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Abstract: Heart disease, as well as systemic metabolic alterations, can leave a ‘fingerprint’ of struc-
tural and functional changes in the atrial myocardium, leading to the onset of atrial cardiomyopathy.
As demonstrated in various animal models, some of these changes, such as fibrosis, cardiomyocyte
hypertrophy and fatty infiltration, can increase vulnerability to atrial fibrillation (AF), the most
relevant manifestation of atrial cardiomyopathy in clinical practice. Atrial cardiomyopathy accom-
panying AF is associated with thromboembolic events, such as stroke. The interaction between AF
and stroke appears to be far more complicated than initially believed. AF and stroke share many
risk factors whose underlying pathological processes can reinforce the development and progression
of both cardiovascular conditions. In this review, we summarize the main mechanisms by which
atrial cardiomyopathy, preceding AF, supports thrombogenic events within the atrial cavity and
myocardial interstitial space. Moreover, we report the pleiotropic effects of activated coagulation
factors on atrial remodeling, which may aggravate atrial cardiomyopathy. Finally, we address the
complex association between AF and stroke, which can be explained by a multidirectional causal
relation between atrial cardiomyopathy and hypercoagulability.
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1. Introduction

Atrial cardiomyopathy accompanying AF is associated with thromboembolic events,
such as stroke [1]. AF and stroke share many risk factors and, therefore, their causal
relation involves multiple complex pathological processes. This review aims to discuss
the most relevant mechanisms by which atrial cardiomyopathy preceding AF leads to
thromboembolic events and to address the multidirectional causal relation between atrial
cardiomyopathy and stroke.

First, we briefly discuss the relation between AF and atrial cardiomyopathy, and those
animal studies that have contributed to elucidating the role of specific pathogenic stimuli
on the development of different types of cardiomyopathies. Subsequently, we focus more
extensively on the link between atrial cardiomyopathy and thrombogenic events. We
review the most relevant atrial structural and molecular changes that predispose patients to
thrombogenesis within the atrial cavity and myocardial interstitial space. From this point
of view, we elaborate on the pleiotropic effect of coagulation factors and their role in atrial
cardiomyopathy. Finally, we address the complex association between AF and stroke.

2. Atrial Cardiomyopathy and Atrial Fibrillation

Atrial fibrillation (AF) is the most common sustained tachyarrhythmia in clinical
practice. The prevalence of AF rises steeply with age [1]. It has long been recognized that
the risk for AF is increased by underlying structural heart disease, including coronary
artery disease, prior myocardial infarction, heart failure and valvular disease [1]. This
led to the distinction between ‘AF with preexisting structural heart disease’ and ‘lone
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AF’, i.e., AF occurring in the absence of structural heart disease. However, many other
non-cardiac disease factors also increase the likelihood of AF, e.g., obesity, sleep apnea, and
hyperthyroidism, in the absence of clinically detectable changes in the cardiac structure
or function [1,2]. For example, diabetes mellitus has been associated with an increased
risk of developing AF. The mechanisms by which this metabolic disorder would lead to
AF are still under debate. Growing evidence suggests the involvement of diabetes-related
oxidative stress and inflammatory state [3]. Moreover, glucose and insulin disturbances are
also associated with pathological changes in the heart, as suggested by the increase in the
left ventricular mass accompanying the worsening of glucose intolerance [4].

In this sense, the atria may act as the ‘coalminers canary’ of the circulation, due to its
apparent sensitivity to hemodynamic and metabolic abnormalities, with AF as its most
relevant clinical manifestation. Very few AF patients do not have any of the known risk
factors. For this reason, the concept of ‘lone AF’, in the broader sense of idiopathic AF
without underlying causative pathology, has been gradually abandoned [5].

In recent years, the term ‘atrial cardiomyopathy’ has been proposed to describe ‘any
complex of structural, architectural, contractile or electrophysiological changes affecting
the atria with the potential to produce clinically relevant manifestations’ [6]. In this view,
many different pathologies, such as structural heart disease as well as systemic metabolic
alterations, can lead to disease processes affecting the atrial myocardium, leaving a ‘fin-
gerprint’ of structural and functional changes (Figure 1). Many of these alterations, e.g.,
fibrosis, myocyte hypertrophy, and fatty infiltration, can increase vulnerability to AF [7–9].
Initially, AF is characterized by atrial electrical remodeling followed by a much slower
and irreversible process, which is structural remodeling. In fact, once AF develops, its
rapid atrial rates and loss of organized contractility cause, among others, calcium overload,
ischemia, oxidative stress, and stretch that further contribute to atrial electrical and struc-
tural changes [10–13]. In this context, AF can either exacerbate pre-existing remodeling
processes or contribute to the new onset of pathological changes in the atria, becoming
either the consequence or the cause of atrial cardiomyopathy.
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Figure 1. Schematic representation of the relation between AF and atrial cardiomyopathy. Risk
factors for AF lead to pathological structural and functional changes in the atria. These result in
atrial cardiomyopathy of which AF is its most relevant clinical manifestation. Once AF develops, it
supports and accelerates the ongoing pathological changes in the atria.

Frustaci et al. reported that even in patients fitting the definition of ‘lone AF’ used
at that time, histological evidence of occult atrial cardiomyopathy (i.e., myocarditis, car-
diomyopathy, myolysis and necrosis) was apparent [14–16]. In patients undergoing cardiac
surgery, Goette et al. reported that isolated atrial amyloidosis (i.e., an accumulation of atrial
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natriuretic peptide) correlated with an increased P wave duration and was predictive of
AF, whereas overall fibrosis was not [16].

Atrial fibrosis is one of the most extensively studied aspects of atrial cardiomyopathy
in patients [9]. Anné and coworkers reported that mitral valve disease, a well-recognized
risk factor for AF, leads to increased atrial fibrosis, but that AF itself was not associated with
increased atrial fibrosis [17]. In contrast, Platonov and colleagues reported increased fibrosis
in patients with AF, and that fibrosis was more pronounced in patients with permanent
AF than in patients with paroxysmal AF [18]. Both these studies assessed overall fibrosis
through conventional histological staining, which is not particularly sensitive to endomysial
fibrosis, i.e., fibrosis between myocytes within bundles [9]. We have recently shown that
both overall and endomysial fibrosis was higher in patients with AF, but that AF complexity,
a surrogate parameter for AF stability, was more strongly correlated with endomysial
fibrosis [19].

Atrial biopsies for a detailed assessment of atrial cellular electrophysiology and atrial
tissue structure are only available in a limited subset of patients, typically those undergoing
cardiac surgery for valvular or coronary artery disease, and not in healthy control subjects.
Many of these patients have multiple underlying diseases, often of unknown duration, that
could lead to atrial cardiomyopathy. Therefore, the exact relation between AF risk factors
and atrial cardiomyopathy is often difficult to ascertain in patients.

3. Diversity of Atrial Cardiomyopathy in Animal Models

Many of the disease entities that are associated with an increased risk of AF in patients
have been investigated in animal models (Table 1). For practical reasons, these pathological
factors are often applied in an intense form for a limited duration. Nevertheless, animal
studies have provided valuable information on what pathogenic stimuli lead to which type
of atrial cardiomyopathy.

Table 1. Animal studies on disease entities associated with an increased risk of AF in patients.

Disease in Humans Intervention in
Animal Model Species Max.

Duration
Main Feature of

Structural Remodeling Reference

Lone AF’ Rapid atrial pacing Goat/dog/sheep 6 months Myocyte hypertrophy and
endomysial fibrosis Verheule, Circ AE, 2013 [20]

Vagal AF Acetylcholine
administration

Dog/sheep
perfused atria Seconds None; acute model Schuessler, Circ Res 1992 [21]

Post-operative AF Sterile pericarditis Dog 3–4 days Gap junction
redistribution

Ryu, Am J Physiol Heart Circ
Physiol, 2007 [22]

Congestive heart failure Rapid ventricular pacing Dog 5 weeks (Replacement) fibrosis Li, Circ, 1999 [23]

Valvular insufficiency Mitral valve avulsion Dog 4 weeks Heterogeneous fibrosis Verheule, Circ, 2003 [24]

Bi-atrial dilation AV node ablation Goat 4 weeks Myocyte hypertrophy Neuberger, Circ, 2005 [25]

Coronary artery disease RA artery ligation Dog 8 days Granulation tissue,
replacement fibrosis Nishida, Circ, 2011 [26]

Obesity High-fat diet Sheep 8 months Fibrosis, adipocyte
infiltration Abed, Heart Rhythm, 2013 [27]

Sleep apnea Tracheal occlusion Pig 2 min None; acute model Linz, Heart Rhythm, 2011 [28]

Hypertension Prenatal corticosteroid
exposure Sheep 4 years

Myocyte hypertrophy,
myolysis, heterogenous

fibrosis
Kistler, Eur Heart J, 2006 [29]

Ageing Wait Dog 8 years Endomysial fibrosis and
gap junction redistribution Koura, Circ, 2002 [30]

Note: This table summarizes the most relevant studies in which disease entities, which are associated with
an increased risk of AF in patients, have been investigated in animal models. Abbreviations: AV = atrioventricular;
RA = right atrium.

The progressive, self-perpetuating nature of AF has been investigated in goat and
dog models of AF maintained by rapid atrial pacing. The progression of AF in these
models can be explained by the fact that AF causes changes in the atria that increase the
stability of the arrhythmia. These changes include a shortening of the action potential
duration and effective refractory period (electrical remodeling) and alterations in tissue
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structure (structural remodeling). The latter process includes altered connexin expression,
myocyte hypertrophy and atrial fibrosis [31–33]. Whereas electrical remodeling takes place
rapidly, within 1–2 days, structural remodeling progresses gradually over a time course
of months [34,35]. The stability of AF (measured as the duration of AF episodes or as
the amenability to pharmacological cardioversion) increases over a comparably slow time
course of months [36,37]. The main histological correlates of this slow progression are
myocyte hypertrophy, which occurs ubiquitously over the entire thickness of the atrial wall,
and endomysial fibrosis, i.e., an increased thickness of collagen septa surrounding individ-
ual myocytes within bundles. The latter occurs predominantly in the outer millimeter of the
atrial wall [20]. This type of fibrosis is associated with compromised transverse propagation
and a more complex, 3-dimensional fibrillation pattern, that has been confirmed in AF
patients [19,20,38,39]. AF in these animal models does not lead to myocyte death and
a corresponding increase in replacement fibrosis [20,23,38–41].

In contrast, a dog model of congestive heart failure (CHF) induced by rapid ventricular
pacing (RVP), did show a pronounced early phase of myocyte apoptosis and necrosis in the
first 1–2 days, and a pronounced increase in overall (replacement) fibrosis after 3–5 weeks,
a stage at which clinical signs of decompensating heart failure had developed [23,41]. Inter-
estingly, the differences in structural remodeling between canine models of ‘lone AF’ and
CHF are paralleled by differences in gene expression patterns, mainly with downregulation
in the lone AF model and a more varied pattern of upregulation and downregulation in the
CHF model [42].

Atrial dilatation is a strong predictor of AF, occurring as a result of numerous risk
factors for AF, e.g., CHF and valvular disease, as well as from AF itself [43]. Although
an increase in atrial size per se is proarrhythmic, atrial dilatation can also lead to changes
in tissue structure that have been investigated in animal models [43]. Partial avulsion of
the tricuspid valve and mitral valve lead to heterogeneous fibrosis in the right and left
atrium, respectively [24,44]. However, valvular avulsion leads to an immediate increase
in atrial size, and therefore a rapid increase in atrial stretch. In contrast, in a goat model
of chronic AV block, which leads to a more gradual atrial dilatation over a time course of
weeks, myocyte hypertrophy was reported, while overall fibrosis did not increase [25].

The effects of noncardiac risk factors for AF on the atrial structure have been less
extensively investigated in animal models. In a sheep model of obesity, atrial conduction
heterogeneity and increased AF stability were associated with fibrosis and fatty infiltra-
tion [27]. In a rat model, hypothyroidism increases atrial fibrosis, whereas hyperthyroidism
leads to myocyte hypertrophy [45]. However, both increase AF inducibility/stability and
atrial sympathetic innervation [45,46].

Ageing, arguably one of the most relevant AF risk factors, leads to increased en-
domysial fibrosis [47]. In a study comparing dogs at different stages of (healthy) ageing,
Koura et al. demonstrated that age-related alterations in tissue structure, i.e., endomysial
fibrosis and gap junction channel redistribution, were associated with increased anisotropy
of conduction and likelihood for microreentry [30].

Similarly to structural remodeling, the pattern of atrial electrical remodeling can differ
between patient populations and between animal models [7]. As mentioned above, AF by
itself leads to a shortening of the atrial action potential duration [48]. Heart failure also
leads to changes in atrial electrophysiology, both in a dog model of CHF and in HF pa-
tients [49,50]. AF-induced changes in ion channel expression differ between patient/animal
models without and with (preexistent) HF showing divergences from a theoretical addi-
tive effect [49,50]. Potentially, this represents a complicating factor in the identification
of atrial-selective arrhythmic drug targets (e.g., TASK-1, Kv1.5, and IKACh) in that the
effects of such drugs may be affected by the presence of AF risk factors and concomitant
electrophysiological changes [51].

Information about the sex of the animals included in animal studies is often not re-
ported, creating a knowledge gap in the biological processes underlying the risk factors for
atrial remodeling in males and females. Nonetheless, major risk factors for atrial cardiomy-
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opathy differ by sex, with more hypertension, valvular heart disease, AF recurrence, and
AF-related stroke in women, but more coronary artery disease and higher AF prevalence
in men [52–55]. A larger number of cardiovascular risk factors in female AF patients even
contributed to a worse quality of life [56]. More advanced electrical atrial remodeling or
enhanced fibrotic burden have been reported in females [54,57–59]. Especially in the context
of AF, valvular disease and aging, women have a larger quantity of atrial fibrosis [57,59].

4. Atrial Cardiomyopathy and Thrombogenesis

Atrial cardiomyopathy accompanying AF is associated with thromboembolic events.
AF patients show increased cardiovascular mortality due to sudden death, HF and stroke.
The risk of developing thromboembolic stroke increases five-fold after patients have devel-
oped AF [1,60].

The pathogenesis of thrombus formation during AF is multifactorial and results from
changes in physiological processes leading to aberrant blood flow/stasis in the fibrillating
atria, endothelial dysfunction/changes in endothelial structure, and hypercoagulability [61].
These mechanisms lead to the fulfillment of Virchow’s triad and predispose patients to
thrombogenic events within the atria (Figure 2) [62].
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Figure 2. Atrial cardiomyopathy contributes to thrombogenesis. Unlike in the healthy atrium (left
side), in the cardiomyopathic atrium (right side), pathological structural and functional changes
(e.g., contractile dysfunction, atrial dilation, fibrosis, and fat infiltration) lead to aberrant blood flow
and stasis in the atria cavity, endothelial dysfunction (and structural changes), and hypercoagula-
bility, predisposing patients to thrombogenic events within the atrial cavity. Furthermore, hypoxic
conditions, together with vascular leakage, may contribute to the activation of the coagulation cas-
cade within the myocardial tissue. Abbreviations: NO = nitic oxide; vWF = von Willebrand factor;
TF = tissue factor.

4.1. Blood Stasis and Endothelial Dysfunction

Atrial contractile remodeling leads to reduced and/or dyssynchronous atrial contrac-
tion and wall motion disturbances. This results in blood stasis, which critically contributes
to thrombogenesis.

During the first days after AF onset, loss of synchronized atrial contraction goes
hand in hand with electrical remodeling processes [63]. Interestingly, although electrical
remodeling is reversible upon sinus rhythm (SR) restoration, the impairment of atrial
contractility partially remains after the cardioversion to SR, increasing the risk of thrombus
formation and stroke [64–67].
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The loss of atrial contractility contributes to thrombogenesis via multiple other mech-
anisms. As recently demonstrated by Spartera and colleagues, a left atrial myopathic
phenotype, including reduced left atrial function, is associated with altered left atrial flow
characteristics in patients at moderate-to-high risk of stroke, regardless of a history of
AF [68]. In fact, altered atrial flow velocity and vorticity are expected to reduce endocardial
shear stress. This phenomenon has been shown to downregulate the endothelial production
of nitric oxide, which mediates vasodilation and has anti-thrombotic properties [69]. The
downregulation of atrial nitric oxide would, therefore, not only stimulate the aggregation
of platelets, but also increase the expression of the protein plasminogen activator inhibitor-1
(PAI-1), resulting in impaired fibrinolysis [61]. Moreover, atrial contractile dysfunction has
been associated with atrial dilation, which is an independent risk factor for thrombogenesis
in patients with and without AF [25,46,70,71]. In fact, atrial dilation and volume overload
of the left atrial appendage are associated with increased endocardial expression of the
glycoprotein von Willebrand Factor (vWF), a well-documented marker of endothelial dys-
function [72–74]. vWF mediates platelet adhesion to the activated endothelium, and its
plasma levels are an independent predictor of poor outcome, including thromboembolic
events, in patients with AF [75].

The deterioration of endothelial function in atrial cardiomyopathy can also result
from inflammatory processes. As recently reviewed elsewhere, systemic and local (atrial)
inflammation is a well-documented phenomenon in AF [76,77]. Within the atria, inflam-
mation leads to areas of endothelial denudation and predisposes patients to thrombotic
aggregation [78]. The exposure of tissue factor (TF)-expressing subendothelium to the
bloodstream, as a consequence of endothelial denudation, may facilitate the activation of
the coagulation cascade within the atrial cavity [79]. Moreover, pro-inflammatory stimuli
can directly support thrombotic events by upregulating the expression of vWF and TF in
endothelial cells and monocytes [80,81].

4.2. Pro-Thrombotic Interstitial Changes

During the complex etiology of atrial cardiomyopathy, with a variety of molecular and
structural changes taking place in the atrial tissue, pro-thrombotic and pro-inflammatory
changes may also be observed within the interstitial space of the atrial myocardium itself
(Figure 2). For example, the accumulation of epicardial adipose tissue (EAT) may play a role
in the development of AF. Several studies have reported that EAT volume may represent
an independent risk factor for AF development and a predictor of AF recurrence in patients
undergoing AF ablation [82,83]. The exact role of EAT in AF development still requires
clarification. As reported by Antonopoulos and colleagues, EAT may play a protective role
in the heart by decreasing myocardial oxidative stress via the secretion of adiponectin [84].

Nevertheless, EAT is associated with fatty infiltration from the epicardial layer, which
may cause disorganized conduction within the atria [85]. Moreover, both EAT and fatty in-
filtration are active sources of pro-inflammatory cytokines (e.g., monocyte chemoattractant
protein-1 (MCP-1), Interleukin-6 (IL-6), and tumor necrotic factor-alpha (TNF-α), which can
aggravate the effect of existing pro-inflammatory processes on the endocardial endothelium
and support the infiltration of immune cells within the myocardium [8].

For example, increased macrophage infiltration has been observed in the atrial my-
ocardium of patients with atrial fibrillation [86]. Sun et al. showed that AF may further
contribute to the polarization of this cell type into a pro-inflammatory phenotype, charac-
terized by the increased expression of IL-1β [87].

Due to their proximity to cardiac cells, macrophages are also important mediators of
electrical and structural remodeling processes, which may contribute to the pathogenesis of
AF [88]. For example, macrophages can stimulate the activation and proliferation of cardiac
fibroblasts [89]. Cardiac fibroblasts, activated during myocardial remodeling processes,
can induce the accumulation of the extracellular matrix (ECM) and fibrosis, but may also
support inflammation by releasing pro-inflammatory mediators [90].
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Finally, the association between AF and stroke might also be due to the common
causes and shared etiologies of both conditions. For example, coronary artery disease
can lead to ischemia in the atrial myocardium. AF can also lead to atrial supply demand
ischemia, as described in a pig model [11]. Ischemic conditions can enhance the interstitial
expression and activity of coagulation factors in the myocardium. In a rabbit model
of ischemia-reperfusion injury, both TF mRNA levels and pro-coagulant activity were
increased in the at-risk ischemic regions of the myocardium compared to control [91]. This,
potentially in combination with vascular leakage, resulting from inflammatory pathways
that compromise the normal vascular function, may create favorable conditions for the
activation of the extravasated coagulation factors within the myocardial interstitial space
during AF [92].

4.3. Hypercoagulability

Another mechanism that contributes to thrombogenesis in AF and in other atrial car-
diomyopathies consists of alterations in blood constituents which confer a hypercoagulable
state [93].

Hypercoagulability in AF patients is often reflected by increased systemic platelet
activation, elevated concentrations of pro-thrombotic indices (e.g., prothrombin fragments
1 + 2 and thrombin–antithrombin complex) and altered fibrinolytic activity [61].

Interestingly, the activation of the coagulation system in AF may not be homogeneous
throughout the body. Some studies have shown that platelet activation and thrombin gen-
eration markers were elevated in the atria of patients within minutes after AF induction, or
as a consequence of rapid atrial pacing (RAP) in animal models, compared to peripheral cir-
culation [94,95]. These data highlight the effect of rhythm and rate on atrial pro-thrombotic
mechanisms (e.g., local endocardial dysfunction/damage), which may promote a local
pro-thrombotic environment.

Nevertheless, it is still not fully clarified whether “lone AF” (AF in the absence of
apparent comorbidities) is sufficient to cause a pro-thrombotic state, or whether the presence
of other underlying comorbidities and risk factors is required.

In a study on young very-low-risk patients with paroxysmal AF, no hypercoagulable
state was observed. However, these patients did have increased levels of Factor (F) IXa–
antithrombin complexes, suggesting the presence of a pre-thrombotic state [96]. Due toof
this finding, the authors suggested that a second pro-coagulant hit may be needed to
provoke a systemic pro-thrombotic response during AF. Clinical studies in AF patients
have shown that the stroke risk often increases gradually over many years, with ageing
and the development of other comorbidities, such as heart failure [97,98].

From this point of view, diabetes mellitus is a well-established risk factor for stroke in
patients with AF [1]. The risk of stroke appears to increase with the increase in the duration
of this metabolic disorder [99]. The impairment of vascular function (e.g., altered nitric
oxide vasodilation), increased early-age arterial stiffness and systemic inflammation are
well-known hallmarks of diabetes, which are also considered relevant mechanisms predis-
posing patients to thrombogenic events. Furthermore, as recently reviewed by Li and col-
leagues, diabetes is associated with a pro-thrombotic state attributable to increased platelet
reactivity, quantitative alterations of coagulation factors, and hyperfibrinolysis [100].

Elderly people show a subtle increase in plasma levels of pro-coagulant factors, some-
times accompanied by a decrease in anti-coagulation and fibrinolytic factors [101].

In other words, coagulation enzyme activity seems to be age-dependent, which may
explain the additional stroke risk during AF.

Unpublished data from our group indicate that advanced age and AF synergistically
increase thrombin generation potential in goats with four weeks of atrial fibrillation, sug-
gesting that advanced age may serve as a “second pro-coagulant hit” and may potentiate
the effect of AF, leading to a pro-thrombotic state.
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5. Activation of Coagulation Supports Atrial Cardiomyopathy

Few studies have investigated the possible effect of activated coagulation factors on
cardiac remodeling, although this may be crucial to unravel the pathophysiology of atrial
cardiomyopathies such as AF.

Activated coagulation factors, such as thrombin and FXa, can modulate physiological
and pathological processes, such as inflammation and fibrosis, which may contribute to
atrial cardiomyopathy (Figure 3) [102,103]. These extravascular (non-hemostatic) functions
impact different cell types (e.g., endothelial cells, cardiomyocytes and cardiac fibroblasts)
via the activation of protease-activated receptors (PAR) [104]. The PAR family consists of
four isoforms (PAR-1 to −4). Activated coagulation proteases, such as thrombin and FXa,
cleave PAR at the N-terminus and generate an exposed N-tethered ligand that self-activates
the receptor [105].
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Figure 3. Activation of coagulation promotes atrial cardiomyopathy. Activated coagulation
factors, such as Thrombin and FXa, modulate cellular processes via the activation of PAR ex-
pressed on cardiac cells. These processes, such as inflammation, fibrosis and cellular hypertro-
phy, may contribute to the worsening of atrial cardiomyopathy. Abbreviations: PAR = protease-
activated receptor; FXa = Factor × activated; IL6 = Interleukin 6; CCL2 = C-C motif ligand 2;
NNPA = atrial natriuretic peptide.

Recently, hypercoagulability has been described to play a role in the progression of
AF [106]. The in vivo inhibition of FXa attenuated AF-induced atrial endomysial fibrosis
and reduced AF complexity in goats after four weeks of AF [106]. Several other studies
have reported that the direct FXa inhibitor, rivaroxaban, attenuated cardiac fibrosis in
various animal models of myocardial remodeling [34,107–109].

To understand the mechanisms responsible for these effects, we investigated the direct
effect of activated coagulation factors, thrombin and FXa, on primary cardiac fibroblasts
(CFs) [110]. In this study, thrombin and FXa lead to the increased expression of well-known
pro-fibrotic genes (e.g., Alpha 2 smooth muscle actin and Transforming growth factor beta
genes) in CFs. Furthermore, FXa upregulated the gene expression of two key regulators of
inflammatory processes, CCL2 and IL6, in primary adult human atrial CFs. This effect was
mainly caused by FXa-induced PAR-1 activation, which was the most abundant isoform
in CFs. Moreover, in line with previous findings, we provided evidence for the existence
of a positive feedback loop of PAR expression upon their activation by these coagulation
factors [106,110].
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Finally, FXa can also play a role in cardiomyocyte hypertrophy. Unpublished data from
our group have shown that FXa inhibition, via rivaroxaban treatment, prevented AF-related
atrial myocyte hypertrophy in a goat model of persistent AF. Myocyte hypertrophy can
be induced by different stimuli during AF. One example is atrial stretch as a consequence
of AF-related increased atrial pressure. However, the protective effect of FXa inhibition in
our study suggests that activated coagulation factors (e.g., FXa and thrombin) may directly
or indirectly contribute to myocyte hypertrophy. This observation agrees with a recent
report by Guo et al., who described that exposure of rat neonatal cardiomyocytes to FXa
induced hypertrophy and the increased expression of NPPA (atrial natriuretic peptide) via
the activation of either PAR-1 or PAR-2 [107]. Further research is needed to elucidate the
contribution of activated coagulation factors to remodeling processes such as inflammation,
fibrosis and hypertrophy in atrial cardiomyopathy.

6. The Complex Association of AF and Thrombogenesis (Stroke)

In recent years, the interaction between AF and stroke has been shown to be far more
complicated than initially believed. The traditional hypothesis was that AF causes a reduc-
tion in the blood flow velocity, activation of coagulation factors in the blood and endothelial
remodeling that in combination explain the enhanced risk for stroke in patients with AF.
This hypothesis explains the association between AF and stroke largely by monodirectional
causation from comorbidities to AF, to the activation of coagulation factors and ultimately
to stroke (Figure 4, left).
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Figure 4. The complex association between AF and stroke. Monodirectional causation (left): var-
ious comorbidities lead to the onset of AF, followed by the activation of the coagulation system,
and ultimately stroke. Multidirectional causation (right): atrial cardiomyopathy and hypercoagula-
bility cause each other and share common pathophysiological pathways. These pathways, which
may occur within and/or outside the atrial endothelium, can contribute to both proarrhythmic and
prothrombotic mechanisms, resulting in the concomitant increased risk of AF and stroke.

The substudy of the ASSERT trial by Bambatti et al. was the first to demonstrate
that many strokes occur not only during the weeks and months after an AF episode but
also before AF has occurred [111]. Additionally, genome-wide association studies have
demonstrated that several common gene variants that are associated with AF are also
associated with strokes, independently from the actual presence of AF. Finally, multiple
pleiotropic effects of coagulation factors have been identified in various tissues over the
past 10 years, including prohypertrophic, proinflammatory and profibrotic effects [111].
These findings together strongly suggest that the causal interaction between AF and stroke
is multidirectional. Indeed, experimental studies suggest that the activation of coagulation
factors can contribute to cardiac fibrosis and may enhance the propensity to AF [106].
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In addition, AF and stroke might share common pathophysiological pathways, which
may explain the association between the two entities due to the existence of a common
underlying cause. In recent years, evidence has emerged that many comorbidities cause
complex pathophysiological changes in the atrial wall, an atrial cardiomyopathy, that
exposes the patients to an increased risk of stroke, as well as to an increased risk of AF.

For example, coronary artery disease causes ischemia in the atrial wall, which is
known to increase the expression of TF on myocytes [91]. The resulting activation of
interstitial coagulation factors can activate fibroblasts and result in trans differentiation
into myofibroblasts and the production of collagen fibers. Fibrosis, in turn, can promote
conduction disturbances and AF [9,19]. Another example is heart failure, which on the
one hand can cause atrial dilatation and loss of atrial contractility, contributing to a throm-
bogenic environment by reducing shear stress along the atrial wall [112]. On the other
hand, atrial dilatation due to heart failure causes atrial stretch, which can activate the
local renin-angiotensin system that in turn can cause fibrosis through the activation of
fibroblasts [41]. In both scenarios, the proarrhythmic and prothrombotic mechanisms share
common pathophysiological pathways, which at some point cross the atrial endothelium,
resulting in proarrhythmic mechanisms ultimately leading to AF, and at the same time,
prothrombotic mechanisms promoting thrombus formation potentially causing strokes.

In summary, we believe that the association between AF and stroke is due to a multi-
directional causal relation between atrial cardiomyopathy and hypercoagulability, which
provoke each other but also share common underlying causes.
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