and the
correlation between omics dataset and outcome dummy
matrix as 1.

http://mixomics.org/
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Optimal parameters can be derived in one step from the
model with the best classification in cross-validation. A
series of single and integrative sPLS-DA prediction models
were obtained from each combination of these parameter
settings, and their performances were tested under strat-
ified five-fold cross-validation with 1000 random repeats.
Considering the unbalance of the sample phenotypes, to
fairly reflect the classification performance of training
models, in this tuning phase we used balanced error rate
(BER), which takes the average of the errors on each class
to evaluate the classification error. The optimal parameters
can be concluded from Figure S3A (for integrative sPLS-
DA, data not shown) and are listed in Table S3. The perfor-
mance of the single and integrative sPLS-DA models with
the given optimal parameters was evaluated by accuracy
and area under the curve of receiver operating character-
istic (AUC) under stratified five-fold cross-validation with
10,000 random repeats (Figure S3B).

2.8 Feature selection

Inspired by the method used in a previous multiomics
study,32 to ensure that selected features had broader sig-
nificance beyond the single best prediction model, we per-
formed stratified sampling with replacement generating
10,000 incomplete copies of the full dataset; each copy cov-
ered 80% of the original data, and phenotype distribution
was identical to that of the original dataset. We then ran
single- andmultiomics analysis on each copy, selecting the
overall highest ranking features by aggregating the loading
weight value (i.e., the importance to themodel) of each fea-
ture from each copy to obtain the final feature subset. The
optimal parameters (Table S3) were used to determine the
number of the selected features.
To simplify the downstream analysis, we assembled

gene, peptide, and protein identifiers of selected features
into a final feature set, unifying the identifiers into the cor-
responding gene symbol and excluding duplications. The
final selections used for overrepresentation analysis, tran-
scriptional regulatory analysis, and validation entailed 291
and 283 gene features, for single and integrative sPLS-DA,
respectively. The full lists of the selected features are pre-
sented in Table S4, sorted by the overall feature importance
from high to low.

2.9 Bioinformatic analyses

2.9.1 Differential gene expression analysis

We used the function lmFit() provided in the limma R
package (v3.42.2) for differential expression analysis on

preprocessed transcriptomics between IPH and non-IPH
groups. Positive log2 fold change (Log2FC) values indicate
genes have higher expression in IPH group, and vice versa.
Results of differential expression analysis for the 17,759
unique detectable genes can be found in Table S5.

2.9.2 Gene set overrepresentation analysis
(GSOA)

We performed GSOA using the R packages
clusterProfiler37 (v3.12.0) and ReactomePA38 (v1.28.0)
identifying biological functions of the selected gene sets.
Three categories of GSOA datasets were queried: Gene
Ontology (Biological Process GOBP, Molecular Function
GOMF, and Cellular Component GOCC), Reactome
Pathway Database (REACTOME), and Kyoto Encyclope-
dia of Genes and Genomes (KEGG). All genes covered
by this Illumina microarray platform and all detectable
proteins/peptides in the MS experiments were used as
the background. Benjamini–Hochberg adjusted p-values
were calculated as a cutoff to avoid presenting the false
discovery of significant terms. The full list of GSOA results
for both single and integrative sPLS-DA can be found in
Table S6.

2.9.3 Transcriptional regulation analysis

iRegulon39 (v1.3), a Cytoscape plugin, was used to map
transcription factors (TFs) driving a gene network. The
selected features by integrative sPLS-DA were set as input
in iRegulon for TF discovery. By setting the default param-
eters, we have a broad search space including 9713 posi-
tion weight matrices (PWMs) and 1120 ChIP-seq tracks.
The putative regulatory region was set to 20 kb centered
around transcription start sites (TSS). Top five TFs were
ranked by normalized enrichment score (NES) and visu-
alized as a transcriptional regulatory network.

2.10 Validation cohorts and approach

The predictive power of genes from the multiomics
signature was validated in the following independent
human carotid endarterectomy cohorts on microarray
gene expression: GSE2882940 (n = 29; 13 early and 16
advanced plaques) and GSE432924 (n = 64; 32 plaque-free
artery segments and 32 atheromatous plaques).
The prediction performance of the gene lists obtained

from integrative sPLS-DA components 1–4 (MULTI 1–4,
n = 283) and single sPLS-DA components 1–2 (SINGLE,
n = 291, for peptidomics only component 1) were tested
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by logistic regression (solver = “lbfgs”), support vector
machine (SVM, kernel= “rbf,” gamma= “auto”) and deci-
sion tree (default settings) with stratified five-folds cross-
validation and 1000 random repeats provided in the scikit-
learn machine learning package (v0.24.1) in Python. As
the integrative sPLS-DA component 1 (MULTI 1, n = 22)
was dominant in our model, we also compared the perfor-
mance of the MULTI 1 signature with that of MULTI 1–4
signature from the complete four-component model. Clas-
sification performance using full data (FULL) was evalu-
ated as a baseline. Predictive performance was evaluated
by two measures: AUC and accuracy.

2.11 BiKE verification

BiKE cohort patient inclusion for CEA surgery and enrol-
ment in the biobank, clinical data, sample processing
and large-scale datasets have been described in details
previously.7,18 In this study, the classification performance
of MULTI 1 was also validated on transcriptomics (n= 137;
127 carotid plaques and 10 normal arteries) and proteomics
(n = 36; 18 carotid plaques and 18 adjacent, healthy,
matched segments) from the BiKE cohort. Within the
BiKE, two subcohorts were defined. For the first, we com-
pared non-atherosclerotic tissues (normal; n = 10 for tran-
scriptomics, n = 18 for proteomics) versus atherosclerotic
arteries (plaques; n = 127 for transcriptomics, n = 18 for
proteomics), based on their morphological and histologi-
cal characteristics (HIST). For the second, carotid plaque
tissues were classified as asymptomatic (n = 40 for tran-
scriptomics, n = 9 for proteomics) versus symptomatic
(n = 87 for transcriptomics, n = 9 for proteomics) based
on the patient’s clinical presentation (CLIN). For both sub-
cohorts, we tested the classification performance of the
identified multiomics signature MULTI 1 on transcrip-
tomics and proteomics, respectively, using logistic regres-
sion with the same setting mentioned above for GSE28829
and GSE43292. Gene set enrichment analysis (GSEA) was
performed on the signatureMULTI 1 against the genes and
proteins from BiKE transcriptomics and proteomics, with
the genes/proteins ranked by log2 fold change based on the
comparisons of HIST and CLIN.

2.12 Statistical analysis

Component–component and component–trait associa-
tions were measured by Pearson’s correlation coefficients
with p-values. Classification performances are presented
as the mean ± standard deviation (SD). Distribution of
plaque traits and IHC-based MFAP4 quantification for
paired plaques are presented as box andwhisker plots with

the first quartile, median, third quartile, and the largest
or smallest values within 1.5 times the interquartile range
above the third quartile or below the first quartile, respec-
tively. Statistical significance between groups was evalu-
ated using two-tailed Wilcoxon rank-sum test (for non-
normally distributed data) or Student’s t-test (for normally
distributed data). For the MaasHPS data, paired statistical
testing was performed. Shapiro–Wilk test was used for the
normality test. Statistical significance between the classi-
fication performance was analyzed by Student’s t-test. Sig-
nificance level is denoted by *p-value< .05, **p-value< .01,
***p-value < .001, ****p-value < .0001. Statistical analyses
were performed in R (v3.6.3).

3 RESULTS

In this study, we deeply phenotyped low- versus high-
risk human carotid artery atherosclerotic lesion seg-
ments, as defined by the absence or presence of IPH,
building an integrated gene/protein classification model
for IPH. For this, we interrogated a carotid endarterec-
tomy cohort (MaasHPS) by transcriptomic (microarray),
proteomic, and peptidomic analysis (both LC-MALDI-
MS/MS). Flanking sections were taken for detailed histo-
logical examination of cellular and acellular plaque com-
position and progression stage41 (Figure S1), resulting in
42 CEA samples (16 non-IPH vs. 26 IPH, Table S1) from
24 patients (see Materials and methods section and Fig-
ure 1A,B for cohort build-up scheme). After preprocess-
ing, a total of 10,000 genes, 943 proteins, and 2637 peptides
were analyzed according to the workflow described in Fig-
ure 1A. For clarity sake, mRNAs/genes, proteins, and pep-
tides from omics data are termed features, and a set of fea-
tures is termed signature.

3.1 Single-omics sPLS-DA

First, we built single sPLS-DA models based on the tran-
scriptomic, proteomic, and peptidomic datasets, sepa-
rately. The optimal parameters for model building can be
found in Table S3 and Figure S3A. As is evident from
Figure 2A, all three models were able to segregate IPH
from non-IPH plaque at high predictive performance, with
accuracies of approximately 0.9 and AUCs of >0.95 (Fig-
ure S3B); in fact, nearly 90% of samples could be cor-
rectly classified by all three omics datasets separately.
Next, we constructed heatmaps for the three omics layers,
respectively, depicting the differential expression of signa-
ture members by IPH versus non-IPH plaque (Figure 2B
and Figure S4A). Component 1 gene, protein, and peptide
signatures showed strong differential expression between
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F IGURE 2 Single-omics sPLS-DA on transcriptomics, proteomics, and peptidomics. (A) Two-component sample distribution (16
non-IPH and 26 IPH) for single-omics sPLS-DA on plaque transcriptomics (gene), proteomics (protein), and peptidomics (peptide),
respectively. For visualization purpose, two components were included in the plot for peptidomics. (B) Heatmap shows expression level of the
selected genes (comp1, n = 150; comp2, n = 54) from transcriptomics. Expression values were z-normalized per row. (C) Selected features by
single sPLS-DA on the three omics are plotted, respectively (n = 204 for genes; n = 111 for proteins; n = 3 for peptides), according to their
Pearson’s correlation coefficient to the components 1 and 2. (D) GSOA on standardized gene set of single sPLS-DA. For each component, six
highly ranked overrepresented terms are selectively shown
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F IGURE 3 Multiomics sPLS-DA on transcriptomics, proteomics, and peptidomics. (A) Two-component sample distribution for
multiomics sPLS-DA on plaque transcriptomics (gene), proteomics (protein), and peptidomics (peptide). Non-IPH and IPH plaques are
denoted in skyblue and coral, samples from different omics layer (16 non-IPH and 26 IPH for each omics layer) are denoted by red, blue, and
green borders. Considering the high consistency between the components of the three omics layers in the multiomics model (see C), three
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plaques with or without IPH. This is in support of the dis-
criminative power of component 1 (Figure 2A), and sug-
gests that the first component is the dominant factor in the
prediction model.
Next, we mapped the distribution of the selected fea-

ture sets (Figure 2C), based on the Pearson’s correlation
coefficient between the latent components (i.e., compo-
nents 1 and 2) and the selected features.42 For both com-
ponents, selected featureswere distributed differently, cen-
tering toward the extreme ends of component 1, and being
more diffusely distributed for component 2. Thus, unlike
component 2, component 1 features showed pronounced
mutual interaction, suggesting involvement in a coordi-
nated biological process. GSOA of the selected signatures
for the first, decisive component revealed a clear overrepre-
sentation of fibroblast and extracellular matrix-associated
biological processes (Figure 2D, Table S6). In contrast, but
expected based on the diffuse distribution in Figure 2B,C,
component 2 did not offer deeper insights into hemorrhage
relevant processes. Of note, even for component 1, the level
of overrepresentation was rather low, precluding firm con-
clusions based on single sPLS-DA only.

3.2 Multiomics sPLS-DA

In order to establish a more comprehensive and robust
model of IPH, we sought to analyze plaque transcriptomic,
proteomic, and peptidomic data in an integrated manner
by integrative sPLS-DA using the optimized parameters in
Table S3. The resulting prediction model provided excel-
lent discrimination of non-IPH versus IPH plaque (Fig-
ure 3A), and performed at least equally good as all of
the single-omics models, in terms of accuracy and AUC
(Figure S3B). The features of the first, but not second to
fourth components, showed overt differential expression
between non-IPH and IPH plaque (Figure 3B and Figure
S4B), regardless of their origin (i.e., gene, protein, pep-
tide). Furthermore, the selected proteins and peptides in
Figure 3B showed considerable overlap (12 out of 20, Table
S4). Also, for each of the other three components, part of
the selected proteins and peptides are overlapping (Table
S4), implying the contribution of the proteomics and pep-

tidomics to the multiomics model are to some extent sim-
ilar but not identical. Cross-component correlation analy-
sis (Figure 3C) confirmed the strong mutual correlation of
component members from the three omics layers, whereas
cross-interaction across the components was very weak,
underpinning the high level of independence of the four
components of our model.
To add biological meaning to the prediction model,

we set out to identify cofunctional gene/protein/peptide
clusters, correlating with each of the four components of
the integrative model (Figure 3D). Several clusters were
observed, suggesting a very strong mutual correlation
between genes, proteins, and peptides. This points to coor-
dinate function and/or regulation of the cluster mem-
bers. GSOA of the gene, protein, and peptide members
underlying the integrated classification model showed a
clear cardiovascular signature (Figure , Table S6), with
marked overrepresentation of extracellular matrix orga-
nization (components 1 and 3), lipid metabolism (com-
ponent 2), and immune response terms (component 4).
Interestingly, components 1 and 3 showed considerable
functional overlap, despite their low interdependence. Of
note, the first component of the multiomics model was
very comparable to that of the single-omics models, and
showed a significant level of overlap (Figure 3F). To val-
idate the GSOA findings, we correlated the four compo-
nents with several important plaque traits, such as IPH,
fibrosis, and macrophage presence (Figure 4A, Table S7).
The dominant first component was highly correlated with
plaque size (correlation = 0.74, p = 1.8E-08) and hem-
orrhaged plaque area (correlation = 0.48, p = 1.4E-03),
as expected, as well as with αSMA–PDGFRα+ fibroblast-
like cells (correlation = 0.64, p = 2.4E-05), Arg1+ heal-
ing macrophage phenotype (correlation=−0.62, p= 2.2E-
04), and collagen content of non-IPH plaque (correla-
tion = 0.72, p = 3.6E-03), concordant with the GSOA find-
ings (Figure 3E). Indeed, plaque size, hemorrhage area,
collagen content, and αSMA–PDGFRα+ cell content were
significantly correlated with each other (Figure S2), possi-
bly explaining the correlations between component 1 and
these plaque traits (Figure 4A).
Given the functionally related signature members in

integrative sPLS-DA component 1, suggesting a shared

sample distributions for different data layers were combined into one plot. (B) Heatmap shows expression/abundance level of the selected
genes (n = 10), proteins (n = 10), and peptides (n = 10) for the first component of multiomics analysis. Expression values were z-normalized
per row. (C) Heatmap shows correlations between components from the multiomics model. (D) Distribution of the selected genes, proteins,
and peptides on their corresponding components of multiomics sPLS-DA. Elements are plotted according to their Pearson’s correlation
coefficients to the components 1 and 2 (n = 30 for genes; n = 50 for proteins; n = 110 for peptides), or 3 and 4 (n = 125 for genes; n = 100 for
proteins; n = 170 for peptides). (E) GSOA on standardized gene set of multiomics sPLS-DA. For each component, six highly ranked
overrepresented terms are selectively shown. (F) Overlapping between standardized gene subset of single-omics (S) components 1 and 2, and
multiomics (M) components 1 and 2
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F IGURE 4 Biological extension of the results of the multiomics analysis. (A) Correlation-based heatmap shows correlations and
corresponding p-values (denoted as asterisk) between multiomics components 1–4 (derived from the transcriptomic block) and plaque traits.
Specifically, correlations of components with collagen content and αSMA–PDGFRα+ fibroblast-like cell content are shown as scatter plots
(non-IPH, n = 16; IPH, n = 26; all plaques, n = 42). (B) Transcription factors (TFs) targeting the elements from the first component of
multiomics sPLS-DA-based set of genes/proteins/peptides were extracted by iRegulon with default settings. Likely interactions of TFs with
their downstream targets as obtained from iRegulon are indicated by directed lines with different color per TF. Genes, proteins and peptides,
and TFs are depicted in different shapes; gene-level differential expression (log2 fold change) is shown by green-red gradient. The top five
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regulatory basis, we performed regulatory analysis by
iRegulon to identify TFs driving this signature set, and
built a regulatory network of the IPH signature encom-
passing mRNAs, protein, peptides, and in silico-identified
TFs. As can be seen from Figure 4B, all the 22 nonre-
dundant members of component 1 were targeted by the
top five enriched TFs. MRNA of the highest ranked TF,
serum response factor (SRF), was significantly and sharply
downregulated in hemorrhaged plaque regions, mirroring
the effects seen on most of the SRF connected network
members. SRF signaling is tightly dependent on its cofac-
tor, where myocardin family members drive locomotion
and cell adhesion activities, while T-cell factors promote
proliferation. Hypergeometric testing using the reference
dataset of Xie’s study43 showed a clear overrepresentation
of SRF-targeting network members in megakaryoblastic
leukemia-1/2 (MKL1/2) regulated SRF-dependent genes
(p-value = 2.7E-03), but not in ETS-domain protein 4
(ELF4) regulated SRF-dependent genes (Figure 4C). This
points to the former as the dominant signaling pathway
in non-IPH plaque, promoting actin cytoskeleton organi-
zation, locomotion, and cell adhesion regulated by SRF
in plaque.
One of the SRF-regulated features with the strongest

downregulation in IPH compared to non-IPH, at gene
expression level (Figure 4B), was microfibril-associated
glycoprotein 4 (MFAP4), which has been described to
localize in vascular wall extracellular matrix fibers and to
be involved in neointima formation.44 Immunohistochem-
ical validation of MFAP4 presence in plaque sections from
the same cohort (MaasHPS) indeed confirmed its reduced
abundance in hemorrhaged plaques (Figure 4D,E). We
also examined the MFAP4 gene expression and protein
abundance in BiKE cohort, which showed a downregula-
tion in atherosclerotic arteries compared to normal or adja-
cent tissues, as well as in symptomatic patients compared
to asymptomatic patients (Figure S5A).Moreover, based on
GSEA, we observed significant negative NES of the SRF-
regulated network members in BiKE cohort for the com-
parisons of HIST and CLIN, suggesting the general down-
regulation of the network members in carotid plaques
compared with normal or adjacent tissues, and in symp-
tomatic patients compared with asymptomatic patients
(Figure S5B), which is in line with the expression in Fig-
ure 4B.

3.3 Independent validation of findings
frommultiomics analyses

Finally, we assessed whether the IPH signature was able
to discriminate low- from high-risk plaques in two inde-
pendent mRNA cohorts in the public domain: GSE2882940
(n= 29; mRNA; early vs. advanced plaque) and GSE432924
(n = 64; mRNA; intact arterial tissue vs. atheroma).
Although the cohort setup differs from our cohort, carotid
advanced plaque (GSE28829) and atheroma (GSE43292),
both largely represent unstable plaque phenotypes (thin
cap fibroatheroma and beyond). The main difference is
in the control tissue with even lower risk than our non-
hemorrhaged stable plaque: that is, early-stage lesion (low
risk) and nonlesioned arterial tissue, in the two valida-
tion cohorts, respectively, versus nonhemorrhaged stable
plaque in our study, but we argued that our signature may
still be valid for these broader disease trajectories.
Indeed, in both cohorts, the signature genes from inte-

grative sPLS-DA component 1 (MULTI 1) were differen-
tially expressed between control versus diseased artery
(Figure 5A), with general downregulation in advanced
plaque. Both the single-omics (SINGLE) and the multi-
omics (MULTI 1, MULTI 1–4) signatures performed very
well for the logistic regression and SVM classifiers, with
AUCs of 0.95 in advanced versus early (GSE28829, Fig-
ure 5B and Figure S6A). Of note, the first component of
the multiomics model (MULTI 1) by itself already per-
formed surprisingly well in stratifying the two plaque phe-
notypes for GSE28829, albeit not as good as the complete
four-component gene set (MULTI 1–4, Figure 5B and Fig-
ure S6A,B). Apparently, the first component is dominant in
stratifying the validation cohorts, with a complementary
contribution of components 2–4. Validation in GSE43292
did not show major differences in predictive power of the
SINGLE, MULTI 1, and MULTI 1–4 gene sets, with overall
high performance (AUCs >0.8) for all gene sets tested by
logistic regression and SVM (Figure 5B and Figure S6A).
Decision tree classifiers performed less impressive than
the other two classifiers (Figure S6B). Here, the MULTI
1–4 gene set appeared to be superior to the other models
(Figure S6B), possibly owing to the structure of the deci-
sion tree classifier, in which the splitting nodes can incor-
porate the independent features from distinct multiomics
components.

enriched TFs for multiomics component 1 ranked by normalized enrichment score (NES) are shown below, with the same colors as the
directed lines in the network. (C) SRF network operating in plaques primarily steers the MKL1/2, not the ELF4 coregulated pathway. The
p-values were calculated by hypergeometric test. (D) Representative pictures of IHC for MFAP4 (brown area) in non-IPH and IPH plaques.
Scale bar = 100 μm; 100×magnification. (E) Differences of IHC-based MFAP4 positive area (%) between paired non-IPH and IPH plaques
(both n = 13)
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F IGURE 5 Validation of selected gene sets using independent cohorts. (A) Heatmaps shows expression/abundance pattern of the
selected genes/proteins from component 1 by integrative sPLS-DA analysis (MULTI 1) in validation cohorts. For GSE28829, early (n = 13)
versus advanced (n = 16) plaques; for GSE43292, intact arteries (n = 32) versus atheromata (n = 32); for BiKE proteomics, adjacent tissues
(n = 18) versus plaques (n = 18); for BiKE transcriptomics, normal tissues (n = 10) versus plaques (n = 127). Expression values were
z-normalized per row. (B) Classification performance based on full data (FULL), single-omics (SINGLE), multiomics component 1 (MULTI 1),
and multiomics components 1–4 (MULTI 1–4) feature subsets on two independent cohorts GSE28829 and GSE43292. (C) Classification
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Finally, we validated performance of the MULTI 1 sig-
nature in the BiKE cohort study, which includes both
high-powered transcriptomics (n = 127) and proteomics
datasets (n = 36) from CEA tissue. The MULTI 1 fea-
ture set performed well on both the transcriptomics and
proteomics in segregating advanced plaque from healthy
carotid tissue (histological, HIST; see Figure 5C). Interest-
ingly, while both involved hemorrhaged plaques, our sig-
nature was even able to stratify plaques from symptomatic
versus asymptomatic patients based on their proteomics at
a reasonable classification performance (AUC= 0.80), and
to a lesser extent transcriptional profile (AUC = 0.57; clin-
ical, CLIN; see Figure 5C). Indeed, all the MULTI 1 mem-
bers overlap with MULTI 1–4 and SINGLE (Figure 5D),
suggesting the MULTI 1 signature derived from the dom-
inant component of the multiomics model is essential for
plaque classification.

4 DISCUSSION

Elucidation of critical processes in the transition of low-
risk into high-risk rupture-prone plaque in humans will
pave the way for early diagnosis of, and targeted inter-
vention in atherosclerosis-related cardiovascular diseases.
Here we have deployed integrative analysis of transcrip-
tomic, proteomic, and peptidomic expression/abundance
profiles of human carotid artery plaque to build a mul-
titethered prediction model for distinguishing low- from
high-risk carotid artery lesions. The significance of this
model was corroborated in multiple independent plaque
cohort studies. Finally, based on this model, we con-
structed an SRF-driven regulatory gene/protein network
overrepresented in extracellular matrix remodeling and
interaction terms, which could serve as a starting point for
the design of a targeted intervention.
Single-omics studies on human atherosclerotic plaque

by us (this study, Goossens et al., Eijgelaar et al.)22,45
and others4–6,8 have already shown the power of these
high-throughput approaches for biomarker discovery and
mechanistic studies. For instance, Ayari and Bricca have
identified the CD163/HO-1 axis to be associated with iron–
heme homeostasis in atherosclerotic plaque, using differ-
ential expression analysis on microarray data extracted
from 68 carotid atheroma specimens.4 However, single-
omics approaches intrinsically fail to capture the complex-

ity of biological systems as a whole, providing useful but
incomplete information.46,47 Moreover, genomic and pep-
tide/protein expression/abundance in plaque were seen to
show poor mutual correlation.15 Consequently, genomics
findings are not directly translatable to (pre)clinical appli-
cation, while protein-based models generally are rather
sparse, biased toward high-abundance proteins and lack-
ing their regulatory context. This combinedwith the obser-
vation that both domains display distinct but complemen-
tary correlationswith relevant clinical traits pleads in favor
of integrative multiomics analysis on atherosclerosis to
have the best of both worlds, producing a robust, translat-
able model of disease progression.
This study illustrates the benefits of truly integra-

tive omics analysis in terms of accuracy, visibility, and
model interpretability. Our multiomics prediction model
achieved similar, if not higher, accuracy in stage classifi-
cation as a single-omics model. The prediction power of
the selected features was successfully validated on sev-
eral independent cohorts comparing healthy artery or
early (stable) plaque versus advanced (unstable) plaque
or atheroma. Even, the selected features performed rea-
sonably well in stratifying plaques from symptomatic ver-
sus asymptomatic patients at protein level (BiKE pro-
teomics), although plaques in both groups were having an
advanced (unstable) phenotype. However, the true merit
of integrative analysis is in the robustness of the model,
its biological significance, and the direct clinical trans-
latability of network-contained proteins. Significances of
overrepresented terms in the multiomics signature out-
performed those of the single-omics signature, due to
the strong mutual interaction of signature members per
component. Interestingly, while the dominant component
of the single- and multiomics models showed consider-
able overlap, the auxiliary second to fourth components
of the single- and multiomics models differed substan-
tially, with those of the latter being much more coherent
and biologically meaningful. The dominant component
in the multiomics model was overrepresented in collagen
metabolism and macrophage inflammation terms, reflect-
ing peri-rupture modeling processes. The auxiliary com-
ponents alluded to additional CVD relevant terms, such
as lipid and lipoprotein metabolism, neutrophil responses
and, again, tissuemetabolism,mirroring early responses to
hemorrhage and/or rupture. Additionally, we found that
the BLVRB, which had been previously proposed by Matic

performance of MULTI 1 feature subsets on BiKE cohort in distinguishing normal (n = 10 for transcriptomics; n = 18 for proteomics) versus
plaque (n = 127 for transcriptomics; n = 18 for proteomics) based on histological characteristics (HIST), or asymptomatic (n = 40 for
transcriptomics; n = 9 for proteomics) versus symptomatic (n = 87 for transcriptomics; n = 9 for proteomics) based on clinical events (CLIN).
For B and C, results were measured by accuracy and AUC using logistic regression, with stratified five-fold cross-validation and 1000 random
repeats. Results are presented as mean ± SD. (D) Overlapping between feature sets SINGLE, MULTI 1, and MULTI 1–4
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et al.18 to define IPH, was also contained in ourmultiomics
model (component 4).
Literature search for the MULTI 1 elements indicated

an overall relationship (15 of the total 22) to vascular
smooth muscle function and inflammation in cardiovas-
cular diseases (Table S8). Interestingly, the regulatory net-
work based on the dominant component, identified SRF as
the driving factor in peri-rupture remodeling. Despite the
fact that a small media could not be excluded from the dis-
sected tissue during the CEA surgery, the lack of correla-
tion between the dominant component and the media size
(Figure 4A) indicated the SRF-driven network was only
associated with intimal not medial processes related to
IPH. SRF is a MADS family type TF, which acts by binding
CArG box motifs. The relevance of SRF for cardiovascu-
lar health is well documented.48,49 In cardiac and vascular
smoothmuscle cells, it was seen to drive phenotypic switch
by regulating contractile gene programs.50 In endothelial
cells, SRF is essential for VEGF-induced cell signaling and
angiogenesis, and thus endothelial dysfunction.51 More-
over, SRF mediates cellular lipid and glucose responses
by controlling LXRB gene expression, modulating these
metabolic sensors.52 While a direct role in ischemic heart
disease is likely, experimental data to underpin this notion
is lacking.
Mechanistically, SRF transcriptional responses depend

critically on its coactivator. The major coactivator classes
are T-cell factors (e.g., TCF21,53 ELK1/2),which are respon-
sible for renin–angiotensin–aldosterone system (RAAS)-
activated mechanosensing, and myocardin-family mem-
bers (e.g., MRTF), which transduces mothers against
decapentaplegic homolog (SMAD) and Rho-associated
kinase responses.54 As pointed out by Gualdrini et al.,
competition between T-cell and myocardin family mem-
bers for SRF will skew its responses toward antag-
onistic proliferative and contractile programs of gene
expression, respectively.55 Our data seem to plead for
MKL1/2-SRF signaling as the major dysregulated axis in
IPH plaque, suggesting that remodeling responses will
prevail.
Although our integrative multiomics approach holds

promise, it has a number of limitations. First, this
study was based on a moderately dimensioned cohort
study containing CEA tissues from male patients and
may therefore only partly reflect the population’s diver-
sity in disease risk profile as well as pathogenesis. The
fact that we were able to confirm the validity of our
selected genes in multiomics model in several other
cohorts, however, indicates that our findings have a
wider scope. Second, the multiomics approach was only
based on genes, proteins and peptides. Incorporation of
metabolomics and lipidomics into the multiomics signa-
ture may further strengthen the model and deepen our

insight into key processes in this clinically relevant stage
transition.56,57

5 CONCLUSIONS

In conclusion, our study underpins the added value of
integrative multiomics analysis to a single-omics study of
human atherosclerosis. Comparing a single- and multi-
omics analyses of human carotid atherosclerotic plaque,
we showed that while both approaches perform excel-
lently in segregating low- from high-risk plaques, the latter
provides much deeper insight into critical processes tak-
ing place prior to or just after plaque rupture in humans.
Moreover, our integrative multiomics approach revealed
an SRF-driven gene/protein network, associated with this
phase transition, which could guide efforts to the design of
new treatments to promote non-expansive plaque healing.
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