
pathogens

Article

Prevalence of Various Vaccine Candidate Proteins in
Clinical Isolates of Streptococcus pneumoniae:
Characterization of the Novel Pht Fusion Proteins
PhtA/B and PhtA/D

Mitsuyo Kawaguchiya 1,*, Noriko Urushibara 1 , Meiji Soe Aung 1, Masaaki Shinagawa 2,
Satoshi Takahashi 2 and Nobumichi Kobayashi 1

1 Department of Hygiene, Sapporo Medical University School of Medicine, Hokkaido,
Sapporo 060-8556, Japan; noriko-u@sapmed.ac.jp (N.U.); meijisoeaung@sapmed.ac.jp (M.S.A.);
nkobayas@sapmed.ac.jp (N.K.)

2 Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine,
Hokkaido, Sapporo 060-8556, Japan; shinagawa@sapmed.ac.jp (M.S.); stakahas@sapmed.ac.jp (S.T.)

* Correspondence: kawaguchiya@sapmed.ac.jp; Tel.: +81-11-611-2111

Received: 16 August 2019; Accepted: 23 September 2019; Published: 24 September 2019
����������
�������

Abstract: Pneumococcal proteins unrelated to serotypes are considered to be candidates of antigens
in next-generation vaccines. In the present study, the prevalence of vaccine candidate protein genes,
along with serotypes and antimicrobial resistance determinants, was investigated in a total of 57
isolates obtained from a tertiary care hospital in Japan. All of the pediatric isolates and 76.6% of
the adult isolates did not belong to PCV13 (a 13-valent pneumococcal conjugate vaccine) serotypes,
and 70.2% of all isolates showed multidrug resistance. All of the isolates had ply, pavA, nanA, and
nanB, and high prevalence was noted for the pspA and pspC genes (96.5% and 78.9%, respectively).
Detection rates for the pneumococcal histidine triad protein (Pht) genes phtA, phtB, phtD, and phtE
were 49.1%, 26.3%, 61.4%, and 100%, respectively. Two fusion-type genes, phtA/B and phtA/D, were
identified, with a prevalence of 36.9% and 14.0%, respectively. These fusion types showed 78.1–90.0%
nucleotide sequence identity with phtA, phtB, and phtD. The most prevalent pht profile was phtA +

phtD + phtE (26.3%), followed by phtA/B + phtE (19.3%) and phtA/B + phtD + phtE (17.5%), while pht
profiles including phtD and/or phtA/phtD were found in 71.9% of isolates. The present study revealed
the presence of two fusion types of Pht and their unexpectedly high prevalence. These fusion types,
as well as PhtA and PhtB, contained sequences similar to the B cell epitopes that have been previously
reported for PhtD.

Keywords: Streptococcus pneumoniae; serotype; vaccine candidate proteins; pneumococcal histidine
triad protein (Pht); Pht fusion proteins

1. Introduction

Streptococcus pneumoniae (pneumococcus) occasionally causes both invasive and noninvasive
pneumococcal disease (IPD and non-IPD, respectively), such as sepsis, meningitis, and
community-acquired pneumonia [1], while this bacterium colonizes and persists on the human
nasopharynx [2]. Pneumococcal diseases are considered preventable by vaccine. The capsular
polysaccharide (CPS) is a principal virulence factor of S. pneumoniae and an essential component
of commercially available vaccines against pneumococcal infections [3]. Currently, two classes of
pneumococcal vaccines, a 23-valent pneumococcal polysaccharide vaccine (PPSV23) and 7-, 10-, and
13-valent pneumococcal conjugate vaccines (PCVs), both of which contain CPS as an immunogen, have
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been introduced in many countries. The unconjugated PPSV23 is widely offered to only adults because
of poorer immunogenicity in children under 2 years of age [4,5], whereas the recently approved PCVs
have been used in routine childhood vaccination programs across the world since 2000 [6].

Routine immunization with PCVs in children has greatly reduced the infections caused by
pneumococci through the serotypes included in the vaccine (vaccine serotypes). However, following
the introduction of PCV7 and PCV13 in children, the isolation rate of pneumococci with nonvaccine
types increased globally as a result of the vaccine selection pressure, and recent studies in different
countries have reported the occurrence of immediate chronological changes in serotypes [7–9]. In
Japan, PCV7 was introduced in 2010 and was replaced with PCV13 in 2013. Our previous surveillance
studies demonstrated that the rate of non-PCV13 serotypes in pediatric isolates increased from 39.7% in
2011 to 87.9% in 2016 [10,11]. The high prevalence rate of non-PCV13 serotypes was also documented
in pediatric carriage isolates in recent studies [12,13]. Moreover, the widespread implementation
of PCVs in children has been associated with the emergence and spread of drug-resistant clones
with nonvaccine serotypes [14–16], posing a major public health concern. The currently available
pneumococcal vaccines show protection against infections solely due to serotypes included in the
vaccine, i.e., vaccine serotype-specific immunity, which is considered to be a limitation of the vaccines.
For these reasons, the development of new pneumococcal vaccines in which the protective effect does
not depend on serotypes has been anticipated.

Multiple pneumococcal proteins have been comparatively well investigated as promising targets
for future non-serotype-specific protein-based pneumococcal vaccines, such as pneumococcal surface
protein A (PspA) [17,18], pneumococcal surface protein C (PspC) [19,20], pneumococcal choline-binding
protein (PcpA) [21], three neuraminidases (NanA, NanB, and NanC) [22,23], pneumolysin (Ply) [24],
and four pneumococcal histidine triad proteins (PhtA, PhtB, PhtD, and PhtE) [25–28]. At present,
an investigational pneumococcal vaccine is undergoing Phase I/II clinical trials in infants [29,30],
children [31], and adults [32]. In these studies, two pneumococcal proteins, Ply toxoid (dPly) and
PhtD, are included in the vaccines. A protein-based pneumococcal vaccine containing PhtD–dPly
was shown to induce protection against pneumococcal pneumonia in a rhesus macaque study [33].
All four Pht proteins were exposed on the cell surface of pneumococcus and were characterized
by histidine triad motifs in their amino acid sequences [34]. Among them, PhtD was described to
be the least genetically variable [35] and was shown to induce an immune response in adults and
infants [36], with immunodominant B cell epitopes being identified [27]. In addition to the PhtD
protein, previous studies have indicated the presence of hybrid types of Pht in pneumococcus between
PhtA and PhtB and between PhtA and PhtD [34,35]. However, genetic organization and sequences of
the Pht hybrid/fusion types in S. pneumoniae have not yet been clearly described, and the prevalence of
the hybrid types among clinical isolates remains to be determined.

The purpose of the present study was to investigate the prevalence of vaccine candidate protein
genes in clinical isolates of S. pneumoniae collected from IPD and non-IPD patients, along with serotypes
and antimicrobial resistance. Particularly, we focused on an identification and genetic analysis of the
Pht fusion types that have not been well characterized, as well as the known Pht types. Consequently,
we reveal the existence of two unique fusion types (PhtA/B and PhtA/D) in various serotypes of S.
pneumoniae. The prevalence and profiles of authentic Pht and Pht fusion types in the clinical isolates
are described in parallel.
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2. Results

2.1. Serotypes and Sequence Types (STs) of Pneumococcal Isolates

For the 57 isolates analyzed, 21 different serotypes and 33 different STs, including two new STs,
were identified. Serotypes and STs of all the isolates are listed in Table 1 with the designation of
Pneumococcal Molecular Epidemiology Network (PMEN) international clones. All of the pediatric
isolates belonged to non-PCV13 serotypes, i.e., 15B (ST199; Netherlands15B-37 PMEN clone), 23A
(ST338; Colmbia23F-26 PMEN clone or its single-locus variant (SLV)), 24F (ST2572 or its SLV), or 35B
(ST558, ST2755). Among isolates from adults, the three most prevalent serotypes were 15A (mostly
ST63; Sweden15A-25 PMEN clone or its SLV, ST292 SLV), 3 (mostly ST180; Netherlands3-31 PMEN
clone), and 35B (ST558, ST2755). Serotypes covered by PCV13 and PPSV23 in all adults were 23.4%
(n = 11/47) and 44.7% (n = 21/47), respectively.
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Table 1. Serotypes and multilocus sequence types of all the isolates analyzed in this study.

Vaccine Type Serotype Children Adults Total ST c (No. of
Isolates) MLST Allelic Profile d Remarks

n = 10 n = 47 n = 57 (%) (PMEN Clone/Related ST) e

PCV13 a type

3 0 5 5 (8.8) 180 (4) 7-15-2-10-6-1-22 Netherlands3-31
2331 (1) 10-16-150-1-17-1-29

6A 0 2 2 (3.5) 3113 (1) 8-8-4-16-77-1-68
7836 (1) 15-29-4-21-6-1-14

6B 0 2 2 (3.5) 14,601 (1) 2-29-4-1-6-121-11 SLV of ST5232
1092 (1) 2-13-2-1-3-19-14

19F 0 2 2 (3.5) 257 (1) 22-16-19-15-6-20-14 DLV of ST236/Taiwan19F-14
236 (1) 15-16-19-15-6-20-26 Taiwan19F-14

PPSV23 b Type
(Except PCV13 Type)

10A 1 1 2 (3.5) 5236 * (2) 7-12-1-1-10-1-11 DLV of
ST113/Netherlands18C-36

11A/11D 1 1 2 (3.5) 99 (3) 5-8-4-16-6-1-31
12F 0 1 1 (1.8) 4846 (1) 12-32-111-1-13-48-6
14 0 2 2 (3.5) 2922 (2) 1-5-4-5-5-20-8 SLV of ST9/England14-9

15B 2 2 4 (7.0) 199 (4) 8-13-14-4-17-4-14 Netherlands15B-37
22F/22A 0 4 4 (7.0) 433 * (4) 1-1-4-1-18-58-17

33F 0 1 1 (1.8) 717 (1) 5-35-29-1-45-39-18

Non-Vaccine Type

6C 0 5 5 (8.8) 282 (1) 30-4-2-4-4-1-1 SLV of ST81/Spain23F-1
5832 (4) 7-9-4-16-1-6-384

6E 0 1 1 (1.8) 90 (1) 5-6-1-2-6-3-4 Spain6B-2
15A 0 8 8 (14.0) 63 * (5) 2-5-36-12-17-21-14 Sweden15A-25

13,065 * (1) 2-5-36-12-17-21-384 SLV of ST63/Sweden15A-25
13,068 (1) 2-5-36-12-17-777-14 SLV of ST63/Sweden15A-25
14,602 (1) 7-8-8-8-6-28-664 SLV of ST292

15C 0 2 2 (3.5) 199 (2) 8-13-14-4-17-4-14 Netherlands15B-37
23A 2 0 2 (3.5) 338 (1) 7-13-8-6-1-6-8 Colombia23F-26

8340 (1) 7-367-8-6-1-337-8 DLV of ST338
24F 2 0 2 (3.5) 2572 (1) 7-75-9-6-25-6-14

5496 (1) 7-257-9-6-25-6-14
31 0 1 1 (1.8) 11,184 (1) 1-2-461-16-15-155-18
34 0 2 2 (3.5) 3116 (3) 10-8-6-1-9-1-279

35B 2 3 5 (8.8) 558 (3) 18-12-4-44-14-77-97 SLV of ST377/Utah35B-24
2755 (2) 10-12-2-1-152-28-14

37 0 2 2 (3.5) 447 (1) 29-33-19-1-36-22-31
7970 (1) 29-33-19-1-36-482-31 SLV of ST447

a 13-valent pneumococcal conjugate vaccines (PCV13): 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19F, 19A, and 23F. b 23-valent pneumococcal polysaccharide vaccine (PPSV23): 1, 2, 3, 4, 5, 6B, 7F, 8,
9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, and 33F. c New sequence types (STs) identified in this study are shown in bold, and four isolates from blood are show in bold
with asterisk. d MLST, multilocus sequence typing. Gene locus numbers that are different from those of Pneumococcal Molecular Epidemiology Network (PMEN) clones or commn STs
(right column) are shown in bold with underline. e SLV, single locus variant; DLV, double locus variant.
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2.2. Detection of Drug Resistance Genes and Antimicrobial Susceptibility

The antimicrobial susceptibility of all the isolates with individual serotypes is shown in the
Supplementary Materials, Table S1. The highest nonsusceptibility rates were observed for erythromycin
(91.2%) and tetracycline (86.0), which corresponded to the high prevalence of resistance genes
to macrolides (erm(B) and/or mef (A/E)) and tetracycline (tetM) (94.7% and 93.0%, respectively).
Nonsusceptibility to penicillin was detected in 38.9% of isolates, among which two isolates (serotypes
6C and 15A) were resistant to penicillin. All of the isolates showing nonsusceptibility to penicillin had
the penicillin-binding protein (PBP) genotype penicillin-resistant S. pneumoniae (gPRSP) (alterations in
three genes: pbp1a, pbp2x, and pbp2b). The prevalence of the multidrug resistance (MDR) phenotype
(defined as resistance to three or more different classes of antibiotics) was 70.2%. Three MDR isolates
(5.3%, 3/57) belonging to serotypes 14 (n = 1) and 15A (n = 2) were resistant to levofloxacin, which
is associated with mutations in the quinolone resistance-determining region (QRDR) (positions of
mutations are shown in the Supplementary Materials, Table S1, footnote).

2.3. Detection of the Vaccine Candidate Pneumococcal Protein Genes and the Novel Pht Fusion Proteins

The prevalence of various pneumococcal proteins among individual serotypes is summarized in
Table 2. All of the isolates carried the ply and pavA genes. The prevalence of the pspA and pspC genes
was 96.5% and 78.9%, respectively. Among the three nan genes, nanA and nanB were detected in all of
the isolates, while nanC was in 52.6% of the isolates. Detection rates for phtA, phtB, phtD, and phtE
were 49.1%, 26.3%, 61.4%, and 100%, respectively. In addition to the four pht genes, two fusion-type
genes, phtA/B and phtA/D, were identified, with the prevalence at 36.9% and 14.0%, respectively. Two
serotype 15B isolates had both phtD and phtA/D.
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Table 2. Prevalence of pneumococcal protein genes in all isolates among individual serotypes.

No. of Isolates with Pneumococcal Protein Gene

Serotype pspAa pspC pht nan Others

(No. of Isolates) fam1/fam2/fam3 pspC pspC.4 phtA phtB phtD phtE phtA/Bb phtA/Db nanA nanB nanC pcpA psrp ply pavA

PCV13 Serotype
3 (5) 4/1/0 5 0 1 0 1 5 4 0 5 5 1 1 1 5 5

6A (2) 1/1/0 1 1 1 1 1 2 1 0 2 2 0 2 1 2 2
19F (2) 1/2/0 2 2 0 1 0 2 1 1 2 2 0 2 0 2 2
6B (2) 1/1/0 0 0 0 0 2 2 2 0 2 2 1 2 2 2 2

PPSV23 Serotype (Except PCV13 Type)
10A (2) 2/0/0 2 0 2 0 2 2 0 0 2 2 2 2 0 2 2

11A/11D (2) 0/2/0 2 0 2 0 2 2 0 0 2 2 1 2 0 2 2
12F (1) 0/1/0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1
14 (2) 2/0/0 2 0 0 0 2 2 2 0 2 2 2 2 2 2 2

15B (4) 0/4/0 3 2 0 0 2 4 0 4 4 4 4 4 4 4 4
22F/22A (4) 4/0/0 4 4 0 0 0 4 4 0 4 4 0 4 0 4 4

33F (1) 1/0/0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1
Non-Vaccine Serotype

6C (5) 4/1/0 4 0 4 4 5 5 1 0 5 5 5 5 1 5 5
6E (1) 1/0/0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1

15A (8) 0/6/0 2 0 7 0 8 8 1 0 8 8 7 7 7 8 8
15C (2) 0/2/0 2 2 0 0 0 2 0 2 2 2 2 2 2 2 2
23A (2) 2/0/0 2 0 2 2 2 2 0 0 2 2 2 2 0 2 2
24F (2) 2/0/0 2 0 2 0 2 2 0 0 2 2 0 2 0 2 2
31 (1) 1/0/0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1
34 (2) 2/0/0 2 0 1 1 0 2 1 0 2 2 0 2 2 2 2

35B (5) 5/0/0 5 3 1 1 4 5 3 1 5 5 0 5 1 5 5
37 (2) 0/0/2 2 0 2 2 1 2 0 0 2 2 0 2 0 2 2

Total (57) 33/20/2 45 15 28 15 35 57 21 8 57 57 30 52 24 57 57
Positive Rate; % 57.9/35.1/3.5 78.9 26.3 49.1 26.3 61.4 100 36.9 14.0 100 100 52.6 91.2 42.1 100 100

a Family type of PspA: fam1, family1; fam2, family 2; fam3, family 3. b Fusion type of pht genes: phtA/B, phtA and phtB; phtA/D, phtA and phtD.
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2.4. Prevalence of the Pht Pattern and Sequence Analysis of the Pht Fusion Types

Pht profiles are summarized in Table 3. The most prevalent pht pattern was phtA + phtD + phtE
(26.3%), followed by phtA/B + phtE (19.3%), phtA/B + phtD + phtE (17.5%), and phtA + phtB + phtD
+ phtE (14.0%). Pht gene profiles, including pht fusion type, were detected in 50.9% of all isolates.
Structural organizations of the fusion types PhtA/B and PhtA/D (compared to PhtA, PhtB, or PhtD)
are schematically represented in Figures 1 and 2, respectively. The sequence alignment of these genes
is shown in the Supplementary Materials, Figures S1 and S2. These fusion-type Pht proteins were
constituted by the N-terminal half of the phtA-like region and the phtB- or phtD-like region in the
C-terminal side. The phtA-like region of phtA/B from the four isolates (aa.1–387) had 94.5–97.1%
sequence identity with phtA in a reference strain (AF291695) and 76.7–77.9% identity with phtB in a
reference strain (AF318954). In contrast, the phtB-like region (aa.387–) of phtA/B showed 99.3–99.6%
identity with the phtB sequence. Similarly, phtA/D of the four representative isolates showed 93.3–97.0%
identity with phtA (AF291695) in the phtA-like region and 97.9–99.7% identity with phtD (AF318955
and KP127692) in the phtD-like region. The nucleotide sequence identity within phtA/B was 96.6–98.4%,
and similarly, 97.6–97.9% identity was found within phtA/D (Supplementary Materials, Table S2). In
the present study, nucleotide sequences of phtB were determined for five isolates (Supplementary
Materials, Table S3), which showed 97.6–99.4% identity with the phtB gene reference strain AF318954.
In addition, phtA had 69.2–70.5% identity with phtB and phtD; 92.6–93.0% identity was found between
phtB and phtD; and phtA/B and phtA/D had 78.1–90.0% identity with phtA, phtB, and phtD.

Table 3. Pht profiles of all the Streptococcus pneumoniae isolates.

Profile of pht Genes No. of Isolates (%) Serotypes (No. of Isolates)

phtA + phtB + phtE 5 (8.8) 6E (1), 31 (1), 33F (1), 34 (1), 37 (1)
phtA + phtD + phtE 15 (26.3) 3 (1), 10A (2), 11A/11D (2), 15A (7), 24F (2), 35B (1)

phtA + phtB + phtD + phtE 8 (14.0) 6A (1), 6C (4), 23A (2), 37 (1)

phtA/B a + phtE 11 (19.3) 19F (1), 6A (1), 3 (4), 34 (1), 22F (4)
phtA/B a + phtD + phtE 10 (17.5) 6B (2), 6C (1), 12F (1), 14 (2), 15A (1), 35B (3)

phtA/D b + phtE 4 (7.0) 15B (2), 15C (2)
phtA/D b + phtB + phtE 2 (3.5) 19F (1), 35B (1)
phtA/D b + phtD + phtE 2 (3.5) 15B (2)

Profile of the pht Fusion Type 29 (50.9)
a phtA/B, fusion type of phtA and phtB. b phtA/D, fusion type of phtA and phtD.

Pathogens 2019, 8, 162 7 of 14 

 

 
Figure 1. Genetic structure of the phtA/B (fusion type of phtA and phtB) gene identified in the present 
study and phtA and phtB in reference strains (GenBank Accession Nos. AF291695 and AF318954, 
respectively). The serotype of each isolate is indicated in parentheses. The phtA/phtA-like and 
phtB/phtB-like sequences are shown in orange and blue, respectively. Nucleotide (nt.) and amino acid 
(aa.) sequence identities of phtA-like and phtB-like regions of phtA/B gene with those of phtA and phtB 
genes are shown in squares with dotted lines. 

 

Figure 2. Genetic structure of the phtA/D (fusion type of phtA and phtD) gene identified in the present 
study and phtA and phtD in reference strains (GenBank Accession Nos. AF291695, AF318954, and 
KP127692, respectively). The serotype of each isolate is indicated in parentheses. The phtA/phtA-like 
and phtD/phtD-like sequences are shown in orange and green, respectively. Nucleotide (nt.) and 
amino acid (aa.) sequence identities of phtA-like and phtD-like regions of phtA/D gene with those of 
phtA and phtD genes are shown in squares with dotted lines. 

3. Discussion 

In the present study, we investigated the prevalence of 15 genes in promising vaccine candidate 
proteins and revealed the existence of two Pht fusion types besides the four known Pht proteins in 
pneumococcus. To our knowledge, this is the first report to show the prevalence of the fusion types 
PhtA/B and PhtA/D in various serotypes of pneumococcal isolates.  

At present, for protein-based vaccines, pneumococcal proteins such as PhtD [37], dPly [38], PspA 
[39], and PcpA [40] have been proven to show effective protection against pneumococcal diseases in 
studies on human subjects. Further, a pneumococcal protein-based vaccine containing the PhtD 
protein and/or dPly has been investigated in a Phase I/II randomized clinical study [29–32]. In our 
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Figure 1. Genetic structure of the phtA/B (fusion type of phtA and phtB) gene identified in the present
study and phtA and phtB in reference strains (GenBank Accession Nos. AF291695 and AF318954,
respectively). The serotype of each isolate is indicated in parentheses. The phtA/phtA-like and
phtB/phtB-like sequences are shown in orange and blue, respectively. Nucleotide (nt.) and amino acid
(aa.) sequence identities of phtA-like and phtB-like regions of phtA/B gene with those of phtA and phtB
genes are shown in squares with dotted lines.
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Figure 2. Genetic structure of the phtA/D (fusion type of phtA and phtD) gene identified in the present
study and phtA and phtD in reference strains (GenBank Accession Nos. AF291695, AF318954, and
KP127692, respectively). The serotype of each isolate is indicated in parentheses. The phtA/phtA-like
and phtD/phtD-like sequences are shown in orange and green, respectively. Nucleotide (nt.) and amino
acid (aa.) sequence identities of phtA-like and phtD-like regions of phtA/D gene with those of phtA and
phtD genes are shown in squares with dotted lines.

2.5. Sequences of B Cell Epitopes in PhtA, PhtB, PhtD, and Pht Fusion Types

Immunodominant B cell epitopes in PhtD have been identified by Lagousi and coworkers [27]
and have been mapped into three regions, i.e., amino acids 88–107 (epitope I, pep11), 172–191 (epitope
II, pep17), and 200–219 (epitope III, pep19). The alignment of Pht amino acid sequences indicated
that the three epitopes were highly conserved in different Pht proteins, including the fusion types
(Supplementary Materials, Figures S1–S3). In particular, epitopes I and III showed almost identical
sequences, with only a few substitutions with similar amino acids.

3. Discussion

In the present study, we investigated the prevalence of 15 genes in promising vaccine candidate
proteins and revealed the existence of two Pht fusion types besides the four known Pht proteins in
pneumococcus. To our knowledge, this is the first report to show the prevalence of the fusion types
PhtA/B and PhtA/D in various serotypes of pneumococcal isolates.

At present, for protein-based vaccines, pneumococcal proteins such as PhtD [37], dPly [38],
PspA [39], and PcpA [40] have been proven to show effective protection against pneumococcal diseases
in studies on human subjects. Further, a pneumococcal protein-based vaccine containing the PhtD
protein and/or dPly has been investigated in a Phase I/II randomized clinical study [29–32]. In our
present study, while the prevalence of ply was high (100%), phtD was detected in 61.4% of all isolates.
A similar prevalence of phtD (61.0%) was reported in pneumococcal isolates from meningitis in
France [41]. In contrast, Rioux et al. reported a high prevalence of phtD (100%) in the pneumococcal
strains analyzed [35]. In the present study, we identified the Pht fusion types in clinical isolates of
pneumococcus, which were classified into two distinct types, PhtA/B and PhtA/D. The prevalence of
phtA/B and phtA/D was 36.9% and 14.0%, respectively, and phtD and/or phtA/D were found in 71.9%
of all the isolates. Although the number of isolates analyzed in the present study was not sufficient,
the prevalence of phtD and/or phtA/D was considered to be high (>70%). The prevalence of phtD
(phtA/D) may vary depending on study subjects (e.g., serotypes/genotypes of the clinical isolates,
country, infection types) and will be further clarified if a detection method for the fusion type phtA/D
is established.
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Although only two studies have described the hybrid/fusion types of Pht in pneumococcus to
date [34,35], their sequence data have not yet been published. In our present study, sequences and
genetic organizations of the hybrid types of pht genes were revealed for the first time, and these were
found to be distributed to half of the isolates, including 13 different serotypes. Furthermore, in a
BLAST search, we found that the sequences of phtA/B (strain SP224, serotype 6B) and phtA/D (strain
SP284, serotype 35B) in the present study were similar to those in the S. pneumoniae complete genome of
strain G54 (serotype 19F, GenBank Accession No. CP001015) (99.2% identity) [42] and strain Sp99_4038
(serotype 3, GenBank Accession No. FQ312041) (98.4% identity) [43], respectively. These findings
suggest that the fusion types of Pht may be commonly distributed to clinical isolates of pneumococci
with various serotypes.

Adamou et al. first reported pneumococcal pht genes [44] and described PCR primers to detect
phtA, phtB, phtD, and phtE, which were used for their detection in a previous study [41]. However,
hybrid types are not detected by uniplex PCR with these primers, and it is also possible that the hybrid
types may be misclassified as phtA, phtB, or phtD by nonspecific PCR amplification due to sequence
diversity in the pht genes. In contrast, there have been few studies that have determined full-length
pht genes that determine Pht types. These may be possible reasons that fusion-type Pht has been
rarely reported.

The most significant finding in the present study is that the fusion types PhtA/B and PhtA/D had
almost identical sequences to B cell epitopes that have been reported for PhtD previously [27], despite
overall sequence diversity in Pht. This finding suggests that S. pneumoniae with the fusion type Pht
may also be recognized by antibodies to PhtD. These B cell epitopes of PhtD are also conserved in
PhtA and PhtB [27]. In the present study, 26.3% of isolates (n = 15) had only fusion-type pht genes
(phtA/B or phtA/D), except for phtE. These isolates could be judged as negative for phtA, phtB, and phtD
by using the previously reported PCR scheme [41] as described above, and therefore these isolates are
not regarded as being protected by an immune response to PhtD. However, our present study revealed
that all of the S. pneumoniae isolates examined (belonging to various serotypes) possessed one or more
of phtA, phtB, phtD, phtA/B, or phtA/D. This finding may suggest the possibility that PhtD is useful as a
broadly protective pneumococcal vaccine.

In the present study, the most common serotypes were 15A, 3, 6C, and 35B. The prevalence of MDR
was 70.2%, and high rates of nonsusceptibility to penicillin were notable for non-PCV13 serotypes 6C,
15A, and 35B. In studies in the United Kingdom [15] and Germany [14], an increase of MDR serotype
15A was observed in the PCV vaccination era, and the major MDR serotypes 15A, 6C, and 35B were
noted in the USA [45]. Further, in Canada, the high prevalence has been reported for MDR serotypes
15A and 35B, which are related to the Sweden15A-25 PMEN clone and the Utah35B-24 PMEN clone,
respectively [15]. The recent trends from various countries were also observed in our present study in
Japan, suggesting concerns about the dissemination of MDR clones with non-PCV13 serotypes. Taken
together, the worldwide spread of non-PCV13 serotypes with multidrug resistance may lead to a limit
in the effectiveness of antimicrobial therapy and current vaccination; thus, the development of novel
effective vaccines that are irrespective of prevailing serotypes is anticipated.

The limitations of this study were its small sample size and the fact that most isolates were
collected from noninvasive infections or colonization in a single hospital. PhtD is one of the promising
vaccine candidate proteins and has been one of the most well studied [25,34,36,37]. In this regard, for
basic information, further epidemiological studies are necessary on the prevalence of pneumococcal
proteins in clinical isolates, especially Pht proteins, in various regions and countries.

4. Materials and Methods

4.1. Pneumococcal Isolates

From March 2016 to February 2018, 57 nonduplicate S. pneumoniae clinical isolates from consecutive
patients with pneumococcal diseases (either invasive (four isolates from blood) or noninvasive (53



Pathogens 2019, 8, 162 10 of 15

isolates from sputum, nasal discharges, or other nonsterile sites) infections) were collected at the Sapporo
Medical University Hospital, Hokkaido, on the northern main island of Japan. Among the isolates
studied, 10 and 47 isolates were obtained from children (age < 16 years) and adults (age ≥ 16 years),
respectively, and the male/female ratio was 1.1 (27/25). S. pneumoniae characteristics were identified
by an automated bacterial identification and susceptibility testing system (MicroScan®WalkAway 96
plus system MicroScan; SIEMENS Healthcare Diagnostics) and were confirmed by the detection of
the lytA gene using PCR, as described previously [46]. Isolates were stored in a Microbank (Pro-lab
Diagnostics, Richmond Hill, Canada) at −80 ◦C. Frozen isolates were inoculated onto a blood agar
base supplemented with 5% sheep blood (Nippon Becton Dickinson) and were incubated at 37 ◦C with
5% CO2 for 24 h before further analysis.

In the present study, no human participants were involved directly. Hence, human ethics clearance
was not required. We analyzed bacterial isolates as study subjects, which had already been isolated
from clinical samples through routine bacteriological examination in our university hospital.

4.2. Total DNA Extraction and Sequencing

Genomic DNA was extracted from each isolate as described preciously [47] and was used as a
template in all PCR reactions. For determination of the nucleotide sequence, the purified PCR products
were sequenced using a BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster
City, CA, USA) on an automated DNA sequencer (ABI PRISM 3130).

4.3. Serotyping, Virulence Gene Detection, and Multilocus Sequence Typing (MLST)

All pneumococcal isolates were subjected to serotyping, virulence gene identification, and
genotyping through an MLST scheme. The serotyping of pneumococcal isolates was performed
by PCR-based deduction protocols [48] with serogroup/serotype-specific primers (described on the
CDC website (http://www.cdc.gov/streplab/pcr.html)). After the PCRs, additional subtyping was
performed by PCR-based sequencing methods, as described in our previous studies [11,49–52].
Fourteen virulence-associated genes, pht (A, B, D, and E), pspA (Family 1, 2, or 3), pspC, pspC.4, nan
(A, B, and C), pcpA, psrp, ply, and pavA, were examined by uniplex PCR with the specific primers
reported previously [34,41]. MLST was performed as described on the PubMLST website (http:
//pubmlst.org/spneumoniae) with modified primers (http://www.cdc.gov/streplab/alt-mlst-primers.
html). Subsequently, the obtained STs were compared to Pneumococcal Molecular Epidemiology
Network (PMEN) international clones (http://www.sph.emory.edu/PMEN). Allelic numbers/locus
sequences of untypable STs were submitted to the PubMLST database curator for assignment of
new STs.

4.4. Antimicrobial Resistance Determinants

The minimum inhibitory concentrations (MICs) of all isolates against 10 antimicrobial
agents (penicillin (PEN), erythromycin (ERY), tetracycline (TET), clindamycin (CLI),
trimethoprim-sulfamethoxazole (SXT), ceftriaxone (CRO), cefaclor (CEC), imipenem (IPM), levofloxacin
(LVX), and vancomycin (VAN)) were measured through the broth microdilution method using a
Dry Plate (Eiken, Tokyo, Japan) as described previously [49] and were interpreted as susceptible (S),
intermediate (I), or resistant (R) according to Clinical and Laboratory Standards Institute guidelines
(CLSI 2015). The CLSI provides breakpoints as follows: PEN (I = 0.12–1 µg/mL, R ≥ 2 µg/mL), ERY (I
= 0.5 µg/mL, R ≥ 1 µg/mL), TET (I = 2 µg/mL, R ≥ 4 µg/mL), CLI (I = 0.5 µg/mL, R ≥ 1 µg/mL), SXT
(I = 1/19–2/38 µg/mL, R ≥ 4/76 µg/mL), CRO (I = 2 µg/mL, R ≥ 4 µg/mL), CEC (I = 2 µg/mL, R ≥ 4
µg/mL), IPM (I = 0.25–0.5 µg/mL, R ≥ 1 µg/mL), LVX (I = 4 µg/mL, R ≥ 8 µg/mL), and VAN (S ≤ 1
µg/mL). Multidrug resistance (MDR) was defined as resistance to three or more different antimicrobial
agent classes (penicillin resistance was defined using the CLSI breakpoint for oral penicillin V, MIC ≥
2 µg /mL) [53,54].

http://www.cdc.gov/streplab/pcr.html
http://pubmlst.org/spneumoniae
http://pubmlst.org/spneumoniae
http://www.cdc.gov/streplab/alt-mlst-primers.html
http://www.cdc.gov/streplab/alt-mlst-primers.html
http://www.sph.emory.edu/PMEN
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For all isolates, alterations of the PBP genes (pbp1a, pbp2x, and pbp2b) and the presence of
macrolide (erm(B), mef (A/E))- and tetracycline (tetM)- resistant genes were confirmed by a PCR or
multiplex PCR assay [46,55,56]. For three isolates that showed resistance to LVX (MIC of ≥ 8 µg/mL),
quinolone resistance-determining region (QRDR) mutations of the DNA gyrase (gyrA and gyrB) and
topoisomerase IV (parC and parE) genes were investigated by direct sequencing with PCR products, as
described previously [57].

4.5. Detection and Sequence Analysis of PhtA/B and PhtA/D Fusion Types

Fusion types of PhtA/B and PhtA/D genes were detected, and their sequences were analyzed
as follows. First, to identify the fusion type-associated phtA gene, all of the isolates were
subjected to two PCRs to detect 5′- and 3′-half regions of the phtA gene. For these PCRs, two
primer pairs were designed on the basis of the published phtA sequence (AF291695): PhtA-5’F
(5′-ACATCGTGAAGGTGGAACTCC-3′) and PhtA-5′R (5′-GTGTTATCGCTATTTTGTCG-3′) for the
5′-end region (product size 273 bp) and PhtA-3′F (5′-GCCAGTAGAGGAAACACCTGC-3′) and
PhtA-3′R (5′-TATCCATAATTTGAAGAGTC-3′) for the 3′-end region (product size 186 bp). The PCR
program consisted of the following steps: initial denaturation at 94 ◦C for 2 min, followed by 35 cycles
at 94 ◦C for 15 s, 55 ◦C for 150 s, and 72 ◦C for 15 s, followed by a final extension step at 72 ◦C for 3
min. Among all isolates, 28 isolates (49.1%) were positive for phtA in the two PCRs as well as in the
initial PCR for phtA gene detection.

Second, for all of the remaining 29 isolates (50.9%) that had only a 5’-end region of phtA
(negative for 3’-end region of phtA), PCR was attempted with a forward primer of phtA (phtA
primer-F) and reverse primers specific to phtB (phtB primer-R) or phtD (phtD primer-R) with the
PCR program and conditions described previously [34]. Using the obtained RCR products, pht
gene sequences were determined through the Sanger method. Finally, 5’-end and 3’-end portions
of pht gene sequences that were not covered by the above PCR were determined by PCR and
direct sequencing using the primers PhtA.F-5’outer (5’-AAGTCCAACCTTGAAAAAGTAGTGG-3’,
for phtA), PhtB.R-3’outer (5’-GAACTAGAACTCACATTCTGC-3’, for phtB), and phtD.R-3’outer
(5’-TAACAGCTGATCCAGCTGC-3’, for phtD). Sequence data (full-length, 5’-end, and 3’-end half
regions) of the presumptive fusion type genes were further analyzed for their highly similar sequences
in GenBank (https://www.ncbi.nlm.nih.gov/genbank/) by using BLAST (https://blast.ncbi.nlm.nih.
gov/Blast.cgi). Multiple alignments of nucleotide and amino acid sequences for the fusion type
pht and authentic phtA, phtB, phtD, and phtE were performed by the Clustal Omega program
(https://www.ebi.ac.uk/Tools/msa/clustalo/), which was used for the calculation of sequence identities
between them. In addition, we determined sequences of phtB for a representative five isolates because
only a few phtB genes have been deposited into the GenBank database.

4.6. GenBank Accession Numbers

The nucleotide sequences of Pht fusion type phtA/B and phtA/D genes and the phtB gene were
deposited into the GenBank database under accession numbers MN206792 to MN206804, and they are
listed in the Supplementary Materials, Table S3.

5. Conclusions

In conclusion, our study revealed the prevalence of 14 vaccine candidate protein genes in clinical
isolates of S. pneumoniae and demonstrated the existence of PhtA/B and PhtA/D fusion types in various
pneumococcal serotypes. These fusion types, as well as PhtA and PhtB, contained sequences of B
cell epitopes similar to those previously reported for PhtD, which is included in the investigational
protein-based pneumococcal vaccine presently. Despite the small number and limited source of
isolates, PhtD and PhtA/D were detected in 61.4% and 14.0% of all isolates. However, all of the
isolates with various serotypes had one or more of PhtA, PhtB, PhtD, and fusion types PhtA/B and
PhtA/D, suggesting that an immune response to PhtD may confer protective immunity to S. pneumoniae

https://www.ncbi.nlm.nih.gov/genbank/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ebi.ac.uk/Tools/msa/clustalo/
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irrespective of serotype. Further epidemiological studies on higher numbers of isolates from various
sources in various regions are required to determine the prevalence and profiles of pht genes among
pneumococci as basic information for the development of Pht-based vaccines.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/8/4/162/s1,
Figure S1: Alignment of PhtA/B (fusion type) and PhtA (a)/PhtB (b) amino acid sequences; Figure S2: Alignment
of PhtA/D (fusion type) and PhtA (a)/PhtD (b) amino acid sequences; Figure S3: Amino acid sequence alignment
of three B cell epitope regions (I, II, III) of PhtA, PhtB, PhtD, and Pht fusion types (PhtA/B, PhtA/D); Table S1:
Resistance gene profiles and antimicrobial susceptibility of the 57 isolates among individual serotypes; Table S2:
Percent identity matrix based on nucleotide (upper right) and amino acid (lower left) sequences of phtA, phtB,
phtD, phtE, and pht fusion types; Table S3: GenBank accession numbers assigned for phtA/B, phtA/D, and phtB
genes of representative pneumococcal isolates analyzed in the present study.
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