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ABSTRACT

Approximately 30% of human tumors characterized
to date express DNA polymerase beta (pol b) variant
proteins. Two of the polymerase beta cancer-
associated variants are sequence-specific muta-
tors, and one of them binds to DNA but has no
polymerase activity. The Leu22Pro (L22P) DNA
polymerase beta variant was identified in a gastric
carcinoma. Leu22 resides within the 8kDa amino
terminal domain of DNA polymerase beta, which
exhibits dRP lyase activity. This domain catalyzes
the removal of deoxyribose phosphate during short
patch base excision repair. We show that this
cancer-associated variant has very little dRP lyase
activity but retains its polymerase activity. Although
residue 22 has no direct contact with the DNA, we
report here that the L22P variant has reduced DNA-
binding affinity. The L22P variant protein is deficient
in base excision repair. Molecular dynamics calcu-
lations suggest that alteration of Leu22 to Pro
changes the local packing, the loop connecting
helices 1 and 2 and the overall juxtaposition of the
helices within the N-terminal domain. This in turn
affects the shape of the binding pocket that is
required for efficient dRP lyase catalysis.

INTRODUCTION

In a mammalian cellular environment, DNA is under a
continuous threat of spontaneous or chemical induced
damage. Most of the time the damage is repaired (1). One
of the most important repair systems is base excision
repair (BER). It is estimated that at least 20 000 lesions/
cell/day are repaired by BER (2,3) suggesting that this
system is important for maintaining genomic integrity.
Aberrant BER is likely to be associated with human
cancer.

The BER pathway is important for maintaining genomic
integrity. BER removes oxidative and alkylation-induced
DNA damage and restores the DNA to its original
form (2,3). Short patch BER results in the repair
synthesis of a 1–6 nt gap whereas a gap >6 nt is filled
in during long patch BER. Though polymerase beta (pol
b) can participate in both pathways, its role is best
characterized in short patch BER (4,5). The very first
step of short patch BER is damage recognition by a
DNA glycosylase. The type of glycosylase that removes
the base damage usually determines the subtype of BER
pathway used by the cell (6). Once the base damage is
recognized and removed by a monofunctional DNA
glycosylase, the product of which is an AP site, the AP
endonuclease, APE1, incises the backbone and usually
leaves a 50-deoxyribose-phosphate (50dRP) moiety. Pol b
then fills in the resulting gap and removes the 50dRP (7).
However, oxidative base damage is usually removed by a
bifunctional DNA glycosylase (8), which results in
30-termini that cannot be ligated. When a 30-dRP group
is present as would likely be the case following the action
of the OGG1 DNA glycosylase, the 3’diesterase activity
of APE 1 removes the dRP, leaving a 30OH (9).
However, BER appears to be independent of APE1
when the base damage is removed by the NEIL DNA
glycosylase (10). In this case, polynucleotide kinase
(PNK) removes the 30 phosphate that is a product of
the NEIL glycoslyase. Pol b also fills in the gap after
removal of oxidative damage, but it is not needed for
dRP removal. After completion of gap filling by pol b,
DNA ligase seals the nick.
The dRP lyase activity resides within the 8 kDa amino

terminal domain of pol b, as shown in Figure 1. The 8 kDa
domain consists of antiparallel pairs of four helices,
namely helix-1 (15–26), helix-2 (36–47), helix-3 (56–61)
and helix-4 (69–78). The NMR structure shows that the
pairs of helices pack with a V-like shape (11) and the
N-terminus of helix-1 and the C-terminus of helix-4 are
near each other. The amino acid residues that are critical
for dRP lyase activity include Lys72 (helix-4), Tyr39
(helix-2) and Lys35 (12). It has been shown that the

*To whom correspondence should be addressed: Tel: +1 203 737 2626; Fax: +1 203 785 6309; Email: joann.sweasy@yale.edu

� 2007 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/


overall rate of BER is dependent upon the dRP lyase
activity of pol b and not on polymerase (7).
A recent review indicates that out of 189 tumors

studied, 30% of them express pol b variant proteins
(13). We have shown that three of these pol b tumor-
associated variants induce cellular transformation (14–16).
The K289M colon and I260M prostate carcinoma
variants are sequence-specific mutator polymerases that
are likely to induce mutations within key growth control
genes, leading to cellular transformation. The E295K
gastric carcinoma-associated variant has no polymerase
activity, which results in unfilled gaps that lead to genomic
instability associated with cellular transformation (16).
Here, we report on our studies of the Leu22Pro (L22P)
gastric cancer-associated variant of pol b. We show that
this variant has DNA polymerase activity but lacks dRP
lyase activity. We also show that the L22P variant is
unable to support BER in vitro and in vivo.

MATERIALS AND METHODS

Materials

Ultrapure deoxynucleoside triphosphates, ATP and
[-g32P] ATP (>6000Ci/mmol, 150mCi/ml), [-a32P]ATP
(>3000Ci/mmol) were purchased from New England
Biolabs, Sigma, and Amersham Biosciences, respectively.
Uracil DNA [Glycosylase (UDG) (M0280S), human AP
endonuclease I (APE1) (M0282S), terminal transferase
(M0252S), T4 PNK (M0201S)] and T4 DNA ligase
(M0202S) were purchased from New England Biolabs.
Sodium borohydride (452882) was purchased from Sigma-
Aldrich.

Cloning, expression and purification of the L22P
variant of pol b

The variant was generated by the Stratagene Quick-
Change Site-Directed Mutagenesis kit according to the
protocol of the manufacturer using pET28a-WT as a
template, followed by DNA sequencing at the WM Keck
facility at Yale University School of Medicine. WT and
variant L22P were overexpressed in Escherichia coli strain
BL21 (DE3) and purified as described previously (17).

Preparation of DNA substrates

Oligonucleotides were synthesized by WM Keck facility at
Yale University. The substrates used are shown in Table 1.
CII5bp, CIIR and 45AG were used for primer extension
and burst kinetics, respectively. For gel shift analysis
45AG, 45AGR, 45AG1 bpDNP (45AG1 bpDNP has
same sequence as 45AG except downstream DNA is not
phosphorylated) were used. The primer oligonucleotide
was labeled at the 50-end by using T4 PNK and g-32P ATP.
Other oligonucleotides were 50-end-phosphorylated with
the kinase and cold ATP. After purification by a Bio–Rad
spin column to remove unincorporated dNTPs, annealing
was performed by mixing phosphorylated template,
radiolabeled primer and phosphorylated downstream
oligos in 50mM Tris–HCl, pH 8.0, containing 0.25M
NaCl. The mixture was incubated sequentially at 958C
(5min), slowly cooled to 508C (for 30min) and 508C
(for 20min) and immediately transferred to ice. To verify
proper hybridization, the product was analyzed on an
18% native polyacrylamide gel followed by autoradi-
ography to assess the quality of annealing. For the
preparation of 45AG1 bpDNP the non-phosphorylated
downstream oligo was used during annealing. Likewise,
for the preparation of recessed substrates 45AGR and
CIIR, only template and primer were annealed.

In vitro primer extension assay

Primer extension experiments were conducted in a
solution containing 50mM Tris–Cl buffer (pH 8.0)
10mM MgCl2, 2mM DTT, 20mM NaCl and 10%
glycerol, and 50 mM each of dATP, dCTP, dGTP and
dTTP. The DNA to enzyme ratio was 1:15 (50 nM: 750
nM). Reactions were carried out at 378C for 2–60min,
after which they were stopped by addition of an equal
volume of 90% formamide dye and 0.3M EDTA.
Samples were resolved by electrophoresis on 20% poly-
acrylamide gels containing 8M urea, visualized and
quantified using a phorphorimager.

Pre-steady-state burst experiments

A pre-steady-state burst experiment was carried out as
described (17). Briefly, the radiolabeled gapped DNA
(300 nM 45AG) was in 3-fold excess relative to pol b
(100 nM). Also, a modified burst reaction was carried out
for L22P where the DNA to polymerase ratio was
18 mM:6 mM. The burst experiment was performed at
saturating concentrations of dTTP while minimizing
any substrate inhibition, which may occur with excess
dTTP. Reactions were initiated by rapid mixing of the

Figure 1. A ribbon representation of polymerase beta. The structure of
pol b is depicted in domain colors showing the dRP lyase domain
(8 kDa domain) in red, the N-terminal/thumb domain in green, the
palm domain in magenta, the C-terminal/fingers domain in blue, the
DNA template in gray and the downstream and primer strands in cyan.
Leucine 22, shown in yellow, is located �11 Å away from the dRP
lyase catalytic site (Lys72). Critical dRP lyase active site residues
(Lys72, Lys35 and Tyr39) are shown in atom colors (carbon, red;
nitrogen, blue).
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pol b-DNA and Mg-dTTP solutions. At selected time
intervals, the reactions were quenched with 0.3M EDTA.
The reaction products were separated on a 20% denatur-
ing polyacrylamide gel. Data from the burst experiments
were fitted to the burst equation: [product]=
A(1� exp(�kobst)+ kSSt), where A is the amplitude of
the burst, kobs is observed first-order rate constant for
dTTP incorporation and kss is the observed linear rate
constant.

Gel mobility shift assay

Various concentrations of WT pol b protein
(0.1–1000 nM) and L22P pol b protein (0.1–2000 nM)
were incubated with 0.1 nM radiolabeled gapped DNA
substrate in buffer containing 50mM Tris–Cl, pH 8.0,
100mM NaCl, 10mM MgCl2, 10% glycerol, and 0.1%
Nonidet P-40 at room temperature (238C) for 15min.
Samples were loaded onto a 6% native polyacrylamide
gel with the current running at 300V at 48C. After the
sample was loaded, the voltage was reduced to 150V.
Bound protein was quantified using Imagequant software,
after scanning the gel using a Molecular Dynamics
Phosphorimager. Protein bound to DNA resulted in a
shift of the DNA on the gel when compared to DNA
without bound protein. Fraction bound is the ratio of the
intensity of all shifted species divided by the total. The
dissociation constant for DNA (KD) was estimated from
fitting the bound protein (Y) versus protein concentration
(x) with the equation: Y=[(mx)/(x+KD)]+ b, where m
is a scaling factor and b is the apparent minimum Y value.

Preparation of 5’dRP substrate

The 30end of DNA substrate LPSD, which contained a
single U at position 19 from 30 end, was radiolabeled using
[�a32P] ATP and terminal transferase and annealed with
its complementary oligo. This DNA duplex was treated
with UDG (2U/1 pmol DNA) in 50mM HEPES (pH 7.5)
at 378C for 10min, followed by treatment with human AP
endonuclease, APE1 (2U/1 pmol DNA) in buffer R
(10mM MgCl2, 20mM KCl and 2mM dithiothreitol) at
378C for 10min, which incises the phosphodiester back-
bone on the 50-side of the AP site and leaves a 30-OH and

a 50-dRP residue. Due to the labile nature of the AP site,
the 50-dRP-containing DNA substrate was prepared just
before use.

5’-dRP lyase assay

The assay was set up according to Prakash et al. (18) with
minor modifications. Typically, reaction mixtures (24 ml)
contained the DNA polymerases (200–400 nM) and the
50-dRP-containing DNA substrate (100 nM) in buffer R
[50mM HEPES (pH 7.5), 10mM MgCl2, 20mM KCl and
2mM dithiothreitol]. Reactions were incubated at 378C
for 10min. The reaction product was stabilized by the
addition of 2M sodium borohydride to a final concentra-
tion of 340mM, followed by incubation on ice for 30min.
Stabilized (reduced) DNA products were ethanol-
precipitated in the presence of 0.1 mg/ml of tRNA,
resuspended in water, and an equal volume of formamide
dye was added. These products were resolved on a 20%
polyacrylamide gel and visualized with a Storm 860
PhosphorImager (Molecular Dynamics, Inc.).

Trapping of polymerase–DNA complexes

To capture the trapped complex of DNA with pol b,
400 nM enzyme (WT or L22P) was mixed on ice in buffer
R with DNA substrate containing a 50-dRP residue. This
was followed by immediate addition of 20mM sodium
borohydride solution. The tubes were kept on ice for
another 30min to stabilize the complex. After removal of
the dRP moiety, the intensity of the trapped substrate will
be reduced. To determine whether the enzyme dissociated
from the DNA, it was first pre-incubated with the DNA
substrate at 378C for 10 and 30min before the addition of
sodium borohydride. The tubes were immediately trans-
ferred to ice after addition of the borohydride for 30min
to stabilize the complex. The reactions were terminated by
the addition of sodium dodecyl sulfate (SDS)-containing
loading buffer, and the cross-linked polymerase-
30-32P-labeled DNA complexes were resolved on a 10%
SDS–polyacrylamide gel. The products were visualized by
autoradiography.

Table 1. DNA substrates employed in primer extension, gel mobility shift, dRP lyase and base excision repair assays

Substrate Sequence

45AG 5’ GCCTCGCAGCCGTCCAACCAAC CAACCTCGATCCAATGCCGTCC 3’
3’ CGGAGCGTCGGCAGGTTGGTTGAGTTGGAGCTAGGTTACGGCAGG 5’

45AG5bp 5’ GCCTCGCAGCCGTCCAACCAAC CTCGATCCAATGCCGTCC

3’ CGGAGCGTCGGCAGGTTGGTTGAGTTGGAGCTAGGTTACGGCAGG 5’
45AGR 5’ GCCTCGCAGCCGTCCAACCAAC

3’ CGGAGCGTCGGCAGGTTGGTTGAGTTGGAGCTAGGTTACGGCAGG 5’
CII5bp 5’ TTGCGACTTATCAACGCCCACAT GCTGTCTTCTCAGTTTC 3’

3’ AACGCTGAATAGTTGCGGGTGTAGTCATCGACAGAAGAGTCAAAG 5’
CIIR 5’ TTGCGACTTATCAACGCCCACAT

3’ AACGCTGAATAGTTGCGGGTGTAGTCATCGACAGAAGAGTCAAAG 5’
LPSD 5’ CTGCAGCTGATGCGCUGTACGGATCCCCGGGTAC 3’

3’ GACGTCGACTACGCGGCATGCCTAGGGGCCCATG 5’

The template base or first template base is underlined in the single nucleotide gapped and recessed substrates, respectively.
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BER assay

As a BER substrate, 50-end labeled LPSD substrate
(Table 1) was used. For reconstituted BER with purified
proteins, we followed the method as described by Prakash
et al. (18) with some minor modifications. Typically,
100 nM UDG-treated substrate was first incubated for
10min with commercially available APE1. Approximately
50 nM APE-treated substrate was incubated with purified
pol b (200–10 000 nM) in BER buffer (45mM HEPES pH
7.8, 70mM KCl, 2mMDTT, 7.5mM MgCl2, 0.5mM
EDTA, 2mMATP and 20 mM each of dATP, dTTP,
dCTP and dGTP) for another 10min at 378C with or
without T4 DNA ligase. Finally, EDTA containing
formamide dye was added to stop the reaction. The
repaired product was resolved on a 20% denaturing
polyacrylamide gel followed by visualization on the
Phosphorimager.

Methylmethane sulfonate (MMS) sensitivity assay

MEF cell line 88TAg (pol b�/�) (19), was maintained in
Dulbecco modified Eagle’s medium (Invitrogen) supple-
mented with 10% fetal bovine serum (Invitrogen),
L-glutamine (Invitrogen), b-mercaptoethanol (Sigma) and
penicillin–streptomycin (Invitrogen) at 378C in a humidi-
fied 5% CO2 incubator. The GP2-293 cell line (Clontech)
was used for retroviral packaging.
The pRVY-Tet plasmid expressing WT pol b was

described previously (14). Briefly, in this vector, the left-
hand retroviral long terminal repeat drives expression of
tTA tetracycline (Tet) transactivator, the tetO/CMV
promoter drives expression of the pol b protein in a Tet-
repressible manner and an internal SV40 early promoter
drives expression of the hygromycin resistance gene. Thus,
when Tet is present in the growth medium, expression of
the WT or L22P proteins is turned off. However,
expression of these proteins occurs when Tet is removed
from the growth medium. The L22P variant was
constructed by site-directed mutagenesis of pRVY-Tet
containing WT pol b, using a kit (Stratagene).
For retroviral packaging each plasmid was cotrans-

fected into GP2-293 cells along with equal amount of
pVSVG DNA, using FuGene 7 (Roche). Virus was
collected in 72 h. Stably transfected GP2-293 cells were
selected in presence of 300 mg/ml hygromycin B (HygB;
Invitrogen) and used for preparation of high titer virus.
Retroviral transduction of 88-TAg cells was performed
using a standard protocol (Clontech). Use of high titer
virus insured at least 50% efficiency of infection. Infected
cells were grown in presence of 300 mg/ml hygromycin B
until confluent. Cells were split once at 1:20 dilution and
this passage was designated as passage 1. Non-infected
cells were used as a negative control for drug selection and
displayed 100% lethality by passage 1.
Recombinant cell lines were grown no more than six

passages in normal growth medium containing 300 mg/ml
hygromycin B. Western blotting was used as described
(16) to determine if the WT and L22P variants were
expressed in the absence of Tet.
To test the sensitivity of the cells to MMS, we used the

Cell Titer Assay (Promega) according to manufacturer’s

recommendations. Briefly, cells were seeded at 1000 cells/
well and left to attach overnight. The next day the cells
were treated for 1 h with various concentrations of MMS
in normal growth medium. The medium was then changed
and the cells were incubated for 72 h under normal growth
conditions. Twenty microliters of the cell titer solution
was added into each well and the OD490 was measured by
a Spectra Max plate reader. A non-treated control for
each cell line was counted as 100% after background
subtraction. Each cell line was tested in quadruplicate.
Each experiment was repeated at least four times using
independently created cell lines. Results were analyzed by
‘Prism’ software (GraphPad). The significance of differ-
ences in sensitivity that we obtained were assessed by a
non-parametric test and accepted if P <0.05.

Modeling and molecular dynamics

The programs O, NAMD2, VMD (20–22) were used to
introduce and analyze the mutation at position 22 in pol b.
The models of native and variant pol b are based on a
DNA co-crystal structure (PDB: 1mq3). The N-terminal
domain was subjected to a periodic-boundary equilibrat-
ion followed by a 10 ns molecular dynamics simulation.
The calculations were performed using the Non-
equilibrium Atomic Molecular Dynamics 2 (NAMD2)
simulation package version 2.5. For the simulations the
models were restricted to a domain comprising residues
1–118. The Charmm27 force field (23) was used to model
the intramolecular interactions within the N-terminal
domain. The TIP3P model was used in the description of
the water molecules. The N-terminal domains were placed
in a sphere (non-periodic boundary) of water molecules
with a 36 Å radius exceeding the recommended NAMD2
default sphere radius by more than 10%. (21). Long-range
non-bonding terms were calculated with a 12 Å cutoff for
electrostatic and van der Waals interactions. All hydrogen
bond lengths were held constant with the SHAKE-
RATTLE-ROLL algorithm. The simulations were carried
out at a temperature of 310K. The simulation temperature
was maintained using a Langevin thermostat with a
coupling constant of 5 ps�1. The lengths of the simulations
were determined by the proper convergence of the
monitored properties (both molecules ran for a period of
20 ns simulations). The time step for all simulations was set
to 2 fs. Trajectory analysis and molecular graphics images
were generated using VMD. The time evolution of the
radius of gyration (Rgyr), alpha-carbon alpha-carbon
distances and hydrogen-bonding interactions were mon-
itored during the simulation. Root mean-square deviation
analyses (RMSD) were performed to evaluate systems
mobility and proper convergence (data not shown).
Ramachandran maps and scatter plot diagrams were
generated to document changes in the overall structure of
the N-terminal domain over time.

RESULTS

L22P is a less active polymerase than wild-type pol b

To determine if L22P had polymerase activity, a primer
extension assay was carried out with 5 bp gapped DNA
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substrate (CII5bp) to assess the polymerase activity of the
L22P variant in comparison to WT. Our data in Figure 2A
show that both WT and L22P fill the gap. However, under
our assay conditions, WT pol b exhibits robust strand
displacement synthesis whereas L22P appears to be quite
distributive. We performed an additional primer extension
experiment with recessed DNA substrate (CIIR). As
shown in Figure 2B, L22P extends the primer much less
efficiently than WT. Thus, the L22P variant is less active
than WT pol b.

L22P has lower affinity for gapped DNA

The slower rate of DNA synthesis by L22P could be due
to a lower DNA-binding affinity than WT. To assess the
affinity of L22P for DNA, we carried out gel mobility shift
assays of WT and L22P using three different substrates:
1 bp gapped (45AG), recessed (45AGR) and 1 bp gap but
without a 50 phosphate on the downstream DNA
(45AG1bDNP). Irrespective of the substrates utilized,
L22P has lower affinity for DNA than WT pol b, as shown
in Table 2. This effect is much more pronounced in the
case of the 1 nt gapped DNA, with which L22P has 19-fold
lower affinity than WT.

L22P does not exhibit burst kinetics under usual
reaction conditions

Next, to determine if L22P had a rate-limiting step that
was similar to that of WT pol b, we measured the reaction
rate of L22P in a pre-steady-state kinetic assay. We used
300 nM radiolabeled single-nucleotide gapped DNA sub-
strate, and 100 nM pol b. A typical biphasic burst curve

was observed for WT, with a burst rate of 12 s�1, as shown
in Figure 3A. However, no product formation was
detected for the L22P variant within the maximum time
limitations of our experiment, which was 3 s. We then
repeated this experiment with L22P for longer amounts of
time (0–1400 s). Instead of a biphasic curve of product
formation we obtained a slow linear rate of 0.06 s�1 for
L22P, as shown in Figure 3B. This suggests that the rate-
limiting step of L22P is different from that of WT.
Considering the KD (DNA) obtained from the gel shift
assay, the percent bound can be estimated by the
equation%bound= [E]/[E]+KD, where E is the
enzyme concentration used in the experiment. So percen-
tage bound will be 90% and 43% for WT and L22P,
respectively, under our pre-steady state experimental
conditions.
To determine the burst rate under conditions in which

L22P would be more than 90% bound, we used 6 mM
enzyme and 18 mM DNA and repeated the experiment.

Figure 2. L22P is a less active polymerase than WT pol b in primer extension assay. (A) Gapped DNA substrate. Purified WT and L22P enzymes
(750 nM) were incubated with the radiolabeled 5 bp gapped DNA substrate (50 nM) (CII5bp) and all four dNTPs for 30min and 1 hour at 378C as
described in Materials and Methods section. The sequence of the template within the gap is indicated on the left side of the Figure and the right side
represents the number of the bases from the position of the primer. (B) Recessed DNA substrate. Purified 750 nM WT and L22P enzymes were
incubated with the 50 nM radiolabeled recessed DNA substrate (CIIR) and all four dNTPs for indicated times at 378C as described in Materials and
Methods section. Products were separated by denaturing gel electrophoresis and visualized using a Phosphorimager.

Table 2. L22P has lower DNA-binding affinity than WT

Polymerase b KD (DNA), nM

45AGR
(Recessed)

45AGa

(1-bp gapped)
45AG1bpDNPb

(1-bp gapped)

WT 84� 18 12� 2 20� 3
L22P 455� 100 229� 50 291� 45

aDownstream oligonucleotide is phosphorylated at 5’ end.
bDownstream oligonucleotide is not phosphorylated.
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Under these conditions, L22P showed a typical biphasic
curve (Figure 3C) with a very slow burst rate of
0.09� 0.01 s�1 and a steady-state rate of 0.006 s�1.
Because the protein concentration was so high, we suggest
that L22P may not be acting as an enzyme and that
product formation may result from molecular crowding of
DNA and protein.

L22P has no dRP lyase activity

Leu22 maps within the 8 kDa domain, which contains the
catalytic site of the dRP lyase of pol b, so we explored the
idea that altering this residue to Pro would have an effect
on the dRP lyase activity. We performed the dRP lyase
assay at two different protein concentrations (200 and
400 nM), as described in the legend to Figure 4A. As
shown in Figure 4A, WT removes the dRP group very
efficiently as suggested by the presence of 19 nt lower band
while L22P is devoid of dRP lyase activity in our reaction
conditions.

To determine whether the lack of dRP lyase activity
results from the low DNA-binding affinity of L22P, we
carried out a dRP lyase assay in which 90% of L22P is
bound to DNA. We observed a negligible amount of dRP
lyase activity under these conditions. Under conditions in
which >95% of L22P is bound to DNA, (5000 nM) we did
observe a small amount of incised product, as shown in
Figure 4B. These results suggest that Leu22 is important
for the dRP lyase activity of pol b.

L22P forms a Schiff’s base complex

There is no evidence that Leu22 has a direct role in the
catalysis of dRP group removal. However, our data
indicate that altering Leu to Pro nearly abolishes the dRP
lyase activity of pol b. Previous reports suggest that the
dRP lyase reaction is catalyzed by b-elimination after
Schiff’s base formation (24). The Schiff’s base complex is
formed between Lys72 and the DNA. This complex is
normally very transient but can be trapped using sodium
borohydride as a reducing agent (18). We carried out a
trapping experiment to determine whether the L22P
variant is capable of forming a Schiff’s base. As shown
in Figure 5A (lane 4), L22P forms a Schiff’s base complex,
the amount of which appears to be much less than WT.
After Schiff’s base formation, the reaction follows a
b-elimination reaction followed by phosphate removal.
Thus, the intensity of the trapped polymerase and DNA
complex should diminish if borohydride is added after the
reaction is over. For WT pol b, we observed this reduction

A

B

C

Figure 3. L22P shows no burst of product formation under usual
reaction conditions. A pre-incubated solution of WT or L22P and
single-nucleotide gapped DNA was mixed with a solution of 100 mM
dTTP containing 10mM MgCl2. The reactions were terminated by
EDTA, and the products were resolved by denaturing sequencing gel
electrophoresis. (A) Insertion of dTTP into a single-nucleotide 300 nM

gapped DNA substrate by 100 nM WT (45AG) was measured using a
chemical quench-flow apparatus at 378C. Data for WT were fit to the
burst equation with a kobs of 12.0� 1.6 s�1 and a steady-state rate
constant of 1.1 s�1. (B) Insertion of dTTP into a 300 nM single-
nucleotide gapped DNA substrate (45AG) by 100 nM L22P was
measured manually at 378C at various time points as indicated on the
x-axis. The data were fit to the linear equation with a steady-state rate
constant of 0.06� 001 s�1. (C) Insertion of dTTP into a single-
nucleotide 18 mM gapped DNA substrate (45AG) by 6 mM L22P was
measured using chemical quench-flow apparatus at 378C at various
time points as indicated on the x-axis. The data were fit to the burst
equation with a burst rate of 0.09� 01 s�1 and a steady-state rate
constant of 0.006 s�1.
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of trapped product formation (Figure 5A, lanes 2 and 3),
suggesting there is no dRP lyase substrate remaining at the
end of the reaction. In contrast, a significant amount of
substrate remains in the case of L22P (lanes 5 and 6). This
is also observed when the concentration of L22P is
5000 nM (L22P is >90% bound to DNA) and that of
DNA is 100 nM (data not shown). These results are
consistent with the interpretation that L22P does not
possess robust dRP lyase activity and that this lack of
activity is not due to limited DNA binding.

Since we observed a reduced amount of Schiff’s base
formation by L22P (Figure 5A, lane 4), we were interested
to know the rate of the reaction. We determined the rate
of Schiff’s base formation (Figure 5B) for WT and L22P at
conditions where both of the proteins are 95% bound to
DNA. As shown in Figure 5B (lanes 8–14), at 500 nM
concentration, WT forms a saturating amount of Schiff’s
base complex very quickly (within 10 s) and we were not
able to calculate the reaction rate. For L22P, even at
5000 nM concentration, the rate of Schiff’s base formation
is slow. We plotted the product of trapped complex versus
time, which fit the single exponential equation and yielded
an apparent rate of Schiff’s base formation of 0.074 s�1

(Figure 5C).

L22P cannot support BER

Since the primary activity of pol b is to function in the
repair of small single-base damage in DNA, we tested the
L22P variant’s ability to participate in short patch BER.
An in vitro BER assay was carried out using 50end-labeled
LPSD substrate (Table 1) that contains a uracil, and

Figure 5. (A) Trapping of Schiff’s base complexes. Trapping of Schiff’s
base complexes of WT and L22P before and after the dRP lyase reaction.
A total of 400 nM WT (lanes 1–3) and 400 nM L22P (lanes 4–6) were
mixed with the 100 nM 50-dRP-containing 30-32P-labeled LPSD DNA
substrate on ice, followed by incubation at 378C for 0 (lanes 1 and 4),
10 (lanes 2 and 5) or 30min (lanes 3 and 6). A solution of 20mM NaBH4

was added and the reaction was incubated further on ice for 30min to
stabilize the product. After the addition of SDS-containing loading buffer,
the samples were resolved on a 10% SDS–polyacrylamide gel, and the
trapped polymerase–DNA products were analyzed by autoradiography.
(B) Trapping of Schiff’s base complex formation in the presence of sodium
borohydride. A total of 5000 nM L22P (lanes 1–7) and 500 nM WT
(lanes 8–14) were mixed with 50 nM 50-dRP-containing 30-32P-labeled
LPSD DNA substrate on ice in continuous presence of 20mM NaBH4.
At each time interval (10–1800 s), 20 ml of reaction mix was taken out and
added to equal volume of SDS gel-loading dye to stop the reactions.
The samples were resolved on a 10% SDS–polyacrylamide gel, and the
trapped polymerase–DNA products were analyzed by autoradiography.
(C) Determination of rate of Schiff’s base formation by L22P. Amount
of trapped Schiff’s base complex by L22P was plotted against time.
The data were fit to the single exponential equation with a rate of
0.074� 0.009 s�1.
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Figure 4. L22P lacks dRP lyase activity. The 50-dRP-containing DNA
substrate, LPSD (100 nM), was incubated in buffer R at 378C for
10min with increasing concentrations of pol b as indicated in the figure,
followed by the addition of 340mM NaBH4 and stabilization of the
reaction product as indicated in Materials and Methods section. The
products were analyzed by a denaturing 16% polyacrlyamide gel
and visualized by autoradiography. (A) Image of the denaturing gel.
(B) A graphical representation of the percentage of incised product
versus protein concentration. The cross-hatched bar represents WT and
the dotted bar represents L22P.

Nucleic Acids Research, 2008, Vol. 36, No. 2 417



purified proteins as described in detail in the Materials and
Methods section. Lane 1 shows the DNA substrate after
the uracil has been removed by UDG. After cleavage of
the backbone with APE1 (lane 2) the product cannot be
ligated by T4 DNA ligase (lane 3). However, addition of
400 nM WT pol b and T4 DNA ligase to the reaction
mixture results in nearly complete BER as shown in
Figure 6A (lane 4). In contrast, when L22P is added to the
reaction, the n+1 product appears, which suggests L22P

has polymerase activity. dRP group removal is necessary
prior to ligation but the L22P variant has no dRP lyase
activity. Therefore, we did not observe any ligated product
(Figure 6A, lane 5) in presence of L22P.

To confirm that the defect in BER is not due to limited
DNA-binding affinity of L22P we repeated the reconsti-
tuted BER assay with a range of higher protein
concentrations (500—1000 nM) (Figure 6B). WT com-
pleted repair at all concentrations tested (lanes 2–6).

A C

B

Figure 6. L22P does not support BER.(A) Reconstituted BER with purified proteins. Lane 1, annealed oligo substrate, treated with uracil DNA
glycosylase (UDG); lane 2, UDG-treated substrate incubated with APE1 for 10min; lane 3, UDG treated substrate incubated with APE1 and T4
DNA ligase for 10min; lane 4, UDG-treated substrate, incubated with APE1, 400 nM of purified WT pol b and T4 DNA ligase for 10min; lane 5,
UDG-treated substrate, incubated with APE1, 400 nM L22P pol b and T4 DNA ligase for 10min. (B) L22P lacks BER activity even at high
concentrations. A reconstituted BER assay was carried with increasing protein concentrations (500–10 000 nM). Lane 1: UDG- and APE1-treated
substrate, lanes 2–6: BER assay with WT, lanes 7–11: BER assay with L22P. (C) L22P can fill in a single nucleotide gap. A single-nucleotide primer
extension assay was carried out in presence of 50 mM dTTP and 10mM MgCl2 using 45AG (50 nM) as substrate; 500 nM WT and 5000 nM
L22P were used to carry out the reaction at 378C for 10min. Reactions were performed in presence (lanes 3 and 6) and absence (lanes 2 and 5) of T4
DNA ligase.
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At increasing concentrations of L22P we observe an
increase in n+1 product formation (lanes 7–11), which
suggests that L22P is capable of DNA synthesis. At 5 and
10 mM concentration, where L22P is likely greater than
95% bound, we observed formation of the maximum
amount of n+1 band but there was very little ligated
product formed (�5%) (lanes 10 and 11). These data
suggest that repair appears to be hindered by L22P’s
inability or reduced ability to remove the dRP moiety.

Bifunctional DNA glycosylases usually function in the
repair of various oxidized bases, and they remove the
damaged base and leave a modified 30end and a
50-phosphate. In this case, pol b would be required to fill
in the gap but not to remove the 50dRP group. Therefore,

we asked if the L22P variant could fill in a single
nucleotide gap with a 30-OH and a 50-phosphate that
could then go on to be ligated. As shown in Figure 6C,
both WT and L22P are able to fill in a single nucleotide
gap, which can then be ligated by T4 DNA ligase.

Molecular modeling results

In order to provide a structural framework for under-
standing the characteristics of the L22P variant, MD
calculations of pol b’s N-terminal domain (comprising
residues 10–118 of the 8K and part of the thumb domain)
of both wild-type and the L22P variant were carried
out for a total of 10 ns to ensure the simulations converge.
During the simulations the radius of gyration (Rgyr) of
the L22P variant increased by �3% as compared to the
wild-type structure (data not shown). Upon completion of
the MD calculations the N-terminal domains of the native
structure and the L22P variant show backbone atom RMS
deviations to the starting model (PDB code: 1MQ3) of
2.17 and 2.41 Å, respectively. A maximum RMS deviation
of 2.7 Å was observed at 15.9 ns coinciding with a
dramatic bend in helix 1 (Figure 7C). The conformational
changes of the L22P N-terminal domain suggest that the
local structure in helix 1 and the packing of side-chains
adjacent to Pro22 are significantly affected by the
mutation.
Backbone angles and inter-residue distances within

helix 1 were analyzed in detail. A selection of
Ramachandran maps for residues 21–23 and inter-residue
distance scatterplots calculated or residues Thr20 to
Asn24 and Asn12 to Lys27 are depicted in panels A and
B of Figure 7. While the peptide backbone angles for
the sampled native (blue dots) and L22P variant (red dots)
structures are in good agreement as shown for Glu21 and
Ala23, they clearly deviate at position 22, the site of
mutation (Figure 7A). The proline residue apparently
introduces a much greater degree of flexibility into helix 1
as seen from the scatter plot in Figure 7B. For the variant
(red dots) the distances between the alpha carbon atoms of
Thr20 and Asn24 and Asn12 and Lys27 vary more widely
than the corresponding distances sampled for the native
structure (blue dots). Especially, the residues in the close
vicinity of Pro22 (Thr20, Gln21 and Ala23, Asn24)
experience a great deal of stretching and scrunching.
Figure 7C highlights a structure from the L22P trajectory
at around 15.9 ns where the alpha carbon distance
between Asn12 and Lys27 appears to reach a global
minimum indicative of a dramatic bend within helix 1. The
corresponding wild-type helix, which is almost perfectly
straight, is superimposed for reference. Closer inspection
of superimposed intermediate structures of L22P indicate
that the loop connecting helices 1 and 2 (residues 30–34)
displays a great deal of variability, which is likely a direct
result of introducing Pro22 into helix 1. The wild-type
structures, on the other hand, appear far less dynamic in
behavior with respect to that of helix 1 and the loop
connecting to helix 2. In L22P, the side chains of Ser30
and His34 in particular appear to affect the position of NZ
of Lys35 directly. The position of Lys35 has been shown
to affect dRP lyase activity (25).

Figure 7. Analysis of MD simulations. (A) Changes in Ramachandran
backbone angles for residues Glu21, Leu/Pro22, Ala23 along the 20 ns
trajectory. The backbone torsion angles for the wild-type pol b; are
shown in blue and the phi/psi angles of the Pro22 mutant are depicted
in red. Note the deviations in backbone torsion angles in the
middle panel (site of mutation; Leu22, blue dots; Pro22, red dots).
(B) Scatterplot of inter-residue distances (20–24 and 21–27) The
distortion of helix 1 during the dynamics simulation has been visualized
by plotting the distances between residues 20–24 and 21–27 (highlighted
by the dotted line in ribbon diagram below). Residues 20, 21, 24 and 27
lie in the same plane as the bend in helix 1. (C) Cartoon drawing of the
8K domain of L22P at 15.9 ns showing a significant bending of helix
1 at residue 22. Helix 1 is highlighted as a thickribbon, the remainder of
the 8K domain is depicted as a thin ribbon. The N-terminal helix of
the wild-type pol b; crystal structure (PDB code 1bpy) is overlaid in
gray (semi-transparent rendering). Note that helix 1 in wild-type
pol&#946; is nearly perfectly straight.
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L22P does not function in BER in cells

To determine if the L22P variant could function in the
BER of alkylating agents in cells, we expressed this protein
in pol b-deleted MEFs and characterized the survival of
the cells in response to treatment with various doses of
MMS. As shown in the western blot in Figure 8A, the WT
and L22P proteins are expressed in the MEFs. The pol
b-deleted MEFs are quite sensitive to MMS as has been
shown previously (4). Expression of WT pol b in these
cells confers resistance to MMS, whereas expression of
L22P does not, as shown in Figure 8B. This suggests that
the L22P variant is not able to function in BER in cells.

DISCUSSION

In this study, we investigated the biochemical behavior of
the L22P gastric cancer-associated variant of pol b. Our
results suggest that this variant has lower affinity for
DNA, significantly reduced dRP lyase activity, and that
L22P cannot support BER. Molecular modeling studies
support our biochemical data. Altogether, our results
imply that an amino acid residue that is some 10.6 Å from
the active site cleft of the dRP lyase critically affects the
catalysis of dRP removal.

The L22P variant has a lowered DNA-binding affinity

The physiological substrate for pol b is likely single-
nucleotide gapped DNA. In general, pol b has high affinity

for DNA. This affinity is highest for 1 base gapped DNA,
followed by 5–6 base gapped and recessed DNA. The
presence of downstream DNA is required for efficient and
tight binding. The presence of phosphorylated versus non-
phosphorylated downstream DNA does not increase the
affinity for DNA but increases polymerase fidelity (26,27).

The N-terminal 8 kDa domain interacts with the
downstream DNA whereas the thumb subdomain acts
as a primer grip. NMR studies suggest that the DNA-
binding site of the 8 kDa domain is located on the
C-terminal part of the HhH motif. Residues important for
DNA binding in the 8 kDa domain are Lys41, Lys60,
His34, Arg40, Tyr39, Lys 68, Lys 72 and Arg83 (12).
Although there is no structural detail available for Leu22
regarding DNA interactions, it is known that Leu is a
helix-stabilizing amino acid (28). Thus, Leu22 most likely
contributes to the overall stability of the neighboring
HhH. Our results suggest that alteration of the helix
stabilizing residue leucine to a helix breaker proline
reduces the DNA-binding affinity by several fold (19�).
Thus, if helix 1 becomes destabilized, the effect is probably
propagated to the DNA-binding site.

BER and the dRP lyase activity of pol b

Pol b possesses DNA polymerase and dRP lyase activities,
both of which are known to be important for BER.
Previous reports showed that the dRP lyase deficient K72A
pol b was unable to support BER in cell extracts prepared
from pol b-deleted cells and that the 8 kDa domain alone
was able to complement the MMS sensitivity of these cells
(29,30). The presence of the dRP group prevents DNA
ligase from joining the phosphodiester backbone.

Our data demonstrate that L22P has no significant dRP
lyase activity even under conditions where likely >95% of
the DNA is bound by the protein. Under these conditions,
we observed formation of the n+1 band, confirming the
ability of L22P to catalyze DNA synthesis, but there was
very little ligated product formed (�5%) (Figure 6B, lanes
10 and 11). The L22P variant is able to interact with DNA
ligase III and XRCC1 (data not shown), ruling out the
possibility that a protein interaction deficiency is respon-
sible for its inability to support BER. These results
indicate that L22P is unable to support BER initiated by
UDG, because it is not able to remove the dRP group. We
have also shown that L22P is not able to support BER in
cells treated with MMS, likely because it is not able to
remove the dRP group. It has been shown by in vitro
reconstituted BER assays that are initiated with UDG,
that the overall rate-limiting step of BER is the dRP lyase
reaction of pol b (7). However, this is not likely to be the
case when oxidized bases are removed by either OGG1 or
NEIL DNA glycosylase (9,10).

Altered DNA binding and abolished dRP lyase activity are
due to structural changes in the N-terminal domain

Leu22 is located in the N-terminal (8 kDa) domain of
DNA polymerase beta and is not able to contact the DNA
substrate directly. Previous studies have indicated that
residues important for dRPase activity are Tyr39, Lys68
and Lys72 (12,31,32). A study from Wilson et al. (31)
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Figure 8. Expression of L22P in MEFs sensitizes them to MMS.
(A) Western blot. Lane 1, negative control; lane 2, cells with pRVY-Tet
expressing WT pol b and lane 3, cells with pRVY-Tet expressing L22P.
The blot was probed with monoclonal antibody to pol b as described
(15). (B) Survival curves. (Open triangle), pol b-deleted MEFs;
(filled square), MEFs expressing WT pol b; (outlined triangle) MEFs
expressing L22P pol b.
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showed that altering Lys72 to Ala abolishes dRP lyase
activity without changing DNA binding. Matsumoto and
colleagues (24,32) discovered that the dRP lyase reaction
occurs via formation of Schiff’s base followed by a beta
elimination reaction. Further structural analyses revealed
that Lys72 is the main catalytic residue responsible for
Schiff’s base formation (12).

Leu22 is a hydrophobic residue located in the middle of
the helix 1 (Figures 1 and 7C). Circular dichroism studies
do not indicate that there are significant changes in the
overall alpha helical content (data not shown) and thermal
stability (melting temperature, Tm) of L22P, suggesting
the effect of Pro22 on the 8 kDa domain might affect the
tertiary structure or perhaps the juxtaposition of pol b
subdomains, changes not tractable by circular dichroism.
The side-chain volume decreases typically by �30% when
Leu22 is replaced by Pro in the variant structure.
Consequently, the changes in packing density along with
the observed increase in Rgyr in the L22P variant as
compared to the fully equilibrated native structure could
adversely affect duplex binding and catalytic activities of
the L22P mutator.

Leu22 is some 10.6 Å (Ca-C) away from the catalytic
Lys72 residue. Our biochemical and computational data
suggest that it can affect overall catalysis for dRP lyase
activity most probably by repositioning both helix 1 and
an adjacent loop (residues 30–34), which in turn affects the
catalytic pocket of dRP. Several important residues
(Glu26, Ser30, His34, Lys35, Tyr39, Lys68 and Lys72)
form the lyase catalytic pocket (25). The first step of lyase
reaction is correct positioning of the flexible sugar moiety
followed by ring opening. His34 has been proposed to be
involved in the base-stacking interaction with the down-
stream template base of gapped DNA. Protonation of
Lys72 might induce ring opening. Feng et al. (33) have
proposed that residue Lys35 or Lys68 could initiate the
reaction by protonating the deoxyribose O-40, leading to
opening of the ring. Lys72 is then deprotonated, ready for
the nucleophilic attack. Mullen et al. (11) proposed from
their structural data that the deprotonated form of Lys72
is stabilized by residue Tyr39. Following this stabilization,
the beta elimination reaction takes place, which could be
facilitated by Glu26. The last step of the lyase reaction is
the removal of dRP from the Schiff’s base complex. Lys35
is suggested to participate in the stabilization of the
leaving phosphate group. The rigidity of the backbone
around residues Lys72, Lys35 and Tyr39 allows a well-
formed active site for dRP removal between DNA and
protein. The bending and the inherent flexibility of helix 1
in the L22P variant causes local and global conforma-
tional changes in the structure of the N-terminal domain
that may well cause a decrease in the binding affinity for
gapped duplex DNA and a dramatic reduction in the
actual catalytic turnover rate of the dRP lyase activity.

Our trapping experiments suggest that the L22P variant
of pol b somehow retains the ability to form a Schiff’s base
(Figure 5A) but the rate of Schiff base formation is slower
than WT (Figure 5B). It is most likely that residues Ser30
and His34 are not placed in the right position to aid Lys72
in completing the beta elimination reaction. Our results
also suggest that the final step of phosphate removal is

impaired in case of L22P since we did not observe rapid
phosphate removal as with WT, indicating that Lys35 has
most probably lost its rigidity that is required for correct
active site geometry.

L22P and cancer

Our results showing that the L22P gastric cancer-
associated variant lacks dRP lyase and DNA-binding
activities are consistent with the possibility that this
variant is linked to human cancer. Cells sustain at least
20 000 oxidative lesions per cell per day and it is likely that
cancer treatment induces additional DNA damage. Some
of the oxidative base damage could be removed by a
monofunctional DNA glycosylase. If this were the case, it
is likely that in the presence of L22P BER is initiated, the
gap is filled in, but ligation does not occur if dRP group
remains in the DNA. Upon encountering a replication
fork, the unligated nick could be converted to a double-
strand break. If repaired improperly, end joining could
lead to translocations or deletions. If these alterations
occur in key growth control genes, it could lead to
tumorigenesis or metastasis. However, much of the
oxidative base damage is likely to be removed by
bifunctional DNA glycosylases. When this occurs, it is
unlikely that the lack of dRP Lyase activity of L22P plays
a role in increasing genomic instability. Rather, the weak
affinity of L22P for DNA could lead to many unfilled gaps
in cells, which could be converted to double-strand breaks
and lead to genomic instability. Alternatively, the gap
could be enlarged by nucleases and polymerases other
than pol b, such as Y family polymerases with dRP lyase
activity that could fill in the gap in an error prone manner,
resulting in mutations and leading to cancer. Preliminary
studies in our laboratory, showing that expression of L22P
in mouse fibroblasts induces cellular transformation,
(Dalal and Sweasy, unpublished data), support this idea.
The presence of the dRP lyase-deficient L22P is likely to
be important during treatment of the tumor by drugs
including alkylating agents. These agents result in
cytoxicity in the absence of DNA repair, but it is likely
that many of the lesions are repaired by the BER pathway.
It is likely that interference with BER leads to increased
genomic instability.
Interestingly, we have shown that four of the other

pol b cancer-associated variants, namely, K289M, I260M
(14), E295K (16) and Y265C (Sweasy, unpublished data),
induce cellular transformation when expressed in mouse
fibroblasts. Each of these variants is likely to induce
cellular transformation by causing genomic instability.
The K289M and I260M colon- and prostate cancer-
associated variants are sequence-specific mutator poly-
merases (15,34). The gastric cancer-associated E295K
variant is polymerase deficient and acts in a dominant
negative manner to interfere with BER. This variant
also induces sister chromatid exchanges in mouse
cells (16). Our combined studies of these mutants
support the mutator phenotype hypothesis of human
cancer (35) and suggest that BER is a tumor suppressor
mechanism.
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