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Can the preterm lung recover from
perinatal stress?
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Abstract

After birth, adequate lung function is necessary for the successful adaptation of a preterm baby. Both prenatal and
postnatal insults and therapeutic interventions have an immediate effect on lung function and gas exchange but
also interfere with fetal and neonatal lung development. Prenatal insults like chorioamnionitis and prenatal interventions
like maternal glucocorticosteroids interact but might also determine the preterm baby’s lung response to postnatal
interventions (“second hit”) like supplementation of oxygen and drug therapy. We review current experimental and
clinical findings on the influence of different perinatal factors on preterm lung development and discuss how well-
established interventions in neonatal care might be adapted to attenuate postnatal lung injury.
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Introduction
The lung function of a preterm baby is key to the success-
ful adaptation after birth since no gas exchange via diffu-
sion will be possible without sufficient maturity of the
alveolar and capillary unit [1]. The development of the
fetal lung is affected by antenatal maternal glucocorti-
coids, chorioamnionitis, and maternal nutrition [2]. Al-
tered fetal development affects pulmonary responses after
birth to subsequent—postnatal—injuries such as oxygen
toxicity or responses to drugs [3]. The different effects of
antenatal and postnatal insults and interventions are sum-
marized in Fig. 1. In this review, we will give a concise
overview of recent developments on lung function and
growth that highlight the interaction between factors that
determine lung plasticity in the context of lung injury,
regeneration, and immunomodulation and in the develop-
ment of bronchopulmonary dysplasia (BPD).

Chorioamnionitis as prenatal insult
The exposure to microbes in utero appears to be very
common in preterm deliveries [4]. Chorioamnionitis in-
duced by different microbial triggers results in pulmonary

inflammation and subsequent structural simplification in
the alveoli and vasculature of the fetal lung [5, 6]. In the
clinical course of postnatal pulmonary adaptation and de-
velopment in preterm infants, chorioamnionitis plays a
dual role. On the one hand, exposure to chorioamnionitis
might protect preterm infants from respiratory distress
syndrome (RDS) [7]. In animal models, prenatal exposure
to inflammatory stimuli supported surfactant production
and structural maturation and resulted in better lung
compliance [8]. However, surfactant replacement therapy
has been shown to be less effective in preterm infants who
were exposed to chorioamnionitis and developed a fetal
inflammatory response [9]. Moreover, data from experi-
mental models show that lung injury after exposure to
intrauterine inflammation depends among others on the
type of the infectious agents and the time of onset of
intrauterine inflammation [3]. This might explain the
inconsistent effect of chorioamnionitis on postnatal pul-
monary adaptation. On the other hand, growing evidence
suggests an important role of intrauterine inflammation as
contributing factor to the development of BPD [10–12].
Animal experiments revealed that intrauterine inflamma-
tion resulted in structural lung impairment [13] and
disturbance of developmental pathways in the lung,
impairing growth factors and branching morphogenesis
[6]. These long-term effects might also depend on the se-
verity of the inflammatory response. In a recent clinical
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study, histological severity of fetal inflammation in cases
of chorioamnionitis was independently associated with
development of BPD, even after adjusting for gestational
age [14]. Moreover, preexposure to chorioamnionitis alters
inflammatory reaction on a second inflammatory stimulus
[15]. Fetal attenuated reaction on repeated inflammatory
stimuli can prevent lung injury [16]; therefore, the associ-
ation between prenatal inflammation and postnatal lung
injury remains complex.

Chorioamnionitis and antenatal
corticosteroids—combined effects
The course and the time point of onset of infection
are—in cases of clinically silent chorioamnionitis—not
to be determined [17]. In cases of clinical chorioamnio-
nitis, the maternal symptoms suggest the onset of a ma-
ternal response to microbes which does not preclude the
use of antenatal maternal steroids [18]. Antenatal mater-
nal corticosteroid therapy accelerates fetal lung matur-
ation [19] and supports endogenous surfactant production
[20]. Although there is an ongoing discussion about the
ideal preparation and dosing [21], maternal glucocorticos-
teroids are the gold standard treatment when premature
delivery is expected [22]. However, experimental data re-
vealed that the combined effects of prenatal exposure to
chorioamnionitis and glucocorticosteroids are variable
and do not simply “add up". The time point of admin-
istration of antenatal steroids before or after the onset of
chorioamnionitis in a sheep model of LPS-induced chor-
ioamnionitis was studied in order to assess the effects of
lung maturation and immune modulation in a preclin-
ical model [23]. Inhibition or even prevention of im-
paired structural pulmonary development appeared to
be dependent on the timing of administration of mater-
nal steroids [24, 25]. Administration before onset of
LPS-induced chorioamnionitis reduced pulmonary

inflammation [25], counteracted LPS-induced transform-
ing growth factor β (TGFβ) pathway activation [23], and
prevented structural changes [24]. Pulmonary inflamma-
tion was not attenuated if administration of maternal glu-
cocorticoids was done after onset of chorioamnionitis,
and inflammatory cells in the lung increased [25]. In con-
trast, positive effects of maternal glucocorticoids on lung
function and surfactant metabolism were enhanced when
they were given after onset of pulmonary inflammation
[25]. These findings emphasize that the mechanisms link-
ing intrauterine inflammation to the induction of lung
structural changes are multi-factorial [6].
One possible link is oxidative stress, with BPD being

considered as an oxygen-radical disease of the preterm
[26]. Chorioamnionitis has multiple effects on levels of
reactive oxygen species and enzymes involved in the
detoxification of reactive oxygen species. However, these
effects are not invariably positive or negative. Data ob-
tained in the preclinical lamb model of chorioamnionitis
shows that acute intrauterine inflammation precedes
increases in oxidants in the fetal airways [27] but also in-
creases in antioxidant enzyme activity in fetal lung tissue
[28]. Taken together, the effect of chorioamnionitis on
oxidative stress in the lung still needs to be elucidated.
In addition, it is unclear whether chorioamnionitis leads
to antenatal conditioning of fetal redox systems which
may affect the response to a pre- or postnatal second
hit [29–31]. For example, modulation of fetal oxidative
stress has been reported after maternal glucocorticoid
administration in both experimental [32, 33] and clin-
ical settings [34–36], but it remains unclear if these
effects vary depending on the presence or absence of
inflammation. Moreover, inflammation can also result
from oxidative stress [37], which highlights the role of
oxygen toxicity as risk factor for adverse neonatal
outcomes [31].

antenatal
steroids

chorio-
amnionitis

ventilationoxygen

systemic
steroids

retinoic
acid

surfactant

sepsisIUGR

stem cell-based
therapyPEEP

PPROM
bi

rt
h

caffeine nutrition
nutrition

PDA

pregnancy transition / resuscitation NICU

supplemental
oxygen

PIP / 
bagging

inhalative
drugs

pr
ot

ec
ti

on
/ r

ep
ai

r
in

ju
ry

/ 
st

re
ss

“BPD”

“healthy”

Fig. 1 Multiple factors influence lung development in preterm infants. Postnatally, both potentially protective and injurious factors are mainly
associated with therapeutic means. IUGR intra-uterine growth restriction, PPROM preterm premature rupture of membranes, PIP positive inspiratory
pressure, PEEP positive end-expiratory pressure, PDA persistent ductus arteriosus, NICU neonatal intensive care unit, BPD
bronchopulmonary dysplasia
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Postnatal interventions—oxygen
The fetus develops in a low oxygen environment, and
the arterial partial pressure of oxygen (PaO2) physiolo-
gically rises directly after birth [38]. This abrupt change
in oxygen content of blood and tissue may induce
physiological maturation of metabolic processes after
birth [39]. However, an excess supply of oxygen resulting
in hyperoxia might have detrimental effects on infants
born prematurely. Oxygen supplementation is one of the
most common therapeutic interventions in resuscitation
of newborns [40]. However, its historically generous use
in the delivery room has been abandoned in the last
years due to new evidence from clinical studies [41]. In
the ground breaking Resair 2 study by Saugstad et al.,
the authors showed that resuscitation of term babies
after asphyxia could efficiently be performed with room
air instead of 100 % oxygen [42].
In preterm infants, current guidelines advocate the use

of a mixture of air and oxygen according to the infants’
oxygen saturation (SpO2). These are based on the obser-
vation that an increase in oxygenation after birth is a
gradual process [43]. A recent meta-analysis of studies
comparing different initial fractions of oxygen (FiO2) in
delivery room stabilization and resuscitation of preterm
infants ≤32 weeks showed a trend towards a lower mor-
tality when the initial FiO2 was 0.21–0.30 [44]. Two
studies found a significant increase of markers of oxida-
tive stress in preterm infants resuscitated with 90–100 %
oxygen compared to 21 or 30 % [45, 46]. These findings
indicate a possible mechanism how supplemental oxygen
contributes to lung injury of preterm infants in the con-
text of prenatal abnormalities, variables like positive
pressure ventilation during transition and perinatal
resuscitation and postnatal insults [47].
Therefore, current guidelines recommend using an ini-

tial FiO2 of 0.21–0.30 and to subsequently titrate FiO2

according to the infant’s SpO2 measured by pulse oxim-
etry in order to avoid hyperoxia [48–50]. SpO2 measure-
ment in preterm infants within the first minutes of life is
feasible [51], and it is supposed to replace color as the
traditional parameter for oxygenation [49]. However,
aiming at variable SpO2 target values within the first
10 min of life is difficult, and large deviations from SpO2

targets during resuscitation of preterm infants have been
observed in clinical studies [52], suggesting that manual
FiO2 control in the delivery room is inadequate. A pos-
sible solution is the use of automated closed loop FiO2

control, which has been proven to efficiently keep in-
fants within a predefined SpO2 target in the NICU, using
various modes of ventilation, and using different algo-
rithms (as reviewed in [53]). Although automated FiO2

control has not yet been tested in the delivery room
setting in clinical trials [54], we could show in a lamb
model of preterm respiratory distress syndrome that

closed-loop FiO2 control is feasible during the transition
after birth and during surfactant replacement therapy
[55]. Moreover, automated FiO2 control during transi-
tion in the first 15 min of life resulted in less hyperoxia
in our model [55]. Automated FiO2 control might there-
fore become a key element in balancing oxygen supple-
mentation and in avoiding complications associated with
early oxygen over- or underexposure.

Mechanical ventilation as first or second hit
Oxygen therapy in the delivery room is regularly com-
bined with manual inflations (“bagging”), ventilatory sup-
port with continuous positive airway pressure (CPAP), or
mechanical ventilation. “Opening” the liquid-filled lung
directly after birth in order to increase inspiratory volume
and functional residual capacity (FRC) is a prerequis-
ite for sufficient gas exchange. However, this early
intervention can have lasting effects on the preterm lung.
Experimentally, bagging of preterm lambs compromised
the beneficial effect of surfactant replacement therapy
[56]. Sustained lung inflation (SLI) increased FRC [57] but
caused a modest increase of proinflammatory cytokines in
the lungs of preterm lambs [58]. In a recent clinical trial,
SLI did not decrease the occurrence of BPD in preterm in-
fants born between 25 and 28 weeks and 6 days compared
to a control group [59]. In this study, the need for mech-
anical ventilation within the first 3 days of life was de-
creased but not the overall need for respiratory support
[59]. Experimentally, mechanical ventilation of preterm
lambs increased inflammation and impaired developmen-
tal signaling in the lungs [60, 61]. However, mechanical
ventilation might interact with prenatal factors. Prolonged
mechanical ventilation increased the risk of BPD in a
clinical study, and this effect was stronger when chor-
ioamnionitis was present [11]. In contrast, antenatal
betamethasone decreased lung injury but not lung inflam-
mation in a preterm lamb model of resuscitation with
escalating tidal volumes [62]. Avoidance of mechanical
ventilation can be reached by utilizing CPAP with [63] or
without [64] surfactant replacement therapy. Recently
published data from the German neonatal network con-
firmed that surfactant replacement therapy in spontan-
eously breathing infants was associated with lower rates of
mechanical ventilation and BPD [65]. Understanding the
interaction between respiratory support and prenatally
acquired preconditions might further help to minimize
stress in the preterm lung.

Caffeine—early and late effects on the lung
In the context of hypoxia, apnea of prematurity is widely
recognized as a key problem in infants born prematurely.
It has been successfully treated in the last three decades
with methylxanthines, especially caffeine [66]. Caffeine is
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used both prophylactically and therapeutically, and a third
indication is weaning from an endotracheal tube [67].
Although earlier trials had raised concerns about un-

wanted side effects like increased oxygen consumption
and impaired weight gain [68], recent clinical trials
showed impressive short-term and long-term beneficial
effects of caffeine treatment in preterm infants [69]. In the
Caffeine for Apnea of Prematurity (CAP) trial, the dur-
ation of positive pressure ventilation was shortened and
supplemental oxygen could be stopped earlier in VLBW
infants receiving caffeine instead of placebo as secondary
outcome [67]. In the caffeine group, removal of endo-
tracheal tube was possible at an earlier gestational age,
and the need for postnatal steroids was significantly lower
[67]. In line with these findings, a Cochrane review de-
scribed less failure of extubation in infants receiving
prophylactic methylxanthines (odds ratio 0.48, 95 % CI,
0.32–0.71) [70].
More interestingly, the CAP trial could show that caf-

feine reduced BPD, defined as need for supplemental oxy-
gen at 36 weeks corrected gestational age, from 47 to 36 %
[67]. This effect is presumably linked to the shortened
duration of positive pressure respiratory support. How-
ever, a recent retrospective study revealed a strong cor-
relation between high serum levels of caffeine and a
decreased incidence of BPD in infants born ≤29 weeks
GA [71]. These findings might result from a dose depend-
ency of the beneficial effects of caffeine on lung function
parameters and respiratory muscle strength [72]. Alterna-
tively, preventive effect of caffeine for BPD might be
linked to the anti-inflammatory effects on cytokine pro-
files of preterm babies which have been described recently
[73], opening a promising field for future research.
Moreover, data from both the CAP trial and from retro-

spective cohort studies indicate how important timing of
the start of caffeine therapy might be. In a subgroup ana-
lysis of the CAP trial, infants in whom caffeine therapy
was initiated early, i.e., <3 days of age, had a significantly
lower postmenstrual age at last endotracheal intubation
and last positive pressure ventilation [74]. This suggests a
possible mechanism for the decrease in BPD rates in
infants receiving caffeine <3 days of age in two retrospect-
ive studies probably through less mechanical ventilation
[69, 75]. However, early respiratory improvement might
also be linked to additional therapeutic effects of caffeine.
Caffeine is a known inhibitor of phosphodiesterase, and
the consecutive bronchodilation by an increase of cyclic
AMP might support the infants’ respiration [76]. In
addition, experimental data suggest that caffeine amplifies
the positive effect of prenatal glucocorticosteroids on
surfactant-protein B expression, indicating a maturational
effect of caffeine on the preterm lung [77]. In vitro, an
additive effect on both transcription and translation of SP-
B was shown [78]. This effect was confirmed in in vivo

studies in spontaneously breathing preterm lambs born to
ewes that received glucocorticoids. The preterm lambs re-
ceived immediately after birth intravenous caffeine citrate
and were maintained on CPAP. At the end of the study,
the secreted SP-B in the bronchoalveolar lavage was sev-
eral fold higher than in controls without caffeine [77].
However, although these findings suggest caffeine
administration within the first hours of life or even in
the delivery room as useful, the results of currently on-
going clinical trials [79] are needed to develop future
recommendations.

Pharmacological support of lung recovery and
development—vitamin A
Drugs for postnatal modulation of lung injury have been
extensively studied in the past. One of the most promising
substances is vitamin A. Vitamin A is crucial for fetal lung
development and maturation and prerequisite for ad-
equate lung development [80, 81]. In preterm infants, vita-
min A availability is lower than in term neonates [82].
Clinically, vitamin A supplementation reduces mortality
and oxygen requirement at 36 weeks and is therefore con-
sidered as a promising pharmacological intervention in
BPD prevention [83]. Ongoing clinical trials try to increase
availability of this therapy by testing alternative modes of
delivery [84]. In animal models, various mechanisms of
lung protection by vitamin A as decreased lung fibrosis
and increased lung elastin expression have been described
[85, 86]. However, vitamin A is another example how
therapeutic interventions depend on prenatal conditions.
In a sheep model, intraamniotic exposure to inflam-
mation reduced vitamin A in the lung [87], indicating
that therapeutic benefit depends on the presence or
absence of prenatal inflammation.

Summary
The developing lung of the preterm infant is pre-, peri-,
and postnatally exposed to different stress factors, and
their impact depends on interaction between different in-
sults and interventions. Prenatal exposure to chorioam-
nionitis preconditions the lung to postnatal stressors, by,
e.g., immunological compromise and early disturbance of
pulmonary developmental pathways. Understanding the
interaction between two or more “hits” is a prerequisite
for understanding mechanisms of permanent lung injury
in preterm infants and for individualization of therapeutic
interventions in order to promote recovery from the
stressors. There is, e.g., evidence that maternal glucocorti-
coids should be given to all women at risk of impending
preterm birth [18], even in the presence of clinical chor-
ioamnionitis. Experimentally, the timing of steroid treat-
ment in relation to the onset or the already existing
chorioamnionitis made a difference. Information on the
exposure of the baby to chorioamnionitis may therefore
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be of interest for clinical decision-making. Since chor-
ioamnionitis is clinically silent in most instances, and
histologic analysis of the placenta takes considerably long,
a prediction model based on clinical parameters which are
available upon delivery might support clinical decision-
making [88]. Beside inflammation, intrauterine growth re-
striction (IUGR) has been linked to fetal lung injury and
poor development [89], and infants suffering from IUGR
had an increased BPD risk in a cohort study [90]. The
genetic background might be another factor priming the
lung towards temporary or permanent lung injury [91].
Therefore, detailed knowledge of the prenatal situation is
absolutely essential to predict postnatal lung development.
Consequently, postnatal interventions need to be tai-

lored individually to help the lung recover from early
stress without causing more interventional stress than
absolutely necessary. These might include early medica-
tion and oxygen treatment as discussed above but also
other factors like adequate functional residual capacity
(FRC) [92] and perinatal procedures like delayed cord
clamping [93] and less invasive surfactant therapy [65]
or the choice of a surfactant resistant to inactivation
[94]. The mechanisms behind the influence of nutrition
like the positive effect of exclusive breast feeding on
BPD incidence [95] need to be further elucidated, and
the full potential of known pharmacologic interventions
like vitamin A supplementation needs to be explored.
The knowledge of the combined effects of prenatal situ-
ation and postnatal interventions can help to further
optimize potentially stressful therapeutic interventions
and support lung recovery of preterm infants based on
biology and increasing clinical evidence.
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