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Autotransport in Gram-negative bacteria denotes the ability of surface-localized proteins to cross
the outer membrane (OM) autonomously. Autotransporters perform this task with the help of a
B-barrel transmembrane domain localized in the OM. Different classes of autotransporters have
been investigated in detail in recent years; classical monomeric but also trimeric autotransporters
comprise many important bacterial virulence factors. So do the two-partner secretion systems,
which are a special case as the transported protein resides on a different polypeptide chain than
the transporter. Despite the great interest in these proteins, the exact mechanism of the transport
process remains elusive. Moreover, different periplasmic and OM factors have been identified
that play a role in the translocation, making the term ‘autotransport’ debatable. In this review, we
compile the wealth of details known on the mechanism of single autotransporters from different
classes and organisms, and put them into a bigger perspective. We also discuss recently discovered
or rediscovered classes of autotransporters.
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1. INTRODUCTION

Gram-negative bacteria display a multitude of pro-
teins on their cell surface. These proteins must
cross two membrane systems: the inner mem-
brane (IM)—composed of diglyceride phospho- and
glycolipids—and the outer membrane (OM)—which
is an asymmetric assembly of inner leaflet phospholi-
pids and outer leaflet lipopolysaccharides. Different
protein translocation systems exist in the IM that
have been studied in much detail; these are the general
secretion (Sec) system with its accessory factors, and
the twin arginine translocation (Tat) system. Both
operate by recognizing specific signal peptides at the
N-terminus of transport substrates, which are cleaved
during translocation through the IM [1]. The major
difference between the systems is that the Sec system
translocates unfolded polypeptide chains, while the
Tat system transports folded proteins through the
membrane, mostly proteins with cofactors that could
not be assembled in the periplasm [2,3]. The Sec
system is also the major system for the insertion of
helical membrane proteins into the IM [1,4,5]. In
this case, no signal peptide is cleaved; recognition of
the first hydrophobic a-helix is sufficient for mem-
brane insertion. It is possible that this recognition
already happens at the level of mRNA, as hydrophobic
residues are coded by U-rich codons [6].
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Numerous highly specialized protein secretion sys-
tems exist, most being large protein complexes.
These systems have traditionally been labelled using
roman numbers; today, we recognize secretion sys-
tems type I through type VIII, and additionally, the
chaperone-usher (CU) system that is used for pilus
assembly on the Gram-negative bacterial cell surface
[7]. Type I secretion systems are composed of an
OM pore component coupled to an IM ABC trans-
porter [8]; here, specific substrates are recognized by
a C-terminal, non-cleavable motif and pass both mem-
branes in one step. Type II-IV secretion systems are
much more complex structures, composed of many
different subunits. They form needle-like or pilus-
like structures on the cell surface, which are used to
secrete proteins (or sometimes, DNA or protein—
DNA complexes in the case of type IV secretion
systems) either into the medium (type II) or directly
from the bacterial cytoplasm into host cells (types III
and IV) [9-11]. The type III secretion system is evo-
lutionarily related to the flagellar apparatus. Type V
secretion systems are the autotransporters which will
be discussed in detail in this review. Type VI secretion
systems constitute a large mechanical cell puncturing
device, with similarities to phage injection machineries
[12], while type VII secretion systems are limited to
mycobacteria, actinobacteria and Gram-positive bac-
teria [13], which are not discussed here. Type VIII
secretion denotes the specific transport system for
bacterial curli [14], amyloid-like adhesin structures
on the cell surface [15]. The CU system and the
type II, V and VIII systems require the Sec machinery
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Figure 1. Structures and topology models. (@) Topology models of the different type V secretion systems. The translocation
domain is displayed in brown, linker/Tps regions in light green, passenger domains in dark green and periplasmic domains
in orange. POTRA domains are labelled (P). For clarification of the topology, N- and C-termini are indicated. (b) Structural
information for passenger domains and transmembrane domains of the different systems is taken from the Protein Data Bank
(with PDB codes under each structure). Note that only single examples are displayed and that in some cases, more structures
are available; vice versa, for some domains, no detailed structural information is available of any exemplar.

for their function; the export of substrates in all other
systems is Sec-independent as they completely span
both membranes. The Sec-dependent systems do not
use adenosine triphosphate (ATP) or a proton gradient
for translocation across the OM [16]—this autonomy
from cytosolic energy sources is the basis for our
use of the term ‘autotransporter’. This extends the
original definition of Meyer ez al. [17] of the transport
function and the passenger domain residing in the
same polypeptide chain to include type Vb secretion.

In this review, we compile and discuss the current
knowledge on type V secretion. Autotransporters
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come in different flavours, and are classified into mono-
meric and trimeric autotransporters, and two-partner
secretion systems (TPSS). The common principle of
all autotransporters is their dependency on the Sec
machinery for IM transit, and the presence of a
B-barrel domain that inserts into the bacterial OM,
where it acts as a transporter for the so-called passenger
domain(s) destined for surface localization. Figure 1
shows the different structures known for the transmem-
brane parts of different type V secretion systems, and
includes topology models for recently described types
where no structural information is available yet. In this
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review, we will describe the different subtypes of auto-
transporters in detail and conclude with the common
mechanism that underlies type V secretion.

2. A NOTE ON NOMENCLATURE

Autotransporters are defined by their transmem-
brane domain located in the Gram-negative OM.
This transport domain is sometimes referred to as
the translocator domain, [-domain or the helper
domain. The domain that is being translocated (or
helped) is typically called the passenger domain, or is
referred to as the extracellular domain or a-domain.
Note that most autotransporters export numerous
domains to the cell surface, leading to multi-domain
passenger ‘domains’. The diversity of exported
domains is very large, and thus, classification is done
according to the transport domain.

The term ‘autotransport’ was first used by Thomas
Meyer and colleagues, who investigated IgA protease
from Neisseria meningitidis [17,18], based on the earlier
finding that the polypeptide chain of the protein
itself hosts the function for surface display, and
thus for translocation across the OM. The term
‘autodisplay’ is used synonymously, especially in bio-
technology, where heterologous proteins are fused to
the autotransporter for surface expression [19,20].
The nomenclature of type V secretion for autotrans-
porters was introduced by Henderson et al [21],
after confusion with type IV secretion systems, and a
systematic classification into type Va to type Vc auto-
transporters was published in 2004 [22]. We kept
the latter nomenclature for the organization of this
manuscript, adding two more (sub-)classes (types Vd
and Ve) from recent literature and our own findings.

3. TYPE Va SECRETION: CLASSICAL
AUTOTRANSPORT
Monomeric autotransporters were the first type V
secretion systems studied in detail. Many important
virulence factors belong to this family, IgA protease
from Neisseria meningitidis [23], adhesin involved in dif-
fuse adherence (AIDA)-I from Escherichia coli [24] and
Pertactin from Bordetella pertussis [25] among them.
They have very diverse functions, frequently related to
pathogenesis: some are extracellular proteases or
lipases, while others, such as AIDA-I, are adhesins.
Especially the monomeric autotransporters that
harbour enzymatic activities are frequently proteolytic-
ally processed to release their passenger domains into
the medium after autotransport is completed. The
first autoproteolytic type Va secretion system, Tsh,
was identified in avian-pathogenic E. coli strains [26].
This autoproteolysis is mediated by conserved residues
in the autotransporter pore and a conserved cleavage
site in the C-terminus of the passenger domain [27,28].
Monomeric autotransporters are expressed as a
single polypeptide that contains an N-terminal signal
peptide, and the proteins are secreted by the Sec
machinery into the periplasm. The mechanisms of
protein expression and signal peptide recognition are
well established and will not be discussed in detail—
it is sufficient to say that autotransporters do not
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behave differently from any other protein until they
reach the Sec machinery. But from there, our know-
ledge on the mechanism of autotransport becomes
more diffuse. Most findings described later were
generated with single exemplars of autotransporters in
a few organisms only. While the authors of this review
are convinced that all basic functions are conserved,
we still cannot exclude that exceptions to the rule exist.

All autotransporters need to reach the cell surface,
and it is reasonable to assume that these sometimes
extremely large molecules can do so only in an
unfolded state. At different steps of the transport pro-
cess, mechanisms are found that inhibit premature
folding. Hbp, the haemoglobin protease of Escherichia
coli, has been shown to use the Srp (signal recognition
particle) pathway of co-translational translocation
through the Sec machinery; this ensures that folding
cannot take place in the cytosol, as the polypeptide
is exported as it is synthesized by the ribosome
attached to SecYEG [29]. YidC, a known accessory
factor for IM protein biogenesis, was also shown to
be involved in translocation; depletion of YidC leads
to periplasmic aggregates of Hbp, and generally to
lower level surface expression of Hbp and another
autotransporter, EspC [30].

An important difference from other Sec-dependent
proteins is the fact that many (but not all) monomeric
autotransporters, Hbp among them, contain signi-
ficantly longer signal peptides, extended at their
N-terminus [29,31]. Experiments with E. coli EspP
shed some light on the function of this extended signal
peptide: when it was exchanged for a standard (short)
signal, EspP started to misfold and aggregate in the
periplasm, while translocation through the IM was
unaffected. Moreover, the long signal peptide seemed
to slow down the Sec-dependent translocation [31].
Presumably, the slower translocation allows the protein
to prepare for OM autotransport, with its N-terminus
still tethered to the Sec machinery that is released only
after relatively late cleavage of the conserved, extended
signal peptide.

In E. coli at least, interactions of periplasmic chaper-
ones with unfolded autotransporters have been shown
in detail—again, this presumably inhibits premature
protein folding or misfolding. For EspP, direct inter-
actions of the unfolded protein with the chaperones
SurA, Skp, the chaperone/protease DegP and the
cis/trans-prolyl isomerase FkpA were demonstrated
[32—34], and the interaction with SurA is also known
for Hbp [35]. DegP might be involved in quality
control, not only serving as a chaperone but also degrad-
ing misfolded protein, as demonstrated for the trimeric
autotransporter YadA [36]; please note though, that this
is a type Vc autotransporter, as discussed later. How-
ever, also in the case of Hbp, degradation by DegP
was demonstrated after depletion of the IM factor
YidC [30]. Moreover, it seems that the passenger
domains, which are typically built from repetitive
B-helices, do not easily fold autonomously, but rather
stay in a metastable, unfolded state that is not prone
to aggregation (at least compared with other unfolded
proteins) [37]. Another interesting observation in this
context is the comparatively low amount of cysteine
residues and disulphide bonds in secreted proteins in
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general [38], and specifically in autotransporters. Vice
versa, when disulphide bonds are present in recombin-
ant passenger domains, these frequently hinder
autotransport, unless DsbA (the periplasmic enzyme
that catalyses their formation) is deleted from the
expression strain [39].

Originally, it was thought that autotransporters
were able to insert into the bacterial OM without the
involvement of other factors. In recent years, however,
the essential OM protein BamA (originally termed
Omp85 in N. meningitidis and YaeT in E. coli) has
been shown to be crucial for autotransporter biogen-
esis. The P-barrel assembly complex, consisting of
BamA and four other accessory proteins (BamB to
BamE in E. coli), catalyses the insertion of virtually
all B-barrel OM proteins [40]. Given that all B-barrel
OM proteins, with the notable exception of type I
secretion system components and some bacterial
toxins, are homologous (i.e. evolutionarily related
[41,42]), this general mechanism should also apply
to autotransporters. On the other hand, numerous
B-barrels are easily able to insert into membranes
in vitro without external factors [43], suggesting that
while the Bam complex catalyses fast and efficient
insertion, it might be expendable in some cases.
The Bam complex recognizes a C-terminal motif in
B-barrel proteins [44], and this motif had already
been detected in porins [45,46] and also in autotran-
sporters [17] before the role of the Bam complex
became clear. The involvement of BamA in membrane
insertion of autotransporters was only recently demon-
strated experimentally: BamA can be crosslinked to
EspP and to Hbp during membrane insertion
[32,35], and BamA (YaeT) depletion in E. coli and
Shigella flexneri impairs the biogenesis of different
monomeric autotransporters such as IscA or AIDA-I
[47]. The sequential binding of EspP to different lipo-
proteins of the Bam complex, namely BamB and
BamD, after BamA binding, emphasizes the impor-
tance of the machinery in the autotransport
process—as in the assembly of all other B-barrel OM
proteins [48]. It has even been suggested that the
Bam complex itself might act as the translocation
pore, but this seems unlikely for two reasons. First,
the passenger domain would have to exit from the
Bam pore laterally, which would entail breaking and
re-forming hydrogen bonds within the barrels of both
BamA and the autotransporter. Second, the auto-
transporter barrel is not just a membrane anchor: it
cannot be functionally replaced by other B-barrel pro-
teins and thus plays an active role in passenger domain
secretion [49].

Many different models have been put forward over
time of how autotransport through the OM takes
place. The original model was put forward for Neisseria
IgA protease [50]: the authors suggested that a pore is
formed in the OM by the C-terminus of the auto-
transporter, and that a hairpin loops out through the
pore; only then, does the exported passenger domain
start to fold from the C- to the N-terminus, pulling
out the rest of the protein in the process. This model
still holds true. Other models, as reviewed by Hender-
son et al. [22], include oligomeric forms, or passenger
domains exported through the lipid membrane instead
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of the protein pore. Different approaches have been
taken over time to show that autotransporters form a
pore that is used, and later occluded, by the passenger
domain. The first crystal structure of the transport
domain of an autotransporter was that of Neisseria
NalP [51]. The structure clearly demonstrated a
helix that occludes the pore, but as the construct was
refolded from inclusion bodies, the question of a poss-
ible refolding or crystallization artefact was raised, and
the matter was only laid to rest after the first complete
structure of an autotransporter, EstA of Pseudomonas
aeruginosa, was published in 2011 [52]. The structure
of an autoproteolytically processed autotransporter,
EspP, displays the same features as those of NalP,
although the helix in the barrel is truncated [53].

Unfortunately, crystal structures can only give a
static picture of the final, folded protein. The major
question for the mechanism of autotransport is
whether the passenger domain passes the pore
N-terminus first (i.e. head-to-tail), or whether a hair-
pin is formed and the passenger domain loops out
through the pore tail-first. Both models have their
problems; if the protein inserts N-terminus first, it is
unclear how the loose end (at the very end of a some-
times hundreds of residues long unfolded polypeptide)
should find its exit pore; if a hairpin is formed, it
remains unclear whether there is enough space in the
pore to accommodate two protein chains in parallel,
and what the driving force to form the initial hairpin
would be. The crystal structures only demonstrated a
narrow, 12-stranded B-barrel pore. But biochemical
experiments all agree with the hairpin model: a
mutant version of EspP that is stalled in autotransport
can be crosslinked to BamA only when in the stalled
form; the identified interaction sites are in the pas-
senger domain close to its C-terminus, and in the
transport domain [32]. The passenger domains seem
to have their folding core at their C-terminal end and
little to no autonomous folding propensity at their
N-terminus, strongly suggesting a sequence of folding
from the C- to the N-terminus. This was demon-
strated for Pertactin [37], for Hbp [54] and for
EspP, where the rest of the passenger domain was
only secreted when its C-terminal part could fold,
while the same C-terminal part itself could also be
exported when its folding was impaired by mutagen-
esis [55]. This elegant experiment strongly suggests
that the energy of initial folding drives the continuation
of the transport process. The short autochaperone
region between passenger domain and translocation
domain is essential for the autotransport process,
as it mediates or initiates folding of the passenger
domain [56]; when it is deleted, the passenger is still
exported but is protease-sensitive and thus at least
partially unfolded. This again speaks for a folding mech-
anism that proceeds from the C- to the N-terminus.
Finally, cysteine scanning mutations, again in Pertactin,
showed that the C-terminal part of the passenger
domain passes the autotransporter pore first, and can
be physically crosslinked to the pore lumen [57].

The current understanding of type Va autotransport
is displayed in figure 2. After Sec-dependent transloca-
tion to the periplasm, autotransporters are kept in an
unfolded state by chaperones, and also by their low
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Figure 2. Type Va autotransport model. The autotransporter polypeptide is threaded through the inner membrane (IM) by the
Sec machinery (in magenta). Many autotransporters, including the one pictured, have an extended signal peptide (in yellow)
which remains attached to the Sec translocon and tethers the autotransporter to the translocon. In the periplasm, chaperone
proteins such as Skp (orange), FkpA (red) and SurA (in blue) and DegP (in blue) bind to the autotransporter and keep it
unfolded. The chaperone/protease DegP is also involved in quality control of autotransport. The signal peptide is eventually
cleaved by signal peptidase (not shown) releasing the autotransporter into the periplasm. The C-terminal membrane anchor
(in brown) is recognized by the POTRA (P) domains of BamA (in purple); the Bam complex aids in inserting the B-barrel
membrane anchor into the outer membrane (OM). The linker region (light green) then forms a hairpin inside the pore of
the barrel. The passenger domain (dark green) is pulled through the pore. The energy for this presumably derives from the
sequential folding of the passenger domain on the outside of the cell. Once the passenger domain has been secreted,
the linker assumes an a-helical conformation and plugs the pore. For many classical autotransporters and as shown

here, the linker undergoes an intra-barrel cleavage to release the passenger domain into the extracellular milieu.

intrinsic folding propensity. In many exemplars an
extended autotransporter signal peptide is present
that slows down processing at the Sec translocon,
allowing the C-terminal part of the sequence to inter-
act with the Bam complex through a conserved
B-barrel recognition motif before the N-terminus is
released from the IM. The Bam complex then inte-
grates the B-barrel into the OM, and during or very
shortly after insertion, the hairpin is formed that
initiates the autotransport process through the newly
formed pore. After the folding core at the C-terminus
of the passenger domain has passed the pore, the
sequential folding from the already exported C-terminal
end drives the process to completion. Many but not all
type Va autotransporters are autocatalytic proteases
that, in a final step, cleave off their passenger domain
and release it.

4. TYPE Vb SECRETION: TWO-PARTNER
SECRETION SYSTEMS

In contrast to classical autotransporters, the passenger
and translocator functions in TPSSs are located in
separate polypeptide chains. By convention, the passen-
ger polypeptide is referred to as the TpsA protein and
the B-barrel transport protein as TpsB. Well-studied
examples of TPSSs are the filamentous haemagglutinin
(FHA) from Bordetella pertussis [58], the haemolytic
ShlA/B system of Serratia marcescens [59] and the high
molecular weight adhesins HMW1 and HMW?2 from
Haemophilus influenza [60]. FHA is transported through
the OM by its TpsB protein FhaC, and ShlA by ShiB,
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whereas HMW1B and HMW?2B are responsible for
the transport of HMW1 and HMW2, respectively.

The genes encoding TpsA and TpsB proteins are
organized into operons, where the TpsB gene usually
precedes the TpsA gene (figure 3a). However, geno-
mic context analysis by GCView [61] shows that in
some cases, the order is reversed (figure 3a). Although
it would in principle be conceivable that a single TpsB
was responsible for the transportation of several differ-
ent TpsA proteins, this does not appear to be the case;
rather, each TpsB appears dedicated to transporting
only its cognate TpsA partner [63]. A notable exception
is FhaC of Bordetella bronchiseptica that transports two
different substrate proteins [64].

TpsB proteins are 16-stranded (3-barrels homologous
to BamA and contain two periplasmic polypeptide
transport-associated (POTRA) domains. TpsA proteins
are more diverse, but almost all are predicted to fold into
largely B-helical structures [65]. Like many autotran-
sporters, large TpsA proteins contain an extended
signal peptide [66]. The N-terminus of TpsAs contains
a highly conserved, approximately 300 residue domain,
designated the two-partner secretion (TPS) domain
[67]. This domain contains the targeting signal recog-
nized by the TpsB protein, and the POTRA domains
of TpsB interact directly with the domain [68]. For
the interaction, the TPS domain must be unfolded
[69]. However, the isolated TPS domains of HMW1
and FHA form stable, B-helical structures, but
presumably do so only after secretion i vivo [70,71].
It is interesting to note that for Serratia ShIB, muta-
tions in one of the POTRA domains did not impair
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Figure 3. Type Vb autotransport model and genomic organization. (a) The genes encoding TpsA and TpsB proteins are organ-
ized into operons, where the TpsB gene usually precedes the TpsA gene. () Genomic context analysis by GCView [61] shows
that the order can be reversed. (¢) Passenger domains can be fused to their transport domains in type Vd autotransporters.
TpsA proteins contain TPS domains that are responsible for the specific recognition by their cognate TpsB proteins. All
TpsB proteins contain POTRA domains (see text). (d) The translocator TpsB protein (brown) and the passenger TpsA
protein (green) are synthesized as separate polypeptide chains, which are then transported across the IM by the Sec machinery
(magenta). The TpsB protein folds into a B-barrel structure in the OM, with two periplasmic POTRA domains (P). Like many
classical autotransporters, some TpsA proteins such as FHA and HMW!1 contain extended signal peptides (shown in yellow).
Periplasmic transit of both proteins is presumably facilitated by chaperones (orange, with asterisk). In the case of FHA, DegP
acts as a chaperone. The N-terminal TPS domain (light green) targets the TpsA protein to its cognate TpsB partner. The
TpsA protein is then translocated across the OM into the extracellular space. The final topologies of HMW1 and FHA
differ, and the alternative conformations strongly speak for a hairpin as the transport intermediate: mature HMW1 (second
structure from the left) has its C-terminus locked in the periplasm by a disulphide bond (orange) that prevents its passage
through the pore of HMW 1B, its TpsB partner. The N-terminal TPS domain of HMW 1 is cleaved, probably in the periplasm,
to produce the mature passenger (dark green). FHA remains associated with FhaC through its N-terminal TPS domain, with
the C-terminus distal from the cell surface, and is cleaved or partially degraded. The C-terminus of FHA is processed at the
cell surface by the autotransporter protease SphB1 [62], but for clarity, in this schematic the cleaved C-terminus is shown
distally from the cell surface.

translocation, but inhibited the maturation of the
secreted enzyme [72].

The mechanism of transport of TpsA proteins
across the OM is assumed to be similar to autotrans-
port. The transport is a two-step process, with a
periplasmic intermediate [73]. For FHA, DegP acts
as a chaperone during transit [74]. The TpsA protein
must remain in a transport-compatible conformation,
as C-terminal fusion to the globular, disulphide-
containing subunit B of cholera toxin inhibited
secretion [75]. After the TPS domain has become
attached to the TpsB POTRA domains, the TpsA
protein is threaded through the pore of the TpsB. As
the C-terminus of FHA is exposed at the cell surface,
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Mazar & Cotter have suggested a model in which the
N-terminus of the protein remains tethered to FhaC,
while the rest of FHA is exported with an N-to-C
polarity. This strongly implies the formation of a hair-
pin within the pore, similar to autotransporters [76];
there are indications from other TPSSs that this is a
general mechanism [77]. An extracellular loop (LL6)
of FhaC is necessary for secretion, and may be
involved in initial formation of the hairpin [78].
Once the hairpin is formed, folding of the B-helix
would provide the pull to bring the rest of the protein
through. FHA remains tethered to FhaC for a time
before being released into the extracellular medium;
the C-terminus of FHA is proteolytically processed
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and degraded during secretion [76]. The helix formed
by the N-terminus of FhaC seen in the crystal struc-
ture probably only inserts into the FhaC pore to plug
it after FHA release [78].

In contrast, the final topology of HMW1 differs
from FHA in that the C-terminus remains in the peri-
plasm. The C-terminus contains a disulphide-bonded
loop that prevents its passage through HMW1B [79].
The N-terminal TPS domain of HMW1 is cleaved
to yield the mature protein [80], but it remains unclear
whether this cleavage occurs in the periplasm or extra-
cellularly. A model has been proposed in which
HMWI1 is threaded through HMW1B N-terminus
first, with the TPS domain being cleaved on the out-
side of the cell during export [77]. However, as it is
highly likely that the mechanism of secretion is con-
served between type Vb systems, we favour a model
in which the TPS domain of HMW!1 is degraded in
the periplasm [80]. In this model, the TPS domain
binds to HMW 1B, and most of HMW1 is exported
N-to-C by the hairpin mechanism [77]. The transport
is stalled at the disulphide-bonded C-terminus, and
the TPS domain is consequently cleaved to release
the N-terminus into the extracellular space. This
model can be reconciled with the finding that cleavage
of the TPS domain is not required for secretion [80] as
the binding of the TPS domain to TpsB POTRA
domains is reversible [68]. The stalling of the transport
by the C-terminus would thus eventually lead to the
dissociation of the TPS domain and its transport
into the extracellular milieu via the hairpin.

The steps in TPS secretion outlined here, including
the different final topologies of FHA and HMW 1, are
represented in figure 3d.

5. TYPE Vc SECRETION: TRIMERIC
AUTOTRANSPORTERS

Trimeric autotransporters are important virulence fac-
tors in many Gram-negative pathogens. In contrast to
many of their monomeric counterparts (type Va auto-
transporters), they are usually adhesins, do not
harbour enzymatic functions and are not released
from the cell surface by an autoproteolytic mechanism.
Instead, they protrude from the cell surface as rela-
tively rigid rods, with a length of over 250 nm in
some cases [81]. Trimeric autotransporter adhesins
(TAAs) have a modular and repetitive architecture,
and can be composed of numerous different domains.
The common principle of all building blocks is their
ability to trimerize, and to connect to the omnipresent
stretches of trimeric coiled coils that are one of their
dominant features [82]. The modular arrangement of
domains presumably allows pathogens to frequently
and easily recombine their adhesin repertoire [83].
But while the surface-localized part of TAAs is
highly variable, the domain that really defines the
family is their translocation domain, or membrane
anchor [81].

The prototype of all TAAs is YadA, the Yersinia
adhesin A of Yersinia enterocolitica [84], which is
known to bind to collagen of the host extracellular
matrix [85]. It is comparably simple in architecture,
consisting only of a B-roll head domain [86] that
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hosts the adhesive function, an extended coiled-coil
stalk and the membrane anchor [87]. Other well-
studied members of the TAA family, but with a more
complex domain architecture, are the Bartonella hen-
selae adhesin BadA [88], the Haemophilus influenzae
adhesins Hia [89] and Hsf [90], and the Moraxella
catharralis ubiquitous surface proteins UspAl and
UspA2 [84,91].

Trimeric autotransporters follow the same route
as type Va autotransporters for their biogenesis. They
frequently have the N-terminally extended autotrans-
porter signal peptides described earlier [82] that
presumably tether the nascent polypeptide chain to
the IM until Sec-mediated translocation into the peri-
plasm is complete. There is recent evidence that
periplasmic chaperones may aid in keeping YadA in
an unfolded state in the periplasm. The periplasmic
protease and chaperone DegP has been shown to be
involved in the quality control of trimeric autotransport-
ers: YadA is degraded when mutations are introduced
that hinder efficient autotransport [36]. TAAs have
little autonomous folding propensity over wide stretches
of their passenger domain sequences, displayed—for
example—by the need for stable, trimeric domains
fused to recombinantly expressed TAA domains from
the Salmonella adhesin SadA, which otherwise would
not fold and crystallize [92]. In addition, many exem-
plars, including SadA [93], EibD of E. coli [94] and
UspAl [91], are partially composed of atypical trimeric
coiled-coil domains that contain hydrophilic core
residues and bind ions in their core, where usually
hydrophobic interactions should stabilize the structure.
These hydrophilic residues, typically asparagines, signifi-
cantly reduce the folding propensity of the proteins, but
keep them highly soluble as it is usually hydrophobic
interactions that initiate protein aggregation. It has
been speculated that this helps TAAs to maintain a
transport-competent, unfolded but non-aggregated
state during their passage through the periplasm and
during autotransport [93].

TAAs have a B-barrel translocation domain that
resides in the OM. In contrast to all other type V
secretion systems, this translocation pore is not
made from one, but from three polypeptide chains,
where each chain contributes four B3-strands to form
a 12-stranded B-barrel [81,84,87]. For YadA, it was
demonstrated that again, the Bam complex plays an
important role in its biogenesis: depletion of BamA
lead to reduced surface expression of YadA, and the
C-terminal motif for Bam recognition is present in
YadA [95] and all other type Vc autotransporters.

The crystal structure of the transmembrane domain
of Haemophilus Hia [96] shows a B-barrel pore of
similar outer diameter as that of monomeric autotrans-
porters. It was noted earlier that the residues facing
the pore lumen in TAAs all have small side-chain
volumes, mostly glycines and alanines. When the
most conserved glycine is mutated to bigger residues
in YadA, autotransport is significantly slowed down,
and the periplasmic stress response towards misfolded
proteins is turned on [36]. This already demonstrates
that autotransport must proceed through the pore.
Moreover, the transmembrane domain of TAAs is
sufficient for trimerization and export; passenger
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outside

Figure 4. Type Vc autotransport model. Trimeric autotransport presumably follows a largely similar sequence of events to clas-
sical autotransport, the major difference being the presence of three polypeptide chains rather than just one. Many trimeric
autotransporters also contain extended signal peptides, shown in yellow. As yet unidentified chaperones (orange, marked
with asterisks) keep the polypeptides in a translocation-competent, unfolded state. The Bam complex (purple) is required
for trimeric autotransporter biogenesis and recognizes the C-terminal membrane anchor (in brown, the three membrane
anchor monomers are coloured in different shades). The Bam complex assists in trimerization of the 3-barrel and mem-
brane insertion. The linker regions (different shades of light green) form hairpins within the pore, and this leads to
translocation of the polypeptides encoding the passenger domain (in different shades of dark green). The periplasmic chaper-
one/protease DegP is involved in quality control of trimeric autotransport. The passenger domain trimerizes after secretion and

remains covalently attached to the membrane anchor.

domains from different TAAs fused to the same trans-
port domain are able to form mixed trimers in the
membrane and can export mixed passenger domains
to the cell surface [97]. Interestingly, the part of the
sequence that later occludes the pore cannot be
deleted without losing the capacity to form trimers in
Haemophilus Hia [96], and in the case of YadA, de-
letion of this region abolished protein production
completely [98]. This speaks for the involvement of
this region in a transport intermediate, where trimer-
ization and presumably, hairpin formation are coupled.

All passenger domains of TAAs contain a coiled-
coil segment N-terminal to the membrane anchor,
and many TAAs have a specific sequence motif,
[YxD] in right-handed coiled-coils, or the analogous
motif [RxD] in left-handed coiled coils, in this
region, sometimes repeatedly. It seems to be a folding
core motif [99], which would be in good agreement
with a hairpin model for autotransport, where all
three hairpins are exported in a concerted manner.
The Y/RxD motif would then start the folding process
from the C- to the N-terminus, analogous to the
sequential folding in type Va autotransporters, and all
three chains would be driven out and fold simul-
taneously, through an admittedly extremely tight pore.
The previously described coiled-coil motifs that seques-
ter ions to their core might have a comparable role in
initiating folding, once they have passed the pore [93].

The transition of one handedness to another in the
coiled-coil segment might alleviate torsion stress
during folding [99], and the same could apply to
other TAA-specific structural features, such as the
neck or the saddle [94].

Phil. Trans. R. Soc. B (2012)

The current model of type Vc autotransport is dis-
played in figure 4. After Sec-dependent translocation
to the periplasm, trimeric autotransporters are kept in
an unfolded state by chaperones, and also by their low
intrinsic folding propensity. An extended autotrans-
porter signal peptide is present in many exemplars
and slows down processing at the Sec translocon,
allowing the C-terminal part of the sequence to interact
with the Bam complex through a conserved B-barrel
recognition motif before the N-terminus is released
from the IM. The Bam complex then mediates tri-
merization and integrates the (B-barrel into the OM.
During or very shortly after insertion, the three hairpins
are formed that initiate the autotransport process
through the newly formed pore. After the folding core
at the C-terminus of the passenger domain has passed
the pore, the sequential and concerted folding from
the three already exported C-terminal ends drives the
process to completion.

6. TYPE Vd SECRETION: FUSED TWO-PARTNER
SECRETION SYSTEMS?

Recently, a novel type of autotransporter was
described, and was termed type Vd secretion [100].
It has probably escaped attention for a long time as
it is predominantly present in environmental organ-
isms, which have only recently captured the attention
of sequencing projects. The prototype of this new
family is a patatin-like protein from Pseudomonas
aeruginosa, named PlpD. Its passenger domain is a
lipolytic enzyme and is cleaved autocatalytically after
completion of autotransport, not unlike some lipases
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exported by the classical type Va pathway. But in
PlpD, the passenger domain is connected to the trans-
locator B-barrel domain with a POTRA domain
(figure 3¢). Thus, it looks like a gene fusion of
the two components of a TPSS [100,101], albeit
with a different type of passenger domain. For type
Va autotransporters, it has been demonstrated that
the passenger domain at its C-terminal end interacts
with the POTRA domains of BamA, and thus that
POTRA domains play a role not only in -barrel inser-
tion, but probably also in initiating autotransport [48].
It is conceivable that in PlpD this function is fulfilled
by the intrinsic POTRA domain, especially as in
two-partner secretion the POTRA domains in TpsB
interact directly with the TPS domain responsible for
recognition and export of TpsA [68].

The case of PlpD is interesting in two ways: first, it
demonstrates that more classes of unrecognized auto-
transporters might exist, either because they are not
similar enough to the known types and thus not
easily found with BLAST in sequenced genomes, or
because they are present in groups of organisms under-
represented in the databases (e.g. because they are
non-pathogenic). Second, PlpD clearly links type Va
and type Vb (two-partner) secretion, and thus puts
an end to the debate on whether TPSSs are really
autotransporters or not [102,103]. Even TPSS gene
fusions with typical (i.e. B-helical) passenger domains
can be found in the database, such as Tery_3487 of
Trichodesmium erythraeum [101].

7. TYPE Ve SECRETION: CLASSICAL
AUTOTRANSPORT, BUT INVERTED?

Intimin of E. coli and Invasin of enteropathogenic
Yersinia spp. are closely related adhesins with extracellu-
lar Ig domains anchored in the bacterial OM—related
enough to allow for a chimeric exchange of their
transmembrane domain, which still yields functional
protein [104]. Intimin mediates the intimate attach-
ment of pathogenic E. coli to host cells, which leads to
pedestal formation. To this end, a second protein
(Tir) is secreted into the host cell and is inserted into
the host cell plasma membrane from the inside [105].
The secretion and injection of Tir is mediated by a
type III secretion system. Tir in the host cell membrane
then acts as the specific receptor for the binding domain
of Intimin [106]. Invasin, in contrast, directly binds to
Bi-integrins that are located on the surface of the host
cell [107]—no other bacterial factor, and no type III
secretion system, is required.

Both proteins are well studied for their involvement
in pathogenesis. In contrast, numerous models only
vaguely describe the membrane anchor of these proteins
as a transmembrane PB-barrel. They avoid—probably
deliberately—a clear discussion on the topology and
connectivity between the extracellular domains and
the anchor, albeit suggesting that they are autotrans-
porters [108—111]. Even the fact that Intimin can be
used for surface display of heterologous proteins [108]
just like in the autodisplay expression systems based
on classical type Va autotransporters [19] did not lead
to the label ‘autotransporter’ for these proteins.
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periplasm

N C

Figure 5. Type Ve autotransport differs from type Va. Auto-
transport proceeds from the N- to the C-terminus in type Ve
autotransporters such as Intimin and Invasin (from the C- to
the N-terminus in type Va autotransporters). For emphasis, a
short section of the polypeptide chain is shown, where R,
and R, are side-chains, and R; is N-terminal to R,.

Only recently, a detailed topology model was pub-
lished for the Intimin/Invasin family [112], showing
a small, N-terminal periplasmic domain (that probably
binds peptidoglycan [109]), followed by a trans-
membrane (-barrel domain. This domain forms a
pore that is occluded by an a-helix, which in turn con-
nects the pore to the exported Ig domains (figure 1).
Even though, in the light of the literature cited earlier,
we disagree with the authors that the Intimin/Invasin
family of proteins is ‘novel’ [112], our own bioinform-
atics and experimental data strongly support their
topology model and thus the notion that we are deal-
ing with an autotransport system. The experimental
support includes the insertion of immunogenic tags
into different positions of the protein, and experiments
that show their localization in the periplasm or on the
cell surface, respectively [113].

In contrast to type Va autotransporters, the order of
passenger and transport domains are reversed in
Intimin and Invasin. Thus, it is the C-terminus, not
the N-terminus, that extends from the OM to the
host cell. This fact must consequently mean that
the mechanism of autotransport is different from
type Va autotransport, as a presumed hairpin inter-
mediate would loop through the transport pore
pulling a strand in the inverse direction and the export-
ed domain would fold from its N- to its C-terminus
(not C- to N-terminus as in type Va autotransporters,
figure 5). We propose here that this system should
be labelled ‘type Ve secretion’, to acknowledge this
significant difference from type Va secretion.

Apart from the inverted transport mechanism
through their OM pore, Intimin, Invasin and their
homologues seem to follow the same export route as
classical autotransporters. Intimin has a long Sec
signal peptide [109] and thus is translocated by the
Sec machinery into the periplasm, as is Invasin. The
passenger domain of Intimin is kept in a trans-
location-competent (i.e. unfolded) conformation in
the periplasm [114], and Intimin insertion into the
OM depends on BamA and the chaperones SurA
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and Skp, and on DegP that plays a role in quality
control and degradation of misfolded variants [115].

8. CONCLUSIONS AND OUTLOOK

There is an established evolutionary relationship
between the transport domains of autotransporters
and almost all other OM B-barrel proteins [42,116].
Thus, it is not surprising that they use the same OM
insertion machinery (the Bam complex) and contain
the same insertion signal at the C-terminus of their
B-barrel domain, as discussed already. The involve-
ment of the same IM translocation machinery (the
Sec translocon), the same set of periplasmic chaper-
ones (such as Skp and SurA), of prolyl-cis/trans
isomerases (such as FkpA) and of quality control
proteases (such as DegP) for classical {-barrel
proteins [117,118] and autotransporters (see §3)
strongly suggests that there is a general mechanism
for the secretion of all B-barrel proteins, including all
autotransporter classes.

The difference is the autotransport itself, an event
that we strongly believe starts after, or at most syn-
chronously, with OM insertion, and thus represents
an addition to the general OM insertion mechanism
mediated by the Bam complex. It has been suggested
that folded or semi-folded periplasmic intermediates
of autotransporters exist. The experiments that lead
to this conclusion [32,35,119] are not necessarily a
contradiction to our view, but probably demon-
strate a synchronization of membrane insertion and
autotransport initiation. In detail, Ieva er al. [119]
demonstrate that in a mutant stalled in autotransport,
a protease-insensitive intermediate exists that can be
extracted using urea. Thus, it cannot be fully inserted
in the membrane at this stage. But a fully folded trans-
port domain as well as the notion of other pre-folded
B-barrel proteins [120] in the periplasm before mem-
brane insertion is unlikely. There is no system to
transfer energy to the Bam complex from the IM.
Thus, the energy for membrane insertion must stem
from the formation of the many hydrogen bonds
formed during B-barrel protein folding: insertion
and folding must be coupled. A preformed structure
would have to either unfold again, or to insert in
folded form, a bit like the cork being pushed back
into a champagne bottle. Both ‘mechanisms’ would
need considerable amounts of energy, not available
in the periplasm.

The same energy considerations hold true for auto-
transport as such (i.e. the events after membrane
insertion). Neither ATP nor a proton gradient is
necessary for surface display of the transported passen-
ger domains. Again, the only source of energy for
transport available is the free energy of protein folding.
Key experiments have recently substantiated this view,
showing that folding of type Va autotransporters pro-
ceeds sequentially from the C- to the N-terminus,
driving the process further [37,55]. The same exper-
iments, and others reviewed earlier, also clearly speak
for a hairpin that is formed to initiate the autotrans-
port, illustrated in figures 2-5 for the different
autotransporter subtypes. In this context, it is also
interesting to note that in TPSSs (type Vb secretion),
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the exported domain can stay attached to the transport
domain either with its N- or its C-terminus (see §4).
As the transport domains do not differ significantly,
a common transport mechanism can be assumed:
only a hairpin intermediate explains these alternative
conformations satisfactorily.

The major objection raised against the hairpin
model of autotransport is the restricted size of the
B-barrel pore. The crystal structures of the trans-
location domains of NalP and other type Va systems
and of the type Vc system Hia in principle show that
there is enough room for two extended polypeptide
strands in the pore (six in the case of type Vc¢), as
discussed in [36,51,96]. Moreover, B-barrel proteins
are not static structures, but capable of undergoing
significant conformational fluctuations without break-
ing down the hydrogen bonds that define the barrel.
This is not only observed in electrophysiological
measurements, but was also recently demonstrated
for the usher B-barrel protein FimD, which, when
co-crystallized with its transport substrate, had a
significantly wider pore size compared with the
apo-structure [121]. It is thus also possible that
autotransporter B-barrels are capable of such tempor-
ary expansions during transport, even though such
fluctuations were not observed in molecular dynamics
simulations of NalP [122]. This is probably due to the
short timescale of the simulations (10 ns), and due to
the fact that the final structure, and not a model of a
transport intermediate, was used.

We conclude from the literature compiled in this
review that there is a general mechanism for autotrans-
port, where the different types of autotransporters
follow the general route for B-barrel protein insertion
into the OM. An extended signal peptide in many
cases ensures slow processing by the Sec machinery,
to gain time for proper OM insertion before the pas-
senger domain is released. Moreover, premature
folding in the periplasm is inhibited by the known
periplasmic chaperone systems, and also by sequence-
intrinsic properties of the passenger polypeptides,
such as a reduced folding rate, little to no cysteine
residues for disulphide formation, high solubility of
the unfolded passenger domains and little to no propen-
sity to aggregate when in the unfolded state. Most
probably already during membrane insertion a hairpin
structure is formed, and the sequential folding of the
passenger domain on the cell surface drives the process
to completion.
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