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Background: MET amplification or METex14 skipping mutations are uncommon
oncogenic events in NSCLC patients. Clinicopathological characteristics, concurrent
gene alterations, and prognosis of MET TKIs in these patients are yet to be elucidated.

Methods: We retrospectively analyzed the genomic profiles of 43 MET amplifications or
31METex14 skipping mutations in NSCLC patients with no previous treatment with EGFR
TKIs. Survival outcomes were analyzed in evaluable patients receiving MET TKI treatment:
MET amplification cohort (n = 29) and METex14 skipping mutation cohort (n = 29).

Results: Among evaluable patients, a shorter PFS was observed in the MET amplification
cohort than in the METex14 skipping mutation cohort (7.0 months vs. 11.0 months, P =
0.043). Concurrent mutations in both cohorts resulted in a statistically significant shorter PFS
(MET amplification: 3.5 months versus 8.0 months, P = 0.038, METex14 skipping mutation:
7.0 versusNRmonths, P = 0.022). However, a statistically significant OS (17.0months versus
20.0 months, P = 0.044) was only observed in the MET amplification cohort. TP53, the most
common concurrent mutation in both cohorts, was associated with worse survival outcomes
as compared to the wild type. The MET amplification cohort with a concurrent PIK3CA
mutation exhibited primary resistance to MET TKIs and showed disease progression (80%).

Conclusion: MET TKIs could be a better treatment option for patients with METex14
skipping mutations. Concurrent mutations may deteriorate the PFS of MET TKIs in
NSCLC patients with MET amplification or METex14 skipping mutations. PIK3CA
mutations may confer primary resistance to MET TKIs in patients with MET amplification.

Keywords: concurrent genomic alterations, MET inhibitor, MET amplification, MET exon 14 skipping mutation, non-
small cell lung cancer
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INTRODUCTION

Non-small cell lung cancer (NSCLC) is the leading cause of
tumor-related deaths worldwide. Molecular heterogeneity,
proliferation, and metastasis in NSCLC have been associated
with various driver mutations in the epidermal growth factor
receptor (EGFR), anaplastic lymphoma kinase (ALK), proto-
oncogene tyrosine-kinase protein (ROS1), and mesenchymal
epithelial transition factor receptor (MET) (1, 2). MET, a
receptor tyrosine kinase (RTK) located on chromosome 7q21-
31, encodes a heterodimeric transmembrane RTK, which is
activated upon binding of hepatocyte growth factors (HGF).
This process results in the downstream signaling of
phosphatidylinositol 3-kinase (PI3K) and mitogen-activated
protein kinase (MAPK) pathways, subsequently leading to
tumor proliferation, progression, and metastasis (3–6). Several
mechanisms, including gene amplification, overexpression,
mutations, and fusion, can cause deregulated MET signaling
(7, 8). MET amplification in NSCLC has been identified as a
common mechanism of resistance (2–8%) to EGFR tyrosine
kinase inhibitors (TKIs) in patients with no prior drug exposure
(8). Moreover, MET amplification is also a potential resistance
mechanism to the third EGFR-TKI, osimertinib (9, 10).

MET exon 14 (METex14) skipping mutations have recently
been found to be oncogenic, seen in approximately 3 to 4% of
NSCLC cases, and are associated with MET amplification and
overexpression (11–13). Response toMET TKIs, such as crizotinib
and cabozantinib, have been reported in NSCLC patients with
MET amplification andMETex14 skipping mutations. AcSé phase
II trial showed a 16% overall response rate (ORR) in the MET
amplification cohort (25 patients) treated with crizotinib (14). In
the PROFILE 1001 study, 28 patients with METex14 skipping
mutations receiving crizotinib had an ORR of 39% with a median
progression-free survival (mPFS) of 8 months (12, 15, 16).
Furthermore, preliminary data from a case report of primary
resistance to crizotinib have been reported in patients with
METex14 skipping (17). The underlying mechanism of primary
resistance to MET inhibitors is yet to be elucidated.

Fluorescence in situ hybridization (FISH) was the most
commonly used method in detecting chromosomal abnormalities.
In recent years, next-generation sequencing (NGS) has become a
more popular method and is being integrated into routine clinical
oncology practice. Targeted NGS allows the simultaneous
integration of multiple genes and provides a comprehensive
mutation profile of not only actionable mutations, but also other
gene mutations associated with cancer development. Concurrent
driver genes with sensitizing mutations have been shown to affect
the survival outcomes of targeted therapies.

Our study aimed to elucidate the comprehensive mutation
profile of patients with MET amplification or METex14 skipping
Abbreviations: NSCLC, non-small cell lung cancer; PFS, progression-free
survival; OS, overall survival; EGFR, epidermal growth factor receptor; ALK,
anaplastic lymphomakinase; HGF, hepatocyte growth factor; PI3K,
phosphatidylinositol-4-bisphophate 3-kinase; MAPK, mitogen-activated protein
kinase; ORR, overall response rate; FISH, fluorescence in situ hybridization; NGS,
next-generation sequencing; CR, complete response; PR, partial response; DCR,
disease control rate; SD, stable disease; CNVs, copy number variations.
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mutations in NSCLC receiving MET TKI therapy by analyzing
molecular factors that could contribute to their prognosis. In
fact, no retrospective study has previously evaluated the efficacy
of MET TKIs in the treatment of patients with de novo MET
amplifications and METex14 skipping mutations.

Herein, we describe the survival characteristics by analyzing
mutated genes and underlying primary resistance factors with
MET amplification and METex14 skipping mutations.
MATERIALS AND METHODS

Population and Respondents
Patients diagnosed with NSCLC with MET amplification (n =
43) or METex14 skipping mutations (n = 31) from Hunan
Cancer Hospital between March 2015 and October 2020 were
retrospectively analyzed. Baseline MET amplification or METex14
skipping mutation status was assessed using blood or tissue samples
obtained via needle biopsy of lung lesions or lymph nodes. Samples
were sent to Buring Rock Biotech for molecular genotyping using
NGS (56 gene or 168 gene panel). The following patients were
excluded: (1) patients previously treated with other EGFR TKIs
before MET detection and (2) patients with evidence of small cell
lung cancer (SCLC) metastasis. This study was approved by the
Institutional Review Board of Hunan Cancer Hospital. All patients
provided written informed consent for the use of their data in
this study.

Treatment Procedures
MET TKIs, including 250 mg crizotinib twice daily, 200 mg
bozitinib twice daily, or 600 mg volitinib once daily, were
prescribed to the MET amplification or METex14 skipping
mutation cohorts. Treatment was discontinued if unacceptable
toxicity, disease progression or death, patient refusal, or
treatment withdrawal for any other reason, including
pregnancy, were noted. Response was measured using
enhanced computed tomography (CT) scans in accordance
with the Response Evaluation Criteria in Solid Tumors
(RECIST) version 1.1 (18). The objective response rate (ORR)
was defined as the proportion of patients achieving complete
response (CR) or partial response (PR). Disease control rate
(DCR) was defined as the proportion of patients achieving CR,
PR, and stable disease (SD). Treatment-related toxicity was
evaluated according to the Common Terminology Criteria for
Adverse Events version 4.03. Progression-free survival (PFS) was
defined as the period from treatment initiation to
discontinuation due to radiologically confirmed disease
progression, intolerable toxicity, or death. Overall survival (OS)
was defined as the period from the date of treatment initiation
with MET TKIs until death or the day of the last follow-up.

Preparation of Plasma-Circulating, Cell-
Free DNA (cfDNA), and Tissue DNA
Circulating cfDNAwas extracted from plasma samples according to
the manufacturer’s instructions using a QIAamp Circulating
Nucleic Acid Kit (Qiagen, Hilden, Germany). Similarly, tissue
June 2021 | Volume 11 | Article 649766
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DNA from formalin-fixed, paraffin-embedded (FFPE) cell blocks of
tumor biopsy or other cytologic samples were extracted using the
QIAampDNAFFPE tissue kit (Qiagen, Hilden, Germany). AQubit
2.0 Fluorometer with dsDNAHS Assay Kit (Life Technologies, CA,
USA) was used to quantify cfDNA and tissue DNA concentration.

NGS Library Construction
NGS library construction was performed using optimized
protocols developed by Burning Rock Biotech (19). Tissue
DNA was ultrasonicated using a Covaris M220 (Covaris, MA,
USA). Fragments of 170 bp for plasma cfDNA and of 200–400 bp
for sheared tissue DNA were purified with magnetic beads using
an Agencourt AMPure XP kit (Beckman Coulter, CA, USA).
Purified fragments were then hybridized with capture probes,
hybrid-selected with magnetic beads, and amplified using PCR.
The quality and size of the fragments were assessed using an
Agilent high-sensitivity DNA assay kit and a Bioanalyzer 2100
(Agilent, CA, USA). Sequencing of the indexed samples was
performed using a NextSeq500 (Illumina, CA, USA) with paired-
end reads at a target sequencing depth of 10,000× for plasma
samples and 1,000× for tissue samples.

Sequence Data Analysis
NGS sequence data were analyzed using an optimized pipeline
developed by Burning Rock Biotech (19). Sequence mapping to
the reference human genome (hg19) was performed using GATK
(version 3.2). Moreover, VarScan (version 2.4.3) was used for
local alignment optimization, variant calling, and annotation.
Genomic DNA profiling was conducted via capture-based
targeted sequencing using commercial gene panels. These
panels, including either the 56 gene or 168 gene panel
(Burning Rock Biotech, Guangzhou, China), interrogated all
exons and critical introns of classic lung cancer oncogenes
(19). Moreover, these panels also facilitated the detection of
various mutation types, including single nucleotide mutations
(SNMs), copy number variations (CNVs), and structural
variations. CNV was defined as the coverage data of the gene
region that were quantitatively and statistically significant from
its reference control. Coverage depth data were first corrected for
sequencing bias due to GC content and target probe density. The
average coverage of all capture regions was calculated as an
internal control, which was utilized to normalize the coverage of
different samples to comparable scales. The coverage of MET
with copy number gains was significantly greater than that of the
internal control. The cut-off for identifying gene copy number
(GCN) deletion was set at a GCN of 1.5, and amplification at a
GCN of 2.25 (20). The difference in the adjusted coverage depth
for each gene between the samples and the reference was
evaluated using the t-test method. Using the GCN≥4
restriction, MET amplification was divided into three intensity
levels: (1) No amplification: MET-Ratio<1.8; (2) Low
amplification: 1.8≤MET-Ratio ≤ 2.2; and (3) Intermediate
amplification: 2.2<MET-Ratio<5; High: MET-Ratio≥5 (21).

Statistical Analysis
Survival analysis was performed for each group using the
Kaplan-Meier method with log-rank statistics. Either the
Frontiers in Oncology | www.frontiersin.org 3
Fisher’s exact test, Chi-square test for trend or the paired two-
tailed Student’s t-test was used to calculate the statistical
differences between the groups. All statistical analyses were
performed using the GraphPad Prism 8 software. Statistical
significance was defined as p < 0.05.
RESULTS

Patient Characteristics
This study included 43 patients in the MET amplification cohort
and 31 patients in the METex14 skipping mutation cohort
admitted at Hunan Cancer Hospital from March 2015 to
October 2020. Tissue or blood samples were sent to Burning
Rock Biotech for sequencing prior to MET TKI therapy. In the
MET amplification cohort, the median age was 56 years, ranging
from to 37 to 76 years. On the other hand, the METex14 skipping
mutation cohort had a median age of 61 years, ranging from 41
to 81 years. Regarding NSCLC histology, adenocarcinoma was
most often detected in both cohorts: MET amplification cohort,
83.7% (36/43); METex14 skipping mutation cohort, 83.9% (26/
31). Squamous cell carcinoma was detected in the remaining
patients: MET amplification cohort, 16.3% (7/43); METex14
skipping mutation cohort, 16.1% (5/31).

The disease stage upon initial diagnosis was I-IIIa in 14.0% (6/
43), IIIb-IIIc in 2.3% (1/43), and IV in 83.7% (36/43) in the MET
amplification cohort. On the other hand, all patients in the
METex14 cohort were in the advanced stage, with 90.3% (28/
31) of patients at stage IV and the remaining 9.7% (3/31) at stage
IIIb-IIIc. In the MET amplification cohort, 67.4% (29/43) of the
patients received MET TKI treatment (25/29 with crizotinib, 4/
29 with bozitinib). The remaining 32.6% (14/43) did not receive
MET TKI therapy because of early-stage post-surgery (6/14) or
refusal of treatment (8/14). Of the 29 patients receiving therapy,
82.8% (24/29) received it as a first-line regimen, while the
remaining 17.2% (5/29) received it as a second-line treatment.
In the METex14 skipping mutation cohort, 93.5% (29/31) of
patients received MET TKIs (22/29 with crizotinib, 5/29 with
bozitinib, 2/29 with volitinib). The remaining 6.5% (2/31) of the
patients did not receive any therapy due to refusal of treatment.
Of the 29 patients receiving therapy, 86.2% (25/29) received it as
a first-line regimen, while the remaining 13.8% (4/29) received it
as a second-line treatment. In addition, 60.5% (26/43) of the
MET amplification cohort and 64.5% (20/31) of the METex14
cohort had concurrent gene mutations. Both cohorts were
independent of sex, age, smoking status, and clinical stage. The
clinicopathologic characteristics of the two cohorts are
summarized in Table 1.

Clinical Outcomes of Patients Harboring
MET Amplification or METex14 Skipping
Mutation Treated With MET TKIs
In this study, 67.4% (29/43) and 93.5% (29/31) of patients from
the MET amplification or METex14 skipping mutation cohort,
respectively, who received MET TKI treatment were included in
the analysis. Log-rank analysis showed a statistically significant
June 2021 | Volume 11 | Article 649766
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shorter PFS in the MET amplification cohort than in the
METex14 skipping mutation cohort (7.0 months vs. 11.0
months, P = 0.043, Figure 1A). However, results showed a
statistical ly insignificant OS in patients with MET
amplification as compared to those with METex14 skipping
mutation (19.0 months vs. 20.0 months, P = 0.635; Figure 1B).
Frontiers in Oncology | www.frontiersin.org 4
In the MET amplification group who received MET TKIs,
patients with intermediate MET amplification showed
insignificant PFS (5.0 months vs. 8.0 months, P = 0.556) and
OS (17.0 months vs. 18.0 months, P = 0.923) as compared to
those with high MET amplification (Supplementary Figures
1A, B).

Among the 29 patients who received MET TKIs in the MET
amplification group, 34.5% (10/29) achieved PR, 48.3% (14/29)
achieved SD, and 17.2% (5/29) achieved PD, resulting in an ORR
of 34.5% and a DCR of 82.8%. Of the 29 patients who received
MET TKIs in the METex14 skipping mutation group, 51.7% (15/
29) achieved PR, 34.5% (10/29) achieved SD, and 13.8% (4/29)
achieved PD, resulting in an ORR of 51.7% and DCR of 86.2%
(Figure 1C). Overall, these data suggested that patients with
MET14 skipping mutations had a significantly longer PFS than
patients with MET amplification. Meanwhile, the ORR was
higher in the METex14 skipping mutation cohort than in the
MET amplification cohort.

Mutation Profiles of the Cohorts
Target gene sequencing using a panel of 56 and 168 cancer-
related genes was performed on tissue samples collected from
patients to elucidate the baseline comprehensive mutation status
prior to initial MET TKI therapy. Results showed that 60.5%
(26/43) of the MET amplification cohort and 64.5% (20/31) of
the METex14 skipping mutation cohort had other concurrent
mutations. In the MET amplification cohort, concurrent TP53
mutations were the most common, affecting 34.9% (15/43) of the
patients. In addition, other concurrent mutations, including BRCA
CN amplification (n = 8), PIK3CA mutation (n = 6), STK-11
mutation (n = 4), BRAF CN amplification (n = 3), ALK missense
mutation (n = 2), RB1 CN deletions (n = 2), RECQL4 mutation
(n = 1), KRAS mutation (n = 1), EGFR CN amplification (n = 1),
TERT CN amplification (n = 1), SMARCA4mutation (n = 1), NF1
mutation (n = 1), and ERBB4 CN amplification (n = 1) were also
detected. Regardless, 39.5% (17/43) of the patients in the MET
amplification cohort did not harbor any concurrent gene
TABLE 1 | Summary of baseline clinical characteristics of patients identified with
MET amplification and MET ex14 skipping mutation.

Characteristic MET amplification
(n = 43) n (%)

METex14
skipping
mutation

(n = 31) n (%)

P

Gender 0.79
Male 32 (74.4%) 22 (71.0%)
Female 11 (25.6%) 9 (29.0%)
Median age (range) 56 (37–76) 61 (41–81) 0.32
Smoking History 0.34
Non-smoker 15 (34.9%) 15 (48.4%)
Smoker 28 (65.1%) 16 (51.6%)
Histologic type >0.99
Adenocarcinoma 36 (83.7%) 26 (83.9%)
Squamous cell carcinoma 7 (16.3%) 5 (16.1%)
Stage 0.13
I-IIIa 6 (14.0%) 0 (0.0%)
IIIb-IIIc 1 (2.3%) 3 (9.7%)
IV 36 (83.7%) 28 (90.3%)
Brain metastasis >0.99
Yes 7 (16.3%) 5 (16.1%)
No 36 (83.7%) 26 (83.9%)
MET-TKIs therapy 0.052
Crizotinib 25 (58.1%) 22 (71.0%)
Volitinib 0 (0.0%) 2 (6.5%)
Bozitinib 4 (9.3%) 5 (16.0%)
Without MET-TKIs therapy 14 (32.6%) 2 (6.5%)
Line of MET-TKI treatment 0.009
First-line 24 (55.8%) 25 (80.6%)
Subsequent-line 5 (11.6%) 4 (12.9%)
Without MET-TKIs therapy 14 (32.6%) 2 (6.5%)
Concurrent mutation 0.81
With 26 (60.5%) 20 (64.5%)
Without 17 (39.5%) 11 (35.5%)
A B C

FIGURE 1 | Patients with METex14 skipping mutation treated with MET TKIs have significantly longer PFS. Kaplan-Meier estimation of PFS (A), OS (B), and ORR (C)
of MET TKI treated patients with MET amplification and METex14 skipping mutation. PFS and OS are expressed in months. Dotted line indicates the median survival.
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mutations. Moreover, TP53 mutation was also observed in
the METex14 skipping mutation cohort, accounting for 22.6%
(7/31) of the patients. Other gene mutations detected in the
METex14 cohort included MET CN amplification (n = 4),
BRAF CN amplification (n = 4), PIK3CA mutation (n = 3),
EGFR CN amplification (n = 2), ERBB2 CN amplification
(n = 2), RET CN amplification (n = 1), CDKN2A mutation
(n = 1), NRAS mutation (n = 1), CCND3 mutation (n = 1),
LRP1B mutation (n = 1), and LZTR1 mutation (n = 1). Regardless,
35.5% (11/31) of the patients did not harbor any concurrent
mutations (Figure 2). Concurrent mutations observed in both
cohorts are summarized in Tables S1, S2.

Influence of Concurrent Mutations to
Survival Outcomes With MET TKI Therapy
In this study, we analyzed the presence or absence of concurrent
mutations associated with survival outcomes to further explore
other molecular factors that may influence patient prognosis. As
discussed above, 26/43 patients in the MET amplification cohort
were found to have concurrent genemutations. Of these, 16 received
treatment with MET TKIs (61.5%, 16/26). Of the remaining 17
patients without concurrent gene mutations in the MET
amplification cohort, 13 received MET TKI therapy (76.5%, 13/17).

We compared the PFS and OS of the patients. In the MET
amplification cohort who received MET TKIs, we compared
Frontiers in Oncology | www.frontiersin.org 5
patients with and without concurrent mutations (n = 16 and 13,
respectively). Statistically significant shorter PFS (3.5 months vs.
8.0 months, P = 0.038, Figure 3A) and OS (17.0 months vs. 20.0
months, P = 0.044, Figure 3B) were both noted in patients with a
concurrent mutation as compared to those without, respectively.
We similarly compared those with and without concurrent
mutations in the METex14 cohort who received MET TKI
therapy (n = 18, n = 11, respectively). A statistically significant
shorter PFS (7.0 vs. NR months, P = 0.022, Figure 3C) but a
statistically insignificant OS (12.0 versus NR months, P = 0.249;
Figure 3D) were noted in patients with a concurrent mutation as
compared to those without, respectively.

We studied the effects of other molecular factors on survival
outcomes. We found that several studies have shown an association
between concurrent TP53 mutations and poorer survival outcomes
with TKI therapy. Since TP53 was the most common concurrent
mutation in both cohorts, we investigated its influence on the
clinical outcomes of each cohort. Among the patients of the MET
amplification cohort who were treated with MET TKIs (29/43),
those with a TP53 mutation (n = 10) had a statistically significant
shorter PFS (3.5 vs. 8.0 months, P = 0.011, Figure 4A) but an
insignificant OS (17.0 months vs. 19.0 months, P = 0.122, Figure
4B), as compared to those with a wild-type TP53 (n = 19).

Among the patients of the METex14 skipping mutation
cohort who received MET TKI therapy (29/31), those with a
FIGURE 2 | Distribution of concurrent mutation detected in MET amplification and METex14 skipping mutation cohorts.
June 2021 | Volume 11 | Article 649766
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TP53 mutation (n = 6) had an insignificantly shorter PFS (5.5
months vs. 11.0 months, P = 0.249, Figure 4C) and OS (12.0 vs.
26.0 months, P = 0.357; Figure 4D), as compared to those with a
wild-type T53 (n = 23).

In summary, these data suggested that a concurrent gene
mutation can influence the survival outcomes of patients who
received MET TKI therapy in both cohorts, particularly in the
MET amplification cohort with a concurrent TP53 mutation.

Patients With a PIK3CA Mutation in the
MET Amplification Cohort Displayed
Primary Resistance to MET TKIs
PIK3CA mutations have been found to be involved in TKI
resistance in several cancer models. Therefore, we focused on
analyzing PIK3CA mutations in both cohorts. NGS testing
revealed PIK3CA mutations in 14.0% (6/43) of the MET
amplification cohort, of which 5/6 have undergone MET TKI
therapy (four patients achieved PD and one patient achieved PR)
while 1/6 received chemotherapy. In this cohort, those with a
PIK3CA mutation who received MET TKI therapy (n = 5) were
found to have a statistically significant shorter PFS (1.0 month vs.
7.0 months, P = 0.004, Supplemental Figure 2A) but a
statistically insignificant shorter OS (11.0 months vs. 19.0
Frontiers in Oncology | www.frontiersin.org 6
months, P = 0.058, Supplemental Figure 2B), as compared to
those who received MET TKI therapy but without a PIK3CA
mutation (n = 24).

In the METex14 cohort, 9.7% (3/31) of the patients were
found to have PI3KCA mutations, of which 2/3 received therapy
with MET TKIs (one patient achieved PD and one patient
achieved PR), while one patient refused any therapy. Due to
the small cohort size, the relationship between survival outcomes
and PIK3CA mutation in the METex14 skipping mutation
cohort could not be analyzed.

Four patients from the MET amplification cohort who had
concurrent PIK3CA mutations and had received MET TKIs
showed progressive disease at the first radiologic assessment
(Figures 5A, B). Details of the clinical course of two of the
patients are as follows. Patient #3, with MET amplification,
BRCA amplification, and PIK3CA mutation, was a 51-year-old
woman diagnosed with stage IV NSCLC with liver metastasis.
She received first-line crizotinib, but progression was observed
after 1 month of treatment due to rapid developments of the lung
mass and liver metastases. Furthermore, the patient received
additional chemotherapy, which was deemed ineffective. She
died 11 months after diagnosis (Figure 5B). Patient #17, with
MET amplification, PIK3CA mutation, and TP53 mutation, was
A

B D

C

FIGURE 3 | NSCLC patients with MET amplification and METex14 skipping mutation harboring concurrent deleterious mutations have significantly shorter PFS with
MET TKI therapy. Kaplan-Meier analyses for PFS (A, C) and OS (B, D) of patients based on the presence or absence of concurrent mutations in MET amplification
and MET ex14 skipping mutation cohorts.
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A

B D

C

FIGURE 4 | NSCLC patients with MET amplification and METex14 skipping mutation harboring TP53 mutations have deleterious survival outcomes with MET TKI
therapy. Kaplan-Meier curves of PFS (A, C) and OS (B, D) of patients treated with MET TKIs based on presence or absence of concurrent TP53 mutation in MET
amplification and METex14 skipping mutation cohorts.
A B

FIGURE 5 | Patients with a PIK3CA mutation in MET amplification cohort who received MET TKIs showed progressive disease. Schematic presentation of patients
according to the response to MET TKI treatment, and to the presence or absence of a PIK3CA mutation (A). Computed tomography scans of patient #3 and patient
#17 showing disease progression after 1 month of MET TKI treatment (B).
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a 69-year-old male and a former smoker diagnosed with stage IV
adenocarcinoma. He received first-line crizotinib, which was
discontinued upon the first radiologic assessment due to
primary lesion progression (Figure 5B). The patient was found
to have high PDL-1 expression and was therefore started on an
anti-PD-1 agent. The patient is currently undergoing follow-up.
DISCUSSION

MET is emerging as a clinically relevant biomarker for predicting
treatment response with MET inhibitors. MET amplification or
METex14 skipping mutation has been implicated as an
oncogenic driver in NSCLC and has been proposed as a
potential therapeutic target. Most studies regarding MET
amplification and METex14 skipping mutation have been
carried out in Western populations (5, 22, 23), and the
prevalence of these types of MET alterations in the Chinese
population has yet to be elucidated. In addition, no studies have
compared the clinical characteristics and survival outcomes
between patients with MET amplification and METex14
skipping mutations who received first-line therapy with MET
TKIs. To the best of our knowledge, this is the first retrospective
study to compare clinical characteristics, survival outcomes, and
concurrent genomic mutations in NSCLC in patients of Chinese
ethnicity harboring MET amplification or METex14 skipping
mutation. We also investigated potential molecular markers for
predicting the survival outcomes of patients with MET
amplification and METex14 skipping mutations.

NSCLC with MET amplification is a new potential target,
particularly in patients with a history of smoking. A multiple-
cohort, phase II study performed in patients with MET
amplification showed an ORR of 40% in those who received
capmatinib (22). A retrospective study investigating the efficacy
of crizotinib in Chinese NSCLC patients with de novo MET
amplification showed an mPFS of 6.5 months (24). Our results
revealed an mPFS of 7.0 months and an ORR of 34.5% in the
MET amplification cohort who received treatment with MET
TKIs. Despite the small sample size, our findings were consistent
with those of other studies showing the efficacy of MET TKIs in
NSCLC patients with MET amplification. In our study, patients
with intermediate MET amplification showed insignificant PFS
and OS as compared to those with high MET amplification who
received MET TKIs. However, a longer PFS was observed with
high-level amplification than that with intermediate-level
amplification. This is supported by a previous study showing
that high-level amplification is more selective for treatment
response as compared to low-level amplification (25, 26).
Furthermore, several studies focusing on METex14 skipping
mutations as target alterations in NSCLC have also been
published (27–29). Paik et al. reported eight patients with the
METex14 skipping mutation, four of whom received crizotinib
or cabozantinib and achieved PR (12). The expansion cohort of
the PROFILE 1001 clinical trial which included 65 patients with
NSCLC harboring the METex14 skipping mutation showed an
ORR of 32% with crizotinib, with three patients achieving CR
Frontiers in Oncology | www.frontiersin.org 8
and 18 patients achieving PR. The median PFS and OS of these
patients were 7.3 months and 20.5 months, respectively (30).
Another study retrospectively analyzed the survival outcomes in
patients with METex14 skipping mutation. The PFS and OS of
patients receiving crizotinib were 8.0 months and 11.3 months,
respectively (31). In addition, the prevalence of 1.1% for MET-
ex14 alterations is more likely to be detected in older patients. In
patients harboring MET-ex14 alterations, longer PFS were
observed with crizotinib than with chemotherapy (31).

In our METex14 skipping mutation cohort, the median PFS
was 11.0 months, OS was 20.0 months, and ORR was 51.7%,
similar to previous studies. Interestingly, our study found that
among patients who received treatment with MET TKIs, those in
the MET amplification cohort showed a statistically significant
PFS, as compared to those in the METex14 skipping mutation
cohort (P = 0.043). Although several previous studies have
reported the survival outcome in NSCLC patients with MET
amplification and METex14 skipping mutation patients, no
clinical study has directly compared the survival outcomes of
these two genetic alterations. Our study is the first retrospective
analysis of various outcomes in patients with NSCLC, with either
MET amplification or METex14 skipping mutation, receiving
treatment with MET TKIs. Our results suggest that MET TKI
therapy in NSCLC patients with METex14 skipping mutations is
more efficacious than MET amplification.

Generally, patients with MET amplification or METex14
skipping mutation have a variable response to the same
treatment, suggesting the presence of another factor
contributing to molecular heterogeneity. Therefore, we further
analyzed the comprehensive mutation profile of the patients in
our cohort to identify whether a concurrent mutation would
influence the clinical outcomes of these patients. Several studies
have shown that concurrent mutations in lung cancer are
associated with worse survival outcomes and resistance to TKIs
(32, 33). Moreover, another study showed that patients
harboring concurrent mutations in addition to METex14
skipping mutations were resistant to MET TKIs (34).

In our study, 60.5% (26/43) of patients with MET
amplification and 64.5% (20/31) of patients with METex14
skipping mutations harbored a concurrent gene mutation. Of
these patients, those who received treatment with MET TKIs
were found to have a significantly shorter PFS, as compared to
those without a concurrent mutation. Studies have also shown
that a concurrent TP53 mutation is associated with reduced
responsiveness to TKIs and a relatively worse prognosis (35–38).
In our study, TP53 was the most common concurrent mutation,
detected in 34.9% of the MET amplification cohort and 22.6% of
the METex14 skipping mutation cohort. Among those in the
MET amplification cohort who received MET TKI treatment,
patients with concurrent TP53 mutation resulted in a shorter
PFS (P = 0.011) than in TP53 wild-type patients, indicating TP53
as a potential molecular marker for predicting survival outcomes
in patients with MET amplification. However, among those in
the METex14 skipping mutation cohort who received TKI
treatment, we found that patients with TP53 mutation had a
significantly shorter PFS (5.5 versus 11.0 months, P = 0.357) and
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OS (12.0 versus 26.0 months, P = 0.357), as compared to TP53
wild-type patients. Despite the lack of statistical significance in
the METex14 skipping mutation cohort, it is worth mentioning
that those with TP53 mutations had comparatively worse
prognosis than those without, indicating a clinically
significant trend.

In addition to TP53, a study by Schrock et al. showed that
other gene amplifications, such as EGFR, frequently occur
concomitantly with METex14 alterations (39), which was also
observed in our study. In their study, KRAS mutations were
observed in 3% of METex14 samples; concurrent MET
amplification was identified in 15% of METex14 samples (39).
Furthermore, Jamme et al. found that PIK3CA mutations occur
in 3% of patients with METex14 mutations (40). Only a small
number of published articles have reported concurrent
mutations in NSCLC patients with METex14 skipping
mutations. In our study, the frequencies of concurrent EGFR
amplification, MET amplification, and PIK3CA mutation in
NSCLC patients with METex14 skipping mutation were 6.5,
12.9, and 9.7%, respectively, which are comparable with the
findings of the studies by Schrock et al. and Jamme et al. (39, 40).
Although MET TKIs have demonstrated notable efficacy against
advanced NSCLC with MET amplification and METex14
skipping mutation, cases of primary resistance are increasingly
observed; the response rate in such cases is lower than that of
targeted TKIs of other oncogene-addicted NSCLC.

MET is activated upon binding of HGF, leading to
downstream activation of the PI3K and MAPK pathways,
subsequently causing tumor proliferation, progression, and
metastasis (3–6). The PI3K pathway is frequently dysregulated
in NSCLC; PIK3CA is found in 0.1–0.9% of lung cancer cases
(41, 42). A study by Jamme et al. suggested that the PIK3CA
mutation was commonly found in NSCLC with METex14
skipping mutation; this concurrent mutation plays a role in
primary resistance to MET TKIs (40). Several studies have
reported the role of PIK3CA alterations in resistance to cancer
therapy, including TKI treatment (43, 44). Preclinical data
suggest that the PIK3CA mutation E545K decreases the
sensitivity of EGFR-mutated cells to EGFR TKIs (45).
Regarding patients with EGFR-mutated NSCLC, Eng et al.
reported worse OS with a concurrent PIK3CA mutation
compared to the absence of this mutation (46).

Our present findings suggest that PIK3CA mutation may be
associated with resistance to MET TKIs and is based on the
following observations. In our study, 50% of the METex14
skipping mutation cohort and 80% of the MET amplification
cohort harboring a PIK3CA mutation showed disease progression
with MET TKI therapy, suggesting primary resistance to MET
TKIs. In relation to this, five patients, specifically in the MET
amplification cohort, with concurrent PIK3CA mutation receiving
MET TKI therapy had a PFS of only 1.0 months. This further
supported the hypothesis that PIK3CA mutations may be a
molecular factor in primary resistance to MET TKIs.

This study has some limitations. Due to its retrospective
nature, some clinical information is incomplete, such as the
exclusion of several patients due to lack of detailed information
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and proper follow-up. In addition, not all patient samples were
tested using the 168 gene panel; some patients were tested using
the 56 gene panel. Therefore, analysis of concurrent molecular
factors in patients tested using the 56 gene panel was limited.

After analyzing our data, we speculate the possible association
of PIK3CA mutation with primary resistance to MET TKIs in
NSCLC patients with MET amplification. Additional studies and
experiments must be conducted to elucidate this hypothesis.
Moreover, a large prospective cohort study is needed to
investigate predictive and prognostic biomarkers for stratifying
patients with MET-amplified andMETex14-mutated lung cancers.
CONCLUSION

In summary, patients with METex14 skipping mutation had a
significantly longer PFS than in patients with MET amplification,
indicating that MET TKIs could be a better treatment option for
patients with the METex14 skipping mutation. Moreover,
concurrent mutations may deteriorate the PFS in NSCLC
patients with MET amplification and METex14 skipping
mutations. TP53 mutations in patients with MET amplification
and METex14 skipping mutations were associated with worse
survival outcomes than those with the wild type. PIK3CA
mutations may confer primary resistance to MET TKIs in
patients with MET amplification. These findings contribute to
a better understanding of the molecular factors associated with
clinical outcomes of NSCLC patients with MET amplification
and METex14 alterations.
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