

http://pubs.acs.org/journal/acsodf

Article

# Hydrogen Generation over RuO<sub>2</sub> Nanoparticle-Decorated LaNaTaO<sub>3</sub> Perovskite Photocatalysts under UV Exposure

Maha Alhaddad, Adel A. Ismail,\* and Zaki I. Zaki



**ABSTRACT:** The efficacy of LaNaTaO<sub>3</sub> perovskites decoration RuO<sub>2</sub> at diverse contents for the photocatalytic H<sub>2</sub> generation has been explored in this study. The photocatalytic performance of RuO<sub>2</sub> co-catalyst onto mesoporous LaNaTaO<sub>3</sub> was evaluated for H<sub>2</sub> under UV illumination. 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite photocatalyst revealed the highest photocatalytic H<sub>2</sub> generation performance, indicating that RuO<sub>2</sub> nanoparticles could promote the photocatalytic efficiency of LaNaTaO<sub>3</sub> perovskite significantly. The H<sub>2</sub> evolution rate of 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite employing either 10% CH<sub>3</sub>OH or pure H<sub>2</sub>O, respectively. Interestingly, the photonic efficiency of 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite in the presence of aqueous CH<sub>3</sub>OH solutions as a hole sacrificial agent. The high separation of charge carriers is interpreted by the efficient hole capture using CH<sub>3</sub>OH, hence



leading to greater  $H_2$  generation over  $RuO_2/LaNaTaO_3$  perovskites. This is attributed to an adjustment position between recombination electron-hole pairs and also the reduction of potential conduction alignment as a result of  $RuO_2$  incorporation. The suggested mechanisms of  $RuO_2/LaNaTaO_3$  perovskites for  $H_2$  generation employing either  $CH_3OH$  or pure  $H_2O$  were discussed. The photocatalytic performances of the perovskite photocatalyst were elucidated according to the PL intensity and the photocurrent response investigations.

# INTRODUCTION

With the growth of the industrial and scientific community, the photocatalyst as a favorable semiconductor material is considered as a promising and hot theme of research studies owing to its wide implementations in considerable fields, particularly for energy saving and environmental protection.<sup>1-3</sup> Photocatalytic production of molecular hydrogen through semiconductor materials as efficient photocatalysts is considered as a promising avenue to produce sustainable and clean energy,<sup>1-3</sup> and promoting semiconductor materials under visible light with a high photonic efficiency for the conversion of solar energy to molecular hydrogen is ultimately desired for potential applications.<sup>4-6</sup> Recently, water splitting to generate molecular hydrogen employing perovskite oxide materials  $(ABO_3)$  has attracted increasing attention with a high photonic efficiency. Among ABO3 perovskite oxide materials, the NaTaO<sub>3</sub> photocatalyst has been realized for hydrogen generation from H<sub>2</sub>O using UV irradiation.<sup>7-16</sup> The band gap of NaTaO<sub>3</sub> is 4.0 eV, and it can be synthesized by diverse approaches, for instance, solid-state,  $^{7-9,13,16}$  molten salt,  $^{17}$  sol-gel,  $^{11}$  and hydrothermal methods.  $^{10,13-15}$ 

To promote the photocatalytic activity of NaTaO<sub>3</sub> particles, numerous scientists have made great effort to employ other synthetic avenues to obtain NaTaO<sub>3</sub> nanoparticles as efficient photocatalysts. NaTaO<sub>3</sub> as a colloidal array was synthesized using carbon mesopores as a direct structure agent for casting that was reproduced using silica nanosphere configuration.<sup>14</sup>

The mesoporous carbon matrix was eliminated by calcination, and then NaTaO<sub>3</sub> nanoparticles as a colloidal array were obtained with a 34 m<sup>2</sup> g<sup>-1</sup> surface area and a 20 nm particle size. The obtained NaTaO<sub>3</sub> prepared by this approach exhibited a 3 times higher photocatalytic efficiency than that prepared from the traditional hydrothermal synthesis for overall water splitting.<sup>14</sup> NaTaO<sub>3</sub> nanoparticles with ~25 nm crystallite size, synthesized by an exo-template method, exhibited an ~20 times higher hydrogen production rate than those synthesized using the solid-state approach.<sup>16</sup>

The recombination of photogenerated holes and electrons of large NaTaO<sub>3</sub> nanoparticles was faster than those in smaller NaTaO<sub>3</sub> nanoparticles with high crystallinity. On the other hand, much effort was made to perform a greater photonic efficiency of lanthanide-doped NaTaO<sub>3</sub>.<sup>18-2218-22</sup> The pho-

Received:February 1, 2021Accepted:March 31, 2021Published:April 8, 2021





tonic efficiency of NaTaO<sub>3</sub> is greatly promoted by employing a co-catalyst such as Ru, NiO, Pt, or Rh, loaded on the NaTaO<sub>3</sub> surface.<sup>23-28</sup> In general, loading of co-catalysts at different contents onto the photocatalyst surface led to a significant boost of molecular H<sub>2</sub> production compared with pure photocatalysts. A co-catalyst serves as a trapping agent of electrons, which produces a prolonged lifetime of photoinduced charge carriers, reducing their recombination rate. In terms of the co-catalyst-loaded semiconductor photocatalyst preparation, it is concluded that the crystalline structure of the prepared photocatalysts is very susceptible to synthetic approaches such as solid-state,<sup>11,29,30</sup> solvothermal,<sup>30</sup> sol–gel,<sup>30</sup> hydrothermal,<sup>22</sup> alkalide reduction,<sup>33</sup> flux,<sup>34</sup> and electrospinning methods.<sup>35</sup> NaTaO<sub>3</sub>-based photocatalysts were synthesized via the traditional solid-state and sol-gel approaches. The conventional solid-state approach needs elevated annealing temperatures to produce NaTaO<sub>3</sub> with orthorhombic structure, whereas the sol-gel avenue requires low temperatures during the preparation to obtain  $NaTaO_3$ with a monoclinic structure.<sup>10,36,37</sup> Also,  $NaTaO_3$ -based photocatalysts could be prepared by the hydrothermal process.<sup>37,38</sup> Efficient separation and inhibition recombination of charge carriers are paramount for H<sub>2</sub>O splitting to create molecular H<sub>2</sub>. In addition, separation and fabrication of active sites for H<sub>2</sub> generation are indispensable. Obviously, incorporation of RuO2 co-catalysts onto NaTaO3 perovskite surface is substantial for boosting their photonic efficiency for the production of molecular hydrogen. The photonic efficiency of NaTaO<sub>3</sub>-based photocatalysts could be considerably calculated by doping foreign ions in the NaTaO<sub>3</sub> lattice.

Therefore, in the present proposal, synthesis of mesoporous  $RuO_2/LaNaTaO_3$  perovskites at different  $RuO_2$  contents for molecular H<sub>2</sub> generation was investigated employing the  $CH_3OH/H_2O$  system. The H<sub>2</sub> evolution rate of  $3\% RuO_2/LaNaTaO_3$  perovskite is 11.6 and 1.3 times greater than that of the LaNaTaO\_3 perovskite employing 10% methanol pure H<sub>2</sub>O, respectively. Interestingly, the photonic efficiency of  $3\% RuO_2/LaNaTaO_3$  perovskite in the presence of aqueous  $CH_3OH$  solutions. The suggested mechanisms of  $RuO_2/LaNaTaO_3$  perovskites for H<sub>2</sub> evolution employing aqueous  $CH_3OH$  solutions and pure H<sub>2</sub>O were discussed. The photocatalytic performances of perovskite photocatalyst were evaluated according to the PL intensity and the photocurrent response investigations.

## RESULTS AND DISCUSSION

Perovskite Investigations. X-ray diffraction patterns of LaNaTaO<sub>3</sub>and RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskites at different RuO<sub>2</sub> contents were investigated, as shown in Figure 1. The XRD pattern of LaNaTaO<sub>3</sub> perovskite was assigned as the monoclinic structure of the synthesized LaNaTaO<sub>3</sub> perovskite. The peaks at 22.91, 32.36, 40.04, 46.71, 52.61, 58.17, 68.08, 72.9, and 77.4° (Figure 1a) have corresponded to the planes of (100), (101), (111), (200), (102), and (121) (JCPDS no. 74-2478). After addition of  $RuO_2$  at different contents of 0.5, 1, 3, and 5%, the intensity of the mean peak is gradually decreased with increasing  $RuO_2$  content (Figure 1b-d). It is documented that the ionic radii of  $La^{3+}$  (1.36 Å) and  $Na^{+}$  (1.39 Å) ions are equivalent.<sup>39</sup> In addition, the ionic radius of the  $Ta^{5+}$  ion (0.64) Å) is notably smaller than that of the  $La^{3+}$  ion (1.032 Å).<sup>39</sup> If  $Ta^{5+}$  ions were replaced with  $La^{3+}$  ions at the B site position in the perovskite structure, a considerable shift should be



Figure 1. X-ray diffraction peaks around  $32.5^{\circ}$  of (a) LaNaTaO<sub>3</sub> and LaNaTaO<sub>3</sub> doped with RuO<sub>2</sub>: (b) 1%, (c) 3%, and (d) 5%.

recognized. Interestingly, there was no crystalline phase involving RuO<sub>2</sub> at different RuO<sub>2</sub> concentrations of 0.5–5% that could be detected, indicating that RuO<sub>2</sub> nanoparticles are highly contributed over the mesoporous La<sub>0.02</sub>Na<sub>0.98</sub>TaO<sub>3</sub> network with a small particle size. This is attributed to the adsorption of the Ru(III)–acetylacetonate complex onto the La<sub>0.02</sub>Na<sub>0.98</sub>TaO<sub>3</sub> surface, and then the obtained powder was annealed at 450 °C and the adsorbed Ru(III)–acetylacetonate complex was decomposed to RuO<sub>2</sub> nanoparticles onto the surface of the LaNaTaO<sub>3</sub> perovskite network and inside the walls of the pores. The possibility of interaction (substitution of Ru<sup>4+</sup> for Ta<sup>5+</sup>) between equivalent ionic radii materials Ru<sup>4+</sup> (0.62 Å) and Ta<sup>5+</sup> (0.64 Å) could partly explain this observation.

Figure 2 shows SEM images of (a) bare LaNaTaO<sub>3</sub> perovskite and RuO<sub>2</sub>/LaNaTaO<sub>3</sub> at 0.5% (b), 1% (c), 3% (d), and 5% (e) loadings. The ordered surface nanostructure of the LaNaTaO<sub>3</sub> perovskite was self-constructed as shown in Figure 2a. The particle sizes of the LaNaTaO<sub>3</sub> perovskite were enlarged on increasing the RuO<sub>2</sub> content from 0.5 to 5% (Figure 2b-e). These characteristics are advantageous in terms of small particle size and high crystallinity for the enhanced photocatalytic efficiency of perovskite photocatalysts. EDS analysis showed the presence of Ru, La, Na, and O and proved that the RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite consisted of the precursor ratios employed in the starting mixtures. The EDS quantitative analysis of 1%RuO2/LaNaTaO3 shows that the weight percents of Ru, La, Na, Ta, and O are 0.08, 0.42, 16.91, 18.90, and 63.68, respectively. Figure 3 displays the TEM images of the structure and morphology of mesoporous LaNaTaO<sub>3</sub>, and 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite. The LaNa-TaO<sub>3</sub> perovskite particles were highly dispersed with uniform shape and size ( $\sim 10$  nm) as clearly displayed in Figure 3a. The morphology of the 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> NPs is similar to the bare LaNaTaO<sub>3</sub> perovskite in terms of shape and size (Figure 3b). The atomic planes of RuO<sub>2</sub> and NaTaO<sub>3</sub> NPs were estimated at 3.2 and 3.80 Å, respectively, which matches to the lattice spacing of (110) and (111), as obviously depicted in Figure 3c, and the NaTaO<sub>3</sub> and RuO<sub>2</sub> NPs are connected, along with the well matching of selected area electron diffraction of NaTaO<sub>3</sub> perovskite with the orthorhombic



Figure 2. Scanning electron microscope images of (a) LaNaTaO<sub>3</sub> and LaNaTaO<sub>3</sub> doped with RuO<sub>2</sub>: (b) 0.5%, (c) 1%, (d) 3%, and (e) 5%. (f) EDS pattern of 1%RuO<sub>2</sub>-doped La/NaTaO<sub>3</sub>.



Figure 3. TEM images of bare LaNaTaO<sub>3</sub> (a) and 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> nanocomposite (b). HRTEM image of mesoporous 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> nanocomposite (c). Selected area electron diffraction of 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> (d).

crystal (Figure 3d). The high crystallinity of the synthesized  $RuO_2/LaNaTaO_3$  perovskite was confirmed by clear lattice spacing of atomic planes (Figure 3d).

Nitrogen adsorption isotherms of the bare LaNaTaO<sub>3</sub> and 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskites are depicted in Figure 4. The adsorption isotherms of both LaNaTaO<sub>3</sub> and 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskites are of typical reversible type IV. The inflection sharpness was obtained at relative pressures in the capillary condensation range of 0.45–0.7, resulting in mesostructured materials. The mesopores were formed as a

result of interparticle voids between prepared nanoparticles. The mesoporosity can be explained by the formation of irregular voids between LaNaTaO<sub>3</sub> particles. In addition, the existence of voids among LaNaTaO<sub>3</sub> NPs participates in boosting the surface area of the prepared LaNaTaO<sub>3</sub> photocatalyst. The BET surface area of 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite was calculated to be 34 m<sup>2</sup> g<sup>-1</sup>.

XPS spectroscopy was used to examine the states and composition of the 1%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> photocatalyst as displayed in Figure 5. Figure 5a shows two peaks located at



Figure 4. N<sub>2</sub> sorption isotherms of the mesoporous LaNaTaO<sub>3</sub> and 1%RuO<sub>2</sub>/LaNaTaO<sub>3</sub>.

838.45 and 834.45 eV for La 3d<sub>3/2</sub> and La 3d<sub>5/2</sub>, respectively, which are comparable to the existence of La<sup>3+</sup> in LaNaTaO<sub>3</sub>. As displayed in Figure 4b, the Ru 3d spectrum exhibited two mean peaks centered at 284.44 and 279.62 eV referred to Ru  $3d_{3/2}$  and Ru  $3d_{5/2}$ , respectively, emphasizing the presence of Ru in the Ru<sup>4+</sup> form. Figure 5c shows two peaks at 1 and 27.9 eV for the Ta 4f spectrum, confirming the existence of Ta in the Ta<sup>5+</sup> form.<sup>40</sup> It is attributed to one mean peak for the O 1s spectrum at 530.1 eV, which is confirmed to the presence of O atoms in the LaNaTaO<sub>3</sub> crystal lattice; besides, there are other two peaks centered at 531.4 and 532.5 eV, leading to the presence of OH surface and adsorbed O (Figure 5d), respectively.<sup>41</sup> The Na 1s peak is located at  $\sim 1071.3$  eV, identifying the Na<sup>+</sup> oxidation state, as obviously seen in Figure 5e. The XPS results confirmed that the prepared perovskite was composed of Ru<sup>4+</sup>, Na<sup>+</sup>, La<sup>3+</sup>, Ta<sup>5+</sup>, and oxygen in the crystal lattice, and their atomic percentages were determined to be approximately 0.98, 7.87, 1.98, 70.82, and 19.05%, respectively.

The UV-vis spectra of bare LaNaTaO<sub>3</sub> and RuO<sub>2</sub>/ LaNaTaO<sub>3</sub> perovskites were examined to demonstrate the effects of Ru<sup>4+</sup> doping on the band gap structure modulation of the LaNaTaO<sub>3</sub> perovskites shown in Figure 6. The DRS of the prepared photocatalysts displayed a broad absorption in the UV region (250-320 nm), leading to the electronic transformation from O 2p to the Ta 5d orbitals. The absorption spectrum of Ru4+-doped LaNaTaO3 perovskite is different from that of LaNaTaO<sub>3</sub> perovskite (Figure 6a). The Ru<sup>4+</sup>doped LaNaTaO<sub>3</sub> perovskite sample revealed a superficial peak in the range of 450-600 nm with higher intensities (Figure 6a). The direct optical band gap energy of RuO<sub>2</sub>/LaNaTaO<sub>3</sub> photocatalysts at different RuO<sub>2</sub> contents can be calculated as follows:  $\alpha h\nu = A(h\nu - E_g)^{1/2}$ , where  $\alpha$ ,  $E_g$ ,  $h\nu$ , A, and n are the absorption coefficient, band gap energy, photon energy, constant, and incident light, respectively.<sup>24</sup> Band gap energy was estimated to be ~4.08-4.01 eV corresponding to the absorption in the 307-310 nm region with the increase of RuO<sub>2</sub> content as depicted in Figure 6b. The calculated band gap energies of the RuO<sub>2</sub> loading LaNaTaO<sub>3</sub> perovskite photocatalysts with various RuO<sub>2</sub> contents are listed in Table 1. The addition of  $RuO_2$  did not change the absorption band for LaNaTaO<sub>3</sub>; thus, the band gap values are very close.

Photocatalytic Performance. Photocatalytic tests were conducted on mesoporous RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskites for  $H_2$  generation from either  $CH_3OH$  or pure  $H_2O$ . The  $RuO_2$ loading LaNaTaO<sub>3</sub> perovskite at different contents (0-5%)was assessed for H<sub>2</sub> generation from either pure H<sub>2</sub>O or CH<sub>3</sub>OH (10 vol %). The illumination time of the photocatalytic H<sub>2</sub> evolution was conducted over the obtained photocatalysts employing pure H<sub>2</sub>O and CH<sub>3</sub>OH, as illustrated in Figure 7a,b. The findings exhibited that the H<sub>2</sub> evolution immediately started as the UV lamp was turned on. H<sub>2</sub> evolution rates were reached to steady state within 30 min. At this stage, the photocatalytic reaction was illuminated for 6 h to detect and determine the H<sub>2</sub> evolution rate. Finally, the UV lamp was turned off, and the H<sub>2</sub> evolution abruptly declined to reach the baseline (Figure 7a,b). The H<sub>2</sub> evolution rates were calculated by subtracting the baseline and average of the values obtained from the curve with almost steady rates of  $H_2$  evolution, as shown in Figure 7. The findings indicated that there was no H<sub>2</sub> evolution without using the photocatalysts. It can be seen that the mesoporous LaNaTaO3 perovskite photocatalyst exhibits the minimum photocatalytic performance. The H<sub>2</sub> evolution ultimately increased when RuO<sub>2</sub> was grafted onto LaNaTaO<sub>3</sub> perovskite surface. In addition, the photocatalytic efficiency of the LaNaTaO<sub>3</sub> perovskite was enhanced with the increment of the RuO<sub>2</sub> content, achieving the highest H<sub>2</sub> evolution at 3% RuO<sub>2</sub>.

Figure 8a exhibits H<sub>2</sub> evolution rates evolution over LaNaTaO<sub>3</sub> perovskite loading different RuO<sub>2</sub> contents (0, 0.5, 1, 3, and 5%), from pure  $H_2O$  and from 10% CH<sub>3</sub>OH. The H<sub>2</sub> evolution rate was increased from 0 to 1.29  $\mu$ mol h<sup>-1</sup> when pure H<sub>2</sub>O was used with the increase of RuO<sub>2</sub> content from 0 to 5%. However, in the case of 10% methanol, the  $H_2$  evolution rate was improved from 0.99 to 11.54  $\mu$ mol h<sup>-1</sup> with the increase of  $RuO_2$  content from 0 to 5%. Interestingly, the H<sub>2</sub> evolution rate of 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite is the fastest among all of the synthesized photocatalysts. Besides, the H<sub>2</sub> evolution rate of 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite is 11.6 times greater than that of LaNaTaO<sub>3</sub> employing 10% methanol; however, in the case of pure  $H_2O$ , the  $H_2$  evolution rate of 3% RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite was enhanced 1.3 times than LaNaTaO<sub>3</sub>. Also, the H<sub>2</sub> evolution rate of 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> employing 10% methanol is 9 times higher than employing pure H<sub>2</sub>O. Figure 8b shows the photonic efficiency of  $RuO_2/$ LaNaTaO<sub>3</sub> perovskite at different  $RuO_2$  contents (0.5, 1, 3, and 5%), from pure water and 10% methanol. The results revealed that the photonic efficiency was increased from 0 to 1.5 with the increase of the  $RuO_2$  content from 0 to 5% employing pure water; however, the photonic efficiency was increased from 0.2 to 2% with increasing the RuO<sub>2</sub> content from 0 to 3%; then, it was decreased to 1.7% at 5%RuO<sub>2</sub> using 10% methanol. Interestingly, the photonic efficiency of 3% RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite was enhanced 10 times than bare LaNaTaO<sub>3</sub> perovskite. Table 2 summarizes the comparison between the synthesized photocatalysts and other samples for photocatalytic H<sub>2</sub> generation.

It is supposed that the high RuO<sub>2</sub> content can cover LaNaTaO<sub>3</sub> perovskite surface, suggesting reduction of the photoexciting capability of the LaNaTaO<sub>3</sub> perovskite photocatalyst.<sup>42</sup> In addition, it could be caused by the agglomeration and growth of RuO<sub>2</sub> onto mesoporous LaNaTaO<sub>3</sub> perovskite surface and hence weakened the role of the co-catalyst.<sup>24,43</sup> The 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite revealed the maximum photocatalytic performance among all of the synthesized



Figure 5. XPS analysis of 1%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> exhibiting the high-resolution spectra for La 3d (a), Ru 3d (b), Ta 4f (c), O 1s (d), and Na 1s (e).

photocatalysts, indicating that the incorporation of  $RuO_2$  could promote the photocatalytic activity of LaNaTaO<sub>3</sub> perovskite significantly. The improved photocatalytic performance of the  $RuO_2/LaNaTaO_3$  perovskite photocatalyst was explained by the effective separation of charge carriers in the present  $RuO_2/LaNaTaO_3$  perovskite that is accomplished by exciting the electrons from the VB to the CB of LaNaTaO<sub>3</sub>. Then, the photogenerated electrons migrate to  $RuO_2$  NPs (Scheme 1). The addition of  $RuO_2$  nanoparticles onto the LaNaTaO<sub>3</sub> perovskite leads to prepared materials possessing Brønsted acids with the distinguishing interaction of the Ru–O···H bond, However, the acid strength onto the surface of RuO<sub>2</sub> attributes to its capability to eliminate a proton. It is documented that RuO<sub>2</sub> possesses the highest electronegativity, small particle size, and the highest oxidation state (IV).<sup>44</sup> Therefore, RuO<sub>2</sub> has the strongest Brønsted acid and shows the maximum photocatalytic performances for H<sub>2</sub> evolution in both CH<sub>3</sub>OH solution and pure H<sub>2</sub>O due to the prohibition of



Figure 6. (a) Diffuse reflectance spectra of  $LaNaTaO_3$  and  $LaNaTaO_3$  doped with  $RuO_2$  at varying contents. (b) Plot of transferred Kubelka–Munk versus energy of  $LaNaTaO_3$  and  $LaNaTaO_3$  doped with  $RuO_2$  at varying contents.

Table 1. Hydrogen Production from Methanol and Water over Mesoporous RuO<sub>2</sub>/LaNaTaO<sub>3</sub> Photocatalyst at Different RuO<sub>2</sub> Contents

|                                                |                  | H <sub>2</sub> ev<br>rate (µ | $H_2$ evaluation<br>rate ( $\mu$ mol h <sup>-1</sup> ) |                  | PE (%)             |  |
|------------------------------------------------|------------------|------------------------------|--------------------------------------------------------|------------------|--------------------|--|
| photocatalysts                                 | band gap<br>(eV) | H <sub>2</sub> O             | СН <sub>3</sub> ОН                                     | H <sub>2</sub> O | CH <sub>3</sub> OH |  |
| LaNaTaO3                                       | $3.98 \pm 01$    | 0.00                         | 0.99                                                   | 0.00             | 0.02               |  |
| 0.5%RuO <sub>2</sub> /<br>LaNaTaO <sub>3</sub> | 4.08 ± 01        | 0.88                         | 10.96                                                  | 0.02             | 0.19               |  |
| $1\% RuO_2/LaNaTaO_3$                          | $4.08 \pm 01$    | 1.07                         | 9.66                                                   | 0.02             | 0.16               |  |
| $3\% RuO_2/LaNaTaO_3$                          | 4.18 ± 01        | 1.26                         | 11.54                                                  | 0.02             | 0.20               |  |
| $5\% RuO_2/LaNaTaO_3$                          | 4.18 ± 01        | 1.29                         | 8.81                                                   | 0.17             | 0.15               |  |

the unwanted backreaction of  $O_2$  with  $H_2$  resulting in  $H_2O$  onto the  $RuO_2$  surface.  $^{44,45}$ 

To confirm the reason for the promotion of the photocatalytic activity of  $RuO_2/LaNaTaO_3$  perovskites, photocurrent response and photoluminescence (PL) were measured. The photocurrent response over LaNaTaO<sub>3</sub> and  $RuO_2/$ LaNaTaO<sub>3</sub> perovskites is depicted in Figure 9a in the dark and under illumination. In the dark, there was no response current; however, upon illumination, bare LaNaTaO<sub>3</sub> perovskite revealed the lowest photoresponse. With the increase of  $RuO_2$  from 1 to 3%, the photocurrent intensity was increased gradually decreased at 5% $RuO_2/LaNaTaO_3$  perovskite, implying the high tendency upon illumination to facilitate the separation of photo-created electrons and holes. This result is



**Figure 7.** Time course of photocatalytic  $H_2$  evolution over LaNaTaO<sub>3</sub> perovskite loading different RuO<sub>2</sub> contents (0.5, 1, 3, and 5%), from pure water (a) and 10% methanol (b).

consistent and explained the photocatalytic H<sub>2</sub> generation. The PL of bare LaNaTaO<sub>3</sub> and RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskites at diverse RuO<sub>2</sub> percentages is displayed in Figure 9b. The PL peak of bare LaNaTaO<sub>3</sub> perovskite was assigned at  $\lambda \sim 469.34$  nm with a higher PL intensity. However, the PL intensity of the RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskites revealed a lower intensity than bare LaNaTaO<sub>3</sub> perovskite. The RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskites exhibited a low exciton emission owing to the expedition of charge carrier separation. Interestingly, the PL intensity of RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskites decreased with the increase of RuO<sub>2</sub> content, presenting photoinduced electron transfer from the CB of LaNaTaO<sub>3</sub> perovskites to the close contact RuO<sub>2</sub> NPs.

The mechanism of highly effective  $H_2$  evolution over  $RuO_2/LaNaTaO_3$  photocatalysts in pure  $H_2O$  and  $CH_3OH$  was demonstrated in Scheme 1. After UV illumination, the generated electrons and holes move in a prolonged space to reach the active sites of the  $RuO_2$  surface. As the  $RuO_2$  nanoparticle is decreased in terms of size, the probability of the surface reaction of the generated electrons and holes with adsorbed methanol and water molecules is boosted compared to that of the bulk recombination of charge carriers.<sup>27</sup> At the conduction band of LaNaTaO<sub>3</sub> perovskite, the adsorbed  $H_2O$  molecules can be effectively reduced to molecular  $H_2$  onto  $RuO_2$  nanoparticles. The ordered surface  $RuO_2/LaNaTaO_3$ 



**Figure 8.** (a)  $H_2$  evolution rates evolution over LaNaTaO<sub>3</sub> loading different RuO<sub>2</sub> contents (0.5, 1, 3, and 5%) from pure water and from 10% methanol. (b) Photonic efficiency of LaNaTaO<sub>3</sub> and RuO<sub>2</sub> loading LaNaTaO<sub>3</sub> at different contents (0.5, 1, 3, and 5%) from pure water and from 10% methanol.

perovskite with a small particle size has promoted the suppression of carrier recombination and of active site separation to prohibit the backward reaction of  $O_2$  with  $H_2$ , indicating the highly effective  $H_2O$  splitting. In the case of  $CH_3OH$  as a sacrificial agent, the mechanism is not clear because it is not determined whether the movement of electrons from the reduction of  ${}^{\circ}CH_2OH$  radical or conduction band of LaNaTaO<sub>3</sub> perovskite is the rate-limiting step or if the photocatalytic activity might be determined by transporting hole to the  $CH_3OH$ .

Scheme 1. Schematic Demonstration of Hydrogen Production over Mesoporous RuO<sub>2</sub>/La<sub>0.02</sub>Na<sub>0.98</sub>TaO<sub>3</sub> Photocatalyst in the Presence of Methanol



# CONCLUSIONS

Synthesis of mesoporous RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskites at different RuO<sub>2</sub> contents for the generation of molecular H<sub>2</sub> was investigated employing the CH<sub>3</sub>OH/H<sub>2</sub>O system. The XRD findings show that mesoporous LaNaTaO<sub>3</sub> perovskite was formed as the monoclinic structure. The adsorption isotherms of LaNaTaO<sub>3</sub> perovskite type IV result in a mesopores structure. The  $H_2$  evolution rate in the case of pure  $H_2O$  was increased from 0 to 1.29  $\mu$ mol h<sup>-1</sup> with the increase of RuO<sub>2</sub> content from 0 to 5%. However, in the case of 10% methanol, the H<sub>2</sub> evolution rate was increased from 0.99 to 11.54  $\mu$ mol  $\rm h^{-1}$  with the increase of the  $\rm RuO_2$  content from 0 to 5%. The  $\rm H_2$  evolution rate of  $3\% RuO_2/LaNaTaO_3$  is the fastest among all of the synthesized photocatalysts. The H<sub>2</sub> evolution rate of the 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite is 11.6 times higher than that of LaNaTaO<sub>3</sub> employing 10% methanol; however, in the case of pure  $H_2O$ , the  $H_2$  evolution rate of the 3%RuO<sub>2</sub>/ LaNaTaO<sub>3</sub> perovskite was enhanced 1.3 times than LaNa-TaO<sub>3</sub>. The H<sub>2</sub> evolution rate of the 3%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite employing 10% methanol is 9 times higher than employing pure  $H_2O$ . The photonic efficiency of the 3%RuO<sub>2</sub>/ LaNaTaO<sub>3</sub> perovskite was enhanced 10 times than LaNaTaO<sub>3</sub>.

## EXPERIMENTAL SECTION

**Materials.** Ruthenium(III) acetylacetonate, Ru(acac)<sub>3</sub>, sodium acetate CH<sub>3</sub>COONa, CH<sub>3</sub>COOH, Ti(OC(CH<sub>3</sub>)<sub>3</sub>)<sub>4</sub> (TBOT), lanthanum nitrate, La(NO<sub>3</sub>)<sub>3</sub>·xH<sub>2</sub>O, tantalum(V) chloride, TaCl<sub>5</sub>, HCl, CH<sub>3</sub>OH, F-127 pluronic (EO<sub>106</sub>-PO<sub>70</sub>EO<sub>106</sub>, MW 12 600 g mol<sup>-1</sup>), and C<sub>2</sub>H<sub>5</sub>OH were procured from Sigma-Aldrich.

**Preparation of Mesoporous RuO**<sub>2</sub>/LaNaTaO<sub>3</sub> **Perovskites.** Mesoporous  $La_xNa_{1-x}TaO_3$  (x = 0.02) perovskites were synthesized via a wet chemical approach employing F127 copolymer as a proper template. La and Na nanoparticles were homogeneously distributed into the tantalum oxide framework

Table 2. Comparison between Photocatalytic  $H_2$  Generation over the Synthesized Photocatalyst in the Present Work and Other LaNaTaO<sub>3</sub> Photocatalysts

| pho                                | otocatalysts                                            | reaction medium    | light source | generation H <sub>2</sub> rate                   | references |
|------------------------------------|---------------------------------------------------------|--------------------|--------------|--------------------------------------------------|------------|
| NiO/La <sub>x</sub> l              | Na <sub>1-x</sub> TaO <sub>3</sub>                      | CH <sub>3</sub> OH | UV           | 26.94 mmol g <sup>-1</sup> h                     | 23         |
| 2%Ag/La                            | $_{0.02}$ Na $_{0.98}$ TaO $_{3}$                       | glycerol           | UV           | 332.43 $\mu$ mol g <sup>-1</sup> h <sup>-1</sup> | 24         |
| 1%Pt/La                            | $_{0.02}Na_{0.98}TaO_{3}$                               | glycerol           | UV           | 86.16 $\mu$ mol g <sup>-1</sup> h <sup>-1</sup>  | 25         |
| 0.6%Nd <sub>2</sub> 0              | $O_3/LaNaTaO_3$                                         | glycerol           | UV           | 95 $\mu$ mol g <sup>-1</sup> h <sup>-1</sup>     | 26         |
| 1%In <sub>2</sub> O <sub>3</sub> / | 'La <sub>0.02</sub> Na <sub>0.98</sub> TaO <sub>3</sub> | glycerol           | UV           | 235 $\mu$ mol g <sup>-1</sup> h <sup>-1</sup>    | 27         |
| 3%RuO <sub>4</sub> /               | 'La <sub>0.02</sub> Na <sub>0.98</sub> TaO <sub>3</sub> | CH <sub>3</sub> OH | UV           | 11.54 $\mu$ mol h <sup>-1</sup>                  | this work  |



Figure 9. (A) Photocurrent density response of (a) LaNaTaO<sub>3</sub> and LaNaTaO<sub>3</sub> doped with  $RuO_2$ : (b) 1%, (c) 3%, and (d) 5%. (B) PL spectra of (a) LaNaTaO<sub>3</sub> and LaNaTaO<sub>3</sub> doped with  $RuO_2$ : (b) 1%, (c) 3%, and (d) 5%.

utilizing the assembly approach. To reduce possible changeability, the molar ratio o f Ta<sup>5+</sup>:F127:C<sub>2</sub>H<sub>5</sub>OH:HCl:CH<sub>3</sub>COOH was maintained at 1:0.02:50:2.25:3.75. F-127 polymer surfactant (1.6 g) is added to 30 mL of C<sub>2</sub>H<sub>5</sub>OH using a magnetic stirrer at room temperature for 60 min; afterward, 0.74 mL of HCl and 2.3 mL of CH<sub>3</sub>COOH were added to the clear solution F127 in ethanol, and then 1.82 g of  $TaCl_5$  and 0.047 g of  $La(NO_3)_3$ .  $xH_2O$  were added to the above mixture. Afterward, 3.5 g of CH<sub>3</sub>COONa was added with stirring for 60 min to obtain LaNaTaO<sub>3</sub> perovskite. The mesophase was put in a Petri dish for drying at 110 °C for 24 h. The as-made mesophase was annealed at 450 °C for 4 h and then 650 °C for 4 h and annealed at 900 °C for 8 h in the air to obtain mesoporous LaNaTaO<sub>3</sub> perovskite. The synthesized LaNaTaO<sub>3</sub> perovskite (1 g) was suspended in 100 mL of ethanol, and a desired amount of ruthenium(III) acetylacetonate solutions containing the equivalent amount of Ru34 was added to the suspension solution with sonication for 10 min to get 0.5, 1, 3, and 5% RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskites. The mixture was agitated magnetically for 3 h. The obtained samples were dried at 110 °C for 12 h and then annealed for 3 h at 450 °C to obtain mesoporous 0.5, 1, 3, and 5% RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskites.

Characterization of Mesoporous RuO<sub>2</sub>/LaNaTaO<sub>3</sub> Perovskites. The detailed physicochemical characterization of the developed RuO<sub>2</sub>/LaNaTaO<sub>3</sub> photocatalyst was performed to have a better understanding of composition, structure, and surface morphology of the perovskite photocatalysts. The X-ray diffraction pattern was measured through Cu K $\alpha_{1/2}$ ,  $\lambda \alpha_1 = 154.060$  pm,  $\lambda \alpha_2 = 154.439$  pm radiation using a Bruker AXS D4 Endeavour X diffractometer. Field emission secondary electron microscopy (FE-SEM) was conducted with an FE scanning electron microanalyzer (JEOL-6300F, 5 kV). The N<sub>2</sub> isotherm of the  $RuO_2/$ LaNaTaO<sub>3</sub> perovskites was performed at 77 K by analyzing adsorption isotherms with a Micromeritics ASAP 2010 volumetric adsorption unit. UV-vis diffuse reflectance spectra (DRS) of the  $RuO_2/LaNaTaO_3$  perovskites were recorded on a UV-vis spectrophotometer (UV-2600, Shimadzu) at  $\lambda$  = 200-800 nm. A VG Escalab 200R electron spectrometer was applied to examine X-ray photoelectron spectra (XPS) for  $RuO_2/LaNaTaO_3$  perovskites equipped with a Mg K $\alpha$  X-ray source powered at 100 W. The C 1s peak at 284.8 eV was employed as calibration to estimate the binding energies (BE) of 1%RuO<sub>2</sub>/LaNaTaO<sub>3</sub> perovskite.

H<sub>2</sub> Generation Experiments. Hydrogen generation was conducted in a continuous flow setup containing gas supply with a mass flow controller and a 100 cm<sup>3</sup> photoreactor quartz glass with a double jacket connecting a quadrupole mass spectrometer (QMS) for  $H_2$  and  $O_2$  detection. The QMS sampling rate is 1 cm<sup>3</sup> min<sup>-1</sup>, facilitating a speedy  $H_2$  and  $O_2$ detection. Furthermore, this experimental setup provides an online recording of the whole course of the photocatalytic hydrogen generation with the utility of the simultaneous monitoring of the formation of H<sub>2</sub> and O<sub>2</sub> gases through the photocatalytic reaction. In the experimental series, 0.05 g of the synthesized LaNaTaO<sub>3</sub> photocatalyst was mixed in 50 mL of pure H<sub>2</sub>O or 10 vol % CH<sub>3</sub>OH aqueous solution and was sonicated to disperse the photocatalyst. Afterward, the photoreactor was locked and connected to the QMS through the stainless steel valves. An Ar gas flux was employed to eliminate the dissolved oxygen from the reactor with the 50  $cm^3 min^{-1}$  flow rate for 10 min through the reactor to ensure there was  $O_2$  or  $H_2$  by the QMS. QMS was calibrated using standard H<sub>2</sub> and O<sub>2</sub> diluted in Ar. The flow rate of Ar gas at 10 cm<sup>3</sup> min<sup>-1</sup> was fixed throughout the photocatalytic system at 25 °C. Before turning on illumination, the photocatalytic reactions with magnetic stirring were kept for 40 min for stabilizing the background of photocatalytic reactions and the baseline was recorded by QMS. Afterward, the suspension was illuminated for 3 h employing an Osram XBO 1000 W Xe arc lamp as a UV source, and it stood inside a Müller LAX parallel photoreactor. During illumination, the obtained H<sub>2</sub> or O<sub>2</sub> gases were monitored under steady-state conditions. After 3 h illumination, the 1000 W Xe arc was turned off permitting the photocatalytic system to get the baseline again.

# AUTHOR INFORMATION

#### **Corresponding Author**

Adel A. Ismail – Advanced Materials Department, Central Metallurgical R&D Institute, CMRDI, Helwan, Cairo 11421, Egypt; © orcid.org/0000-0002-5227-2644; Email: adelali141@yahoo.com

#### Authors

- Maha Alhaddad Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Zaki I. Zaki Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c00584

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

This work was financially supported by the Taif Researchers Supporting Project (TURSP-2020/42), Taif University, Taif, Saudi Arabia.

# REFERENCES

(1) Akhundi, A.; Habibi-Yangjeh, A.; Abitorabi, M.; Pouran, S. R. Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. *Catal. Rev.* **2019**, *61*, 595–628.

(2) Ismail, A. A.; Bahnemann, D. W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. *Sol. Energy Mater. Sol. Cells* **2014**, *128*, 85–101.

(3) Kadi, M. W.; Mohamed, R. M.; Ismail, A. A.; Bahnemann, D. W. Decoration of mesoporous graphite-like  $C_3N_4$  nanosheets by NiS nanoparticle-driven visible light for hydrogen evolution. *Appl, Nanosci.* **2018**, *8*, 1587–1596.

(4) Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. *Chem. Mater.* **2008**, *20*, 35–54.

(5) Castelli, I. E.; Landis, D. D.; Thygesen, K. S.; Dahl, S.; Chorkendorff, I.; Jaramillo, T. F.; Jacobsen, K. W. New cubic perovskites for one-and two-photon water splitting using the computational materials repository. *Energy Environ. Sci.* **2012**, *5*, 9034–9043.

(6) Vojvodic, A.; Nørskov, J. K. Optimizing perovskites for the water-splitting reaction. *Science* **2011**, 334, 1355–1356.

(7) Zhang, G.; Liu, G.; Wang, L.; Irvine, J. T. Inorganic perovskite photocatalysts for solar energy utilization. *Chem. Soc. Rev.* **2016**, *45*, 5951–5984.

(8) Kato, H.; Kudo, A. Water splitting into  $H_2$  and  $O_2$  on alkali tantalate photocatalysts ATaO<sub>3</sub> (A= Li, Na, and K). *J. Phys. Chem. B* **2001**, *105*, 4285–4292.

(9) Kato, H.; Kudo, A. Photocatalytic water splitting into  $H_2$  and  $O_2$  over various tantalate photocatalysts. *Catal. Today* **2003**, *78*, 561–569.

(10) Liu, J. W.; Chen, G.; Li, Z. H.; Zhang, Z. G. Hydrothermal synthesis and photocatalytic properties of  $ATaO_3$  and  $ANbO_3$  (A= Na and K). *Int. J. Hydrogen Energy* **2007**, *32*, 2269–2272.

(11) Hu, C. C.; Tsai, C. C.; Teng, H. Structure characterization and tuning of perovskite-like NaTaO<sub>3</sub> for applications in photoluminescence and photocatalysis. *J. Am. Ceram. Soc.* **2009**, *92*, 460–466.

(12) Li, X.; Zang, J. Facile hydrothermal synthesis of sodium tantalate (NaTaO<sub>3</sub>) nanocubes and high photocatalytic properties. *J. Phys. Chem. C* **2009**, *113*, 19411–19418.

(13) Fu, X.; Wang, X.; Leung, D. Y.; Xue, W.; Ding, Z.; Huang, H.; Fu, X. Photocatalytic reforming of glucose over La doped alkali tantalate photocatalysts for  $H_2$  production. *Catal. Commun.* **2010**, *12*, 184–187.

(14) Yokoi, T.; Sakuma, J.; Maeda, K.; Domen, K.; Tatsumi, T.; Kondo, J. N. Preparation of a colloidal array of  $NaTaO_3$  nanoparticles via a confined space synthesis route and its photocatalytic application. *Phys. Chem. Chem. Phys.* **2011**, *13*, 2563–2570.

(15) Shi, J.; Liu, G.; Wang, N.; Li, C. Microwave-assisted hydrothermal synthesis of perovskite NaTaO<sub>3</sub> nanocrystals and their photocatalytic properties. *J. Mater. Chem.* **2012**, *22*, 18808–18813.

(16) Meyer, T.; Priebe, J. B.; da Silva, R. O.; Peppel, T.; Junge, H.; Beller, M.; Brückner, A.; Wohlrab, S. Advanced charge utilization from NaTaO<sub>3</sub> photocatalysts by multilayer reduced graphene oxide. *Chem. Mater.* **2014**, *26*, 4705–4711.

(17) Li, Y.; Gou, H.; Lu, J.; Wang, C. A two-step synthesis of  $NaTaO_3$  microspheres for photocatalytic water splitting. *Int. J. Hydrogen Energy* **2014**, *39*, 13481–13485.

(18) Porob, D. G.; Maggard, P. A. Flux syntheses of La-doped NaTaO<sub>3</sub> and its photocatalytic activity. *J. Solid State Chem.* **2006**, *179*, 1727–1732.

(19) Yan, S. C.; Wang, Z. Q.; Li, Z. S.; Zou, Z. G. Photocatalytic activities for water splitting of La-doped-NaTaO<sub>3</sub> fabricated by microwave synthesis. *Solid State Ionics* **2009**, *180*, 1539–1542.

(20) Husin, H.; Chen, H. M.; Su, W. N.; Pan, C. J.; Chuang, W. T.; Sheu, H. S.; Hwang, B. J. Green fabrication of La-doped NaTaO<sub>3</sub> via  $H_2O_2$  assisted sol-gel route for photocatalytic hydrogen production. *Appl. Catal., B* **2011**, *102*, 343–351.

(21) Li, X.; Zang, J. Hydrothermal synthesis and characterization of Lanthanum-doped  $NaTaO_3$  with high photocatalytic activity. *Catal. Commun.* **2011**, *12*, 1380–1383.

(22) Iwase, A.; Kato, H.; Kudo, A. The effect of Au cocatalyst loaded on La-doped NaTaO<sub>3</sub> on photocatalytic water splitting and O<sub>2</sub> photoreduction. *Appl. Catal., B* **2013**, *136–137*, 89–93.

(23) Husin, H.; Su, W. N.; Chen, H. M.; Pan, C. J.; Chang, S. H.; Rick, J.; Chuang, W. T.; Sheu, H. S.; Hwang, B. J. Photocatalytic hydrogen production on nickel-loaded  $La_xNa_{1-x}TaO_3$  prepared by hydrogen peroxide-water based process. *Green Chem.* **2011**, *13*, 1745–1754.

(24) Mohamed, R. M.; Ismail, A. A.; Basaleh, A. S.; ir, H. A. Photodeposition of Ag nanoparticles on mesoporous  $LaNaTaO_3$  nanocomposites for promotion  $H_2$  evolution. *Mater. Res. Bull.* **2020**, 131, No. 110962.

(25) Mohamed, R. M.; Ismail, A. A. Mesoporous Pt/ $La_{0.02}Na_{0.98}TaO_3$  nanocomposites as efficient photocatalyst for hydrogen evolution. *Mol. Catal.* **2020**, *486*, No. 110885.

(26) Mohamed, R. M.; Ismail, A. A.; Basaleh, A. S.; Bawazir, H. A. Construction of highly dispersed  $Nd_2O_3$  nanoparticles onto mesoporous LaNaTaO<sub>3</sub> nanocomposites for H<sub>2</sub> evolution. *J. Photochem. Photobiol.*, A **2020**, 400, No. 112723.

(27) Mohamed, R. M.; Ismail, A. A.; Basaleh, A. S.; Bawazir, H. A. Facile fabrication of mesoporous  $In_2O_3/LaNaTaO_3$  nanocomposites for photocatalytic H<sub>2</sub> evolution. *Int. J. Hydrogen Energy* **2020**, *45*, 19214–19225.

(28) Sudrajat, H.; Babel, S.; Thushari, I.; Laohhasurayotin, K. Stability of La dopants in NaTaO<sub>3</sub> photocatalysts. *J. Alloys Compd.* **2019**, 775, 1277–1285.

(29) Iguchi, S.; Teramura, K.; Hosokawa, S.; Tanaka, T. A  $ZnTa_2O_6$  photocatalyst synthesized via solid state reaction for conversion of  $CO_2$  into CO in water. *Catal. Sci. Technol.* **2016**, *6*, 4978–4985.

(30) Qin, R.; Song, H.; Pan, G.; Bai, X.; Dong, B.; Xie, S.; Liu, L.; Dai, Q.; Qu, X.; Ren, X.; Zhao, H. Polyol-mediated synthesis of hexagonal LaF<sub>3</sub> nanoplates using NaNO<sub>3</sub> as a mineralizer. *Cryst. Growth Des.* **2009**, *9*, 1750–1756.

(31) Lee, Y.; Watanabe, T.; Takata, T.; Hara, M.; Yoshimura, M.; Domen, K. Hydrothermal synthesis of fine  $NaTaO_3$  powder as a highly efficient photocatalyst for overall water splitting. *Bull. Chem. Soc. Jpn.* **2007**, *80*, 423–428.

(32) Nelson, J. A.; Wagner, M. J. Synthesis of sodium tantalate nanorods by alkalide reduction. *J. Am. Chem. Soc.* 2003, 125, 332-333.

(33) Lee, S.; Teshima, K.; Mizuno, Y.; Yubuta, K.; Shishido, T.; Endo, M.; Oishi, S. Growth of well-developed sodium tantalate crystals from a sodium chloride flux. *CrystEngComm* **2010**, *12*, 2871– 2877. (34) Yi, X.; Li, J. Synthesis and optical property of  $NaTaO_3$  nanofibers prepared by electrospinning. J. Sol-Gel Sci. Technol. 2010, 53, 480–484.

(35) Lin, W. H.; Cheng, C.; Hu, C. C.; Teng, H. NaTaO<sub>3</sub> photocatalysts of different crystalline structures for water splitting into  $H_2$  and  $O_2$ . *Appl. Phys. Lett.* **2006**, *89*, No. 211904.

(36) Liu, C.; Zou, B.; Rondinone, A. J.; Zhang, Z. J. Sol- gel synthesis of free-standing ferroelectric lead zirconate titanate nano-particles. J. Am. Chem. Soc. 2001, 123, 4344–4345.

(37) Liu, J. W.; Chen, G.; Li, Z. H.; Zhang, Z. G. Hydrothermal synthesis and photocatalytic properties of  $ATaO_3$  and  $ANbO_3$  (A= Na and K). *Int. J. Hydrogen Energy* **2007**, *32*, 2269–2272.

(38) Fu, H.; Zhang, S.; Zhang, L.; Zhu, Y. Visible-light-driven NaTaO<sub>3-x</sub>N<sub>x</sub> catalyst prepared by a hydrothermal process. *Mater. Res. Bull.* **2008**, 43, 864–872.

(39) Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr., Sect. A* 1976, 32, 751–767.

(40) Ai, Z.; Ho, W.; Lee, S.; Zhang, L. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light. *Environ. Sci. Technol.* **2009**, 43, 4143–4150.

(41) Gonçalves, R. V.; Wender, H.; Migowski, P.; Feil, A. F.; Eberhardt, D.; Boita, J.; Khan, S.; Machado, G.; Dupont, J.; Teixeira, S. R. Photochemical hydrogen production of  $Ta_2O_5$  nanotubes decorated with NiO nanoparticles by modified sputtering deposition. *J. Phys. Chem. C* **2017**, *121*, 5855–5863.

(42) Sreethawong, T.; Ngamsinlapasathian, S.; Suzuki, Y.; Yoshikawa, S. Nanocrystalline mesoporous  $Ta_2O_5$ -based photocatalysts prepared by surfactant-assisted templating sol-gel process for photocatalytic H<sub>2</sub> evolution. *J. Mol. Catal. A: Chem.* **2005**, 235, 1– 11.

(43) Noda, Y.; Lee, B.; Domen, K.; Kondo, J. N. Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation. *Chem. Mater.* **2008**, *20*, 5361–5367.

(44) Ivanova, I.; Kandiel, T. A.; Cho, Y. J.; Choi, W.; Bahnemann, D. Mechanisms of photocatalytic molecular hydrogen and molecular oxygen evolution over La-doped NaTaO<sub>3</sub> particles: Effect of different cocatalysts and their specific activity. *ACS Catal.* **2018**, *8*, 2313–2325.

(45) Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Photocatalysis on  $TiO_2$  surfaces: principles, mechanisms, and selected results. *Chem. Rev.* **1995**, *95*, 735–758.

(46) Schneider, J.; Bahnemann, D. W. Undesired role of sacrificial reagents in photocatalysis. *J. Phys. Chem. Lett.* **2013**, *4*, 3479–3483.