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Besides amyloid fibrils, amyloid pores (APs) represent another mechanism of amyloid

induced toxicity. Since hypothesis put forward by Arispe and collegues in 1993 that

amyloid-beta makes ion-conducting channels and that Alzheimer’s disease may be due

to the toxic effect of these channels, many studies have confirmed that APs are formed by

prefibrillar oligomers of amyloidogenic proteins and are a common source of cytotoxicity.

The mechanism of pore formation is still not well-understood and the structure and

imaging of APs in living cells remains an open issue. To get closer to understand

AP formation we used predictive methods to assess the propensity of a set of 30

amyloid-forming proteins (AFPs) to form transmembrane channels. A range of amino-acid

sequence tools were applied to predict AP domains of AFPs, and provided context on

future experiments that are needed in order to contribute toward a deeper understanding

of amyloid toxicity. In a set of 30 AFPs we predicted their amyloidogenic propensity,

presence of transmembrane (TM) regions, and cholesterol (CBM) and ganglioside binding

motifs (GBM), to which the oligomers likely bind. Noteworthy, all pathological AFPs share

the presence of TM, CBM, and GBM regions, whereas the functional amyloids seem

to show just one of these regions. For comparative purposes, we also analyzed a few

examples of amyloid proteins that behave as biologically non-relevant AFPs. Based

on the known experimental data on the β-amyloid and α-synuclein pore formation, we

suggest that many AFPs have the potential for pore formation. Oligomerization and α-TM

helix to β-TM strands transition on lipid rafts seem to be the common key events.

Keywords: amyloid-forming proteins, amyloidogenic regions, transmembrane regions, amino-acid sequence

predictors, cholesterol and ganglioside binding motifs, amyloid pore

INTRODUCTION

It is widely accepted and inherited cases confirm a notion that the major part of the pathology
of neurodegenerative diseases is due to aberrant processes of protein misfolding and formation
of amyloid fibrils by the amyloidogenic proteins concerned: α-synuclein in Parkinson’s disease,
β-amyloid (Aβ) in Alzheimer’s disease, SOD1 and TDP-43 in amyotrophic lateral sclerosis, etc.
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Dobson (2002) discovered that these conformational transitions
are not reserved to amyloidogenic proteins, but that under
certain conditions all proteins can be converted into amyloid
fibrils, even the very stable and α-helical myoglobin (Fandrich
et al., 2001). However, the tendency to misfold and aggregate
to amyloid at physiological pH and temperature is not the
same for all proteins; certain proteins or their parts—after
cleavage—are more susceptible to the formation of amyloid
fibrils. Amyloidogenic proteins do not have common sequence
motifs, but by comparing the protein sequences it can be
predicted that some parts are hot spots that form a cross-β spine
of amyloid-like fibrils (Nelson et al., 2005). The peptides, which
are as short as hexapeptides, can form amyloid fibrils (Tenidis
et al., 2000). From the molecular forces that determine the cross-
β structure of the amyloid, the main chain hydrogen bonds, but
also aromatic repetitive patterns (Gazit, 2007) seem to be of great
importance, the latter probably undergoing 5 stacking (Gazit,
2002, 2007; Reymer et al., 2014). The secondary structure in
the native fold protein is important, but not directly correlated
with the secondary structure of the amyloid fibrils. The over-
prediction of α-helices compared to the X-ray structure derived
α-helices indicates the propensity of α to β transition in the
intermediate (Morillas et al., 2001), partially unfolded state and,
for intrinsically disordered proteins, partially folded state.

The transition to amyloid fibrils is a reaction consisting of a
lag, growth and plateau phases. The most common mechanism
is nucleation via an oligomeric nucleus and the other spectrum
is downhill polymerization (Žerovnik et al., 2011; Dovidchenko
et al., 2014). In due course of amyloid fibrils formation the
prefibrillar oligomers of different shapes can be formed; from
rings as found at Aβ (Oxana, 2019), to globules, spheres, or
stars. Some of these prefibrillar oligomers are on-pathway and
determine the nucleus that assigns the lag phase, some are off-
pathway. Some are benign some are toxic differing by subtle
changes in conformation (Capitini et al., 2018; Sengupta and
Udgaonkar, 2018). The toxic prefibrillar oligomers (Bucciantini
et al., 2002; Leri et al., 2016) are thought to make pores
into membranes, similar to antimicrobial peptides or bacterial
toxins (Anderluh and Žerovnik, 2012; Last and Miranker, 2013).
The “channel hypothesis” of AD is not new. It is based on
electrophysiological measurements by the group of Arispe et al.
(1993a,b); Arispe et al. (2014), Kawahara et al. (2000), and Diaz
et al. (2009). Later, the same concept was increased to other
amyloid proteins, among them α-synuclein (α-syn), by Lashuel
et al. (2002) and Lashuel and Lansbury (2006). Amyloid pore
(AP) formation (Kawahara et al., 2011; Di Scala et al., 2016;
Kandel et al., 2017) is still not fully understood and has not
been directly proven in living cells until recently (Jamasbi et al.,
2018). Various in vitro studies on membrane vesicles, artificial
lipid bilayers, and neuronal cell cultures were performed for Aβ

and α-syn (Kawahara et al., 2000; Tsigelny et al., 2012; Chen
et al., 2016; Di Scala et al., 2016; Kandel et al., 2017; Hannestad
et al., 2020; Perissinotto et al., 2020). Recent, still in vitro study
revealed the imaging of how α-syn forms the AP in membrane

Abbreviations: AP, amyloid pore; APFs, amyloid-forming proteins; CBM,
cholesterol binding motif; GBM, ganglioside binding motif; TM, transmembrane.

predominantly composed of anionic phospholipids, alike those
making mitochondrial membranes. Since the interaction of
neuronal α-syn with lipid membranes appears crucial in the
context of Parkinson’s disease, authors tried to explain the roles of
different lipids in pathogenic protein aggregation and membrane
disruption (Hannestad et al., 2020). Perissinotto et al. (2020)
showed that metals (iron in particular) influence interaction of
α-syn with lipid rafts. Kayed et al. (2020) has written a review
on existence of endogenous oligomeric and multimeric species
in α-synucleopathies. The association of α-syn with plasma
membrane of hippocampal neurons was demonstrated to induce
the formation of pore-like structures (Li et al., 2020). The analysis
of Lee et al. (2017) has shown structure and conductance of
oligomeric Aβ pores in a natural lipid membrane, which closely
mimics the in vivo cellular environment. Recent studies also
include interaction of Aβ with cellular membranes (Bode et al.,
2017) and animalmodels (Julien et al., 2018), both confirming the
hypothesis of membrane perforation. For example, in C. elegans
the membrane repair response was turned on when Aβ was fed
to animals (Julien et al., 2018).

Moreover, in last years the researchers have elucidated the X-
ray crystallographic structures of oligomers derived from Aβ, α-
synuclein, and β2-microglobulin (Kreutzer and Nowick, 2018).
Out of these three amyloidogenic peptides/proteins, the Aβ β-
hairpin mimics have provided the most insight into amyloid
oligomers. Study has revealed a new mode of self-assembly,
where three Aβ β-hairpin mimics assemble to form a triangular
trimer which can pack together with other triangular trimers to
form higher-order oligomers (hexamers and dodecamers). These
higher-order oligomers can form annular pore-like assemblies
and exhibit toxicity toward neuronally derived cells (Kreutzer
and Nowick, 2018). Specific pore-forming β-barrel oligomers of
Aβ42 in DPC micelle conditions were reported also by Serra-
Batiste et al. (2016). Recently, another atomic level structures
of β-sheet pore-forming Aβ(1-42) oligomers were obtained by
nuclear magnetic resonance (NMR) and mass spectrometry
(MS), and a mechanism for membrane disruption based on
electrophysiology and simulation studies in membranes was
provided (Ciudad et al., 2020). These structural findings are
significant and address the gap in understanding the molecular
basis of amyloid diseases.

Various methods have been developed to calculate the
propensity to form amyloid fibrils, such as AGGRESCAN,
AGGRESCAN3D, TANGO, WALTZ, etc. The method
AGGRESCAN3D (Pujols et al., 2018) takes into account
the tertiary structure of proteins apart from their sequence. The
overview of the available programs is described in the review
paper of Pallarés and Ventura (2019). A preliminary screening
of amyloidogenic sequence fragments can be performed with
the RFAmy predictor (http://server.malab.cn/RFAmyloid) (Niu
et al., 2018) and the AmyPro database (https://amypro.net)
(Varadi et al., 2018). This database includes pathogenic amyloids
as well as prions and functional amyloids, and allows users to
screen their sequences against the entire collection of validated
amyloidogenic sequence fragments. Further, AmyPred2 (Tsolis
et al., 2013) (http://aias.biol.uoa.gr/AMYLPRED2) shows a
CONSENSUS result of many methods. Previously, this program
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was successfully used to predict amyloid-prone regions in human
stefin B wild-type and proline mutants (Hasanbasic et al., 2019).
In this study a set of 30 potentially AFPs was selected and the
amyloid-fibril propensity was calculated using various tools
(Table 1).

In the interaction of prefibrillar oligomers with phospholipid
membranes, the lipid rafts, i.e., the microdomains of membranes
rich in gangliosides and cholesterol, play an important role (Jang
et al., 2009, 2013; Di Scala et al., 2016; Kandel et al., 2019). There
are some parallels to the entry of virus particles (Yahi and Fantini,
2014). For example, the spike protein of the coronavirus SARS-
CoV-2 in the S2-part has a motif that binds to lipid rafts and
thus enables the S1-part to attach and interact with the ACE2-
receptor (Fantini et al., 2020). Of interest, the SARS coronavirus-
(SARS CoV-1) protein E (E for envelope) was shown to form
cation-selective membrane channels (Wilson et al., 2004; Verdiá-
Báguena et al., 2012). The SARS-CoV-2 protein E thus likely
functions as a “viroporin,” but also may have an important
function in the infection process and subsequent inflammation
(Pacheco et al., 2015).

Therefore, the main focus of our study was to determine in the
set of 30 AFPs the domains that could be crucial for AP formation
[TM regions, ganglioside (GBM) and cholesterol binding motifs
(CBM)]. In this regard, several publicly available tools were used
to assess whether the proteins under investigation have TM
regions, either α-helices or β-strands. Detailed description and
list of these tools are available in section Materials and Methods
and Supplementary Table 1. Indeed, we were able to determine
possible TM regions in some of the amyloidogenic proteins
involved in neurodegenerative pathology. For others, we suspect
that they can still form TM channels when in the oligomeric
state. Further on, in the same set of sequences we looked for the
motifs that represent signatures for the binding to gangliosides
and cholesterol, GBM and CBM, respectively. Lipid rafts are
rich in cholesterol and gangliosides (Figure 1) (Sezgin et al.,
2017), and both are the sites where membrane interaction often
begins; as seen in viruses (Wilson et al., 2004; Verdiá-Báguena
et al., 2012) or in the direct pore formation through APs (Di
Scala et al., 2016). The association of oligomeric α-synuclein with
plasma membrane of hippocampal neurons was demonstrated
to induce the formation of pore-like structures (Li et al., 2020).
Furthermore, the results of Pacheco et al. (2015) go in line
with the data of β-amyloid, another experimentally confirmed
amyloidogenic pore forming peptide (Sepúlveda et al., 2014).
Models of rather mobile Aβ channels have been proposed already
in 2007 by the Nussinov group, who used molecular dynamics
simulations (Jang et al., 2007, 2009, 2016; Capone et al., 2012).
The simulations indicated that β-sheet channels might break
into loosely associated mobile β-sheet subunits. The preferred
channel sizes (16- to 24-mer) were compatible with electron
microscopy/atomic force microscopy-derived dimensions (Jang
et al., 2009).

Further in vitro experiments have shown that AP formation
involves both membrane lipids, ganglioside and cholesterol,
that physically interact with amyloid proteins through specific
structural motifs (GBM and CBM) (Jang et al., 2007, 2009,
2013; Di Scala et al., 2016; Dong et al., 2017). Mutation or

deletion of these motifs abolished pore formation in α-synuclein
(Parkinson’s disease) and Aβ (Alzheimer’s disease). Moreover,
both peptides did no longer form Ca2+-permeable pores in the
presence of drugs that target either cholesterol or ganglioside
or both membrane lipids, indicating that gangliosides and
cholesterol cooperate to favor the formation of AP through a
common molecular mechanism (Di Scala et al., 2016). Figure 2
highlights the α-synuclein and β-amyloid domains that were
confirmed by in vitro experiments to be involved in AP
formation. Based on studies of how the β-amyloid tetramer and
α-synuclein octamer insert into membranes (Tsigelny et al., 2012;
Ciudad et al., 2020) we propose a possible common mechanism
of membrane AP formation for other AFPs (Figure 3).

MATERIALS AND METHODS

The data set for this in silico experiment was generated by an
extensive literature search for human proteins with a known
amyloidogenic mode of action. A total of 30 proteins were
selected for this study. The amino acid sequences of these
proteins were compiled from UniProtKB database (https://
www.uniprot.org/). The list of proteins and UniProtKB codes
are shown in Table 1. The detailed protein descriptions and
amino acid sequence representation and results of TM regions
predictions, amyloidogenic regions, GBM and CBM regions are
available in Supplementary Tables 1, 5).

Prediction of Amyloidogenic Sequence
Fragments and Propensity to Form
Amyloid
Using the AmyPro database, we screened selected amino
acid sequences against the entire collection of validated
amyloidogenic sequence fragments to predict amyloidogenic
regions within proteins (Varadi et al., 2018) (https://amypro.net).
The database is publicly accessible and provides the boundaries
of experimentally validated amyloidogenic sequence regions.
Additional data are available, such as the functional relevance
of the proteins and their amyloid state, experimental techniques
used in the amyloid state studies, and relevant data transferred
from the UniProt database.

Furthermore, the consensus method for the prediction of the
amyloid propensityAmylPred2 (Tsolis et al., 2013) (http://aias.
biol.uoa.gr/AMYLPRED2), was implemented in our data set. The
FASTA format of the sequences was used as input. The consensus
of different methods specifically developed for the prediction of
features related to the formation of amyloid fibrils was generated
for each protein. In this work a consensus of at least four methods
was used.

RFAmyloid is a platform for protein sequence analysis based
on machine learning approaches (Niu et al., 2018) (http://server.
malab.cn/RFAmyloid). With the RFAmy classifier we estimated
the propensity for amyloid based on the input of selected amino
acid sequences in FASTA format. The predictions are based on
the training set of original protein sequences from the Uniprot
and AmyPro data sets and the technique of random forest
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TABLE 1 | The list of 30 studied amyloid-forming proteins.

ID Protein name UniProtKB ID Amyloid category RFAmy probabilitya Amyloidogenic regions AmyPRO

databaseb and AmylPred2c

1 β-amyloid P05067 Pathological 0.731 11–42b, 16–21c, 30–42c

2 α-synuclein P37840 Pathological 0.783 35–81b, 36–42c, 52–65c

3 Prion protein P04156 Pathological 0.849 84–125b,c, 148–171b,c, 194–216b,c,

223–231b

4 Tau protein P10636 Pathological 0.842 275–280b,c, 302–329b, 369–370c,

373–373c, 397–402c

5 β-2 microglobulin P61769 Pathological 0.788 21–41b,c, 54–71b,c, 83–89b,c, 91–96b

6 Cystatin C P01034 Pathological 0.848 47–51b,c, 56–65b,c, 95–104b,c

7 Transthyretin P02766 Pathological 0.864 10–20b,c, 26–34c, 91–96b,c,

105–115b,c, 119–124b,c

8 Lysozyme C P61626 Pathological 0.783 5–14b, 25–34b,c, 56–61b,c, 76–84c,

107–112c

9 IAPP-amylin P10997 Pathological 0.807 11–37b, 13–24c

10 Calcitonin P01258 Pathological 0.704 6–11b,c, 15–20b

11 Prolactin P01236 Pathological 0.785 7–34b, 21–31c, 43–57b, 80–89c,

95–101c, 130–137c, 167–174c,

187–195c

12 Insulin P01308 Pathological 0.733 13–18b,c, 18–25c, 32–38b,c, 44–48c

13 TDP-43 Q13148 Pathological 0.775 26–33c, 55–60c, 69–76c, 105–111c,

123–135c, 148–153c, 216–221c,

225–234c, 247–256c, 381–407b

14 Superoxide dismutase 1 P00441 Pathological 0.761 4–7c, 12–23b, 101–107b,c,

112–120c, 147–153b,c

15 Stefin B (cystatin B) P04080 Pathological 0.780 39–59b,c, 64–71b,c, 80–87b, 95–98b

16 α-crystallin B chain P02511 Pathological 0.701 26–29c, 70–84c, 91–98c

17 α-1-antichymo-trypsin P01011 Pathological 0.068 31–42c, 50–66c, 179–192c,

216–228c, 238–243c, 250–255c,

287–290c, 304–308c, 333–340c,

355–364c, 366–369c, 376–382c,

384–392c

18 Stefin A (cystatin A) P01040 Biologically non-relevant 0.806 46–57c, 65–70c, 81–85c

19 Myoglobin P02144 Biologically non-relevant 0.816 2–30b,c, 68–73c, 102–119b,c

20 α-phosphatidyl inositol 3-kinase P27986 Biologically non-relevant 0.841 23–28b, 38–44c, 74–79c

21 Cathelicidin P49913 Pathological 0.844 5–6c

22 Secretin P09683 Negative control 0.859 21–26c

23 Corticoliberin P06850 Functional 0.334 1–40b,c

24 GIP—gastric inhibitory polypeptide P09681 Functional 0.864 1–43b, 23–28c

25 Urocortin P55089 Functional 0.839 1–40b,c

26 α-crystallin A chain P02489 Pathological 0.783 66–80b, 23–27c, 37–45c, 50–56c,

70–78c

27 Obestatin Q9UBU3 Functional 0.689 1–23b

28 Glucagon P01275 Functional 0.699 1–10b, 22–27c

29 Defensin-6 Q01524 Functional 0.713 1–32b, 21–31c

30 β-endorphin P01189 Functional 0.704 1–31b, 14–23c

aRFAmy predictor (http://server.malab.cn/RFAmyloid).
bAmyPRO database (https://amypro.net).
cAmylPred2 predictor (http://aias.biol.uoa.gr/AMYLPRED2).

for the classification of protein sequences (≤0.5 non-amyloid,
>0.5 amyloid).

Prediction of TM Regions
Several programs are available for the prediction of TM segments
of proteins, either α-helices or β-strands. In this study different

predictors were used, which are listed in Supplementary Table 2.
All predictors are freely available online. PredαTM and PredβTM
(Roy Choudhury and Novič, 2015) were developed in our
laboratory and show reliable performance with reasonable
predictions of α-helices or β-strands when compared to other
predictors used. Reports of the benchmark analyzed are available
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FIGURE 1 | Lipid raft scheme.

FIGURE 2 | Lipid-binding domains and transmembrane regions in β-amyloid and α-synuclein that are involved in amyloid pore formation;

orange—ganglioside-binding motif (GBM), green—cholesterol-binding motif (CBM), line pattern—transmembrane region (TM). Representation is based on results of

Tsigelny et al. (2012), Di Scala et al. (2016), and Ciudad et al. (2020).

in studies by Venko et al. (2017) and Roy Choudhury and Novič
(2015). The PredαTM and PredβTM are two-layer predictors;
the first layer is a classifier of TM segments, while the second
layer is an adjustment of the border amino acids of the TM
segments, based on the propensity of border amino acids in
structurally solved TM proteins available in the PDB database
(Roy Choudhury and Novič, 2009). The initial classifier for
predicting α-helix TM segments was based on the artificial neural
network algorithm (Pasquier et al., 1999), later both classifiers
were upgraded by using the support vector machine algorithm
(Venko et al., 2017). Algorithms PredαTM and PredβTM are
using the sliding window approach (20 and 10 amino acids for
α-helix and β-strand, respectively) and each segment is classified
by the pre-developed SVM classifier as either transmembrane
or non-transmembrane (Roy Choudhury and Novič, 2012).

By concept, α- or β-TM regions are segments of
predominantly hydrophobic residues, which are energetically
suitable for the hydrophobic membrane environment and

have aromatic/charged residues at the membrane-water
interface (terminal positions of the TM regions). In general,
the identification of α- or β-TM regions can be approached
by two different concepts: pattern-based or homology-based.
By first, TM features are predicted based on algorithms using
hydrophobicity scales or sequence similarity, by second, the
prediction is based on algorithms that make a comparison with
existing data from homologs. Therefore, in the first case the
applicability for homologs and non-homologs is theoretically
the same, while in the second case the probability of the
prediction depends on the homology rate or is biased with it
(Venko et al., 2017). Since all TM proteins with currently known
high-resolution structures are strictly homomers and no mix
assemblies of both TM segments have yet been determined, the
predictors for each TM unit have been separated and developed
separately to achieve a better precision in the predictions of the
TM regions. Both types of predictors use different computational
methods, which can generally be categorized into three classes:
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FIGURE 3 | Model of the amyloid-membrane disruption mechanism based on a case study of β-amyloid (Aβ). (A) General scheme of membrane disruption; monomer

secondary structure transition with aggregation into oligomer(s) and pore formation. (B) Structural data of membrane disruption by Aβ; soluble monomer α-helix (PDB:

1IYT), β-sheet structure of Aβ tetramer arrangement in membrane environment (PDB: 6RHY), MD simulations in DPPC membrane bilayer of Aβ octamer (Ciudad et al.,

2020).

physico-chemical methods [PRED-TMR (Pasquier et al., 1999),
BOMP (Berven et al., 2004)], statistical methods [TMpred
(Hofmann and Stoffel, 1993)], and machine learning methods
[HMMTOP (Tusnády and Simon, 2001), TMHMM (Krogh et al.,
2001), MEMSAT-SVM (Nugent and Jones, 2009), PredαTM (Roy
Choudhury andNovič, 2015), OCTOPUS (Viklund and Elofsson,
2008), B2TMPRED (Jacoboni et al., 2001), PRED-TMBB (Bagos
et al., 2004), PredβTM (Roy Choudhury and Novič, 2015),
TBBpred (Natt et al., 2004), BOCTOPUS2 (Hayat et al., 2016),
PureseqTM (Wang et al., 2019), MPEx (Snider et al., 2009),
ABTMpro (Cheng et al., 2005)]. In addition, it is proposed to
apply a consensus approach for relevant predictions based on the
analysis of the results of various currently available predictors.
This type of consensus approach is already included in predictors
such as CCTOP (Dobson et al., 2015), TOPCONS (Tsirigos et al.,
2015) and ConBBPred (Bagos et al., 2005). Machine learning
methods are regarding various performance analyses recognized
as the most advanced and accurate (Roy Choudhury and Novič,
2015; Venko et al., 2017). Most often they are based on learning
algorithms such as Support Vector Machines, Hidden Markov
Models and Neural Networks. Interfacial hydropathy profile
with White-Wimley scale was defined in MPEx (Snider et al.,
2009). Further on, an FFPred3 (Cozzetto et al., 2016) server was
used for feature-based function prediction and then a search for
any membrane gene ontology domains was performed.

Protein Sequence Screening for
Cholesterol and Ganglioside Binding Motifs
All protein sequences were manually screened for the presence of
CBM and GBM, as suggested by Fantini and colleagues (Fantini

and Barrantes, 2013; Yahi and Fantini, 2014; Fantini et al.,
2020). Cholesterol interacts with membrane lipids and proteins
at the molecular/atomic scale, thus the consensus cholesterol
binding motifs CRAC and/or CARC were characterized (Fantini
and Barrantes, 2013). The CRAC domain is generally referred
as Cholesterol Recognition/interaction Amino acid Consensus
sequence present in the TM segment. This is motif of mandatory
amino acid residues (L/V)-X1–5-(Y)-X1–5-(K/R). The CARC
domain is similar to the CRAC sequence, but exhibits the
opposite orientation (K/R)-X1–5-(Y/F)-X1–5-(L/V) from the
N-term to the C-term (an inverted CRAC domain) (Fantini
and Barrantes, 2013). Aside, a possible universal GBM is a
variation of motifs consisting of a triad of mandatory amino acid
residues such as (K/R)-Xn-(F/Y/W)-Xn-(K/R). While the Xn are
intercalating segments of usually four to five residues, which can
contain any amino acid, but often glycine (G), proline (P), and/or
serine (S) residues (Yahi and Fantini, 2014).

RESULTS

Propensity of 30 Proteins to Form Amyloid
Table 1 lists 30 human AFPs that we have selected for
analysis based on experimental evidence that 29 of them form
amyloid aggregates. We also included secretin as a putative
negative control, since it was experimentally shown not to
form amyloid, however, by predictive methods it proved to
be highly amyloidogenic (Table 1, Supplementary Table 5). The
functional category for each of the studied proteins is also
shown in Table 1. Particularly, in addition to the 19 pathological
AFPs, we also included three biologically non-relevant, seven
functional amyloids and one negative control. However, for
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amyloidogenic protein cathelicidin the contrasting results among
different sources were reported.

The chosen AFPs were examined for their propensity to
form amyloid using the RFAmy predictor and for possible
amyloidogenic sequence fragments using the AmyPro database
and the AmylPred2 predictor. The results are shown in
Table 1. A detailed graphical sequence representation is available
in Supplementary Table 5, where the AmyPro amyloidogenic
validated sequence fragments are marked. The RFAmy program
classified 28 proteins as amyloids (probability >0.5). Using the
AmyPRO database, the amyloidogenic sequence fragments were
determined for 25 of the selected proteins; whereas formyoglobin
and α-phosphatidyl inositol 3-kinase, homologous sequences
from other species represented in the AmyPRO database were
used. The only exceptions were stefin A, α-crystallin B chain, α-1-
antichymotrypsin, cathelicidin, and secretin. For the above cases,
it was crucial to use AmylPred2 (Tsolis et al., 2013) a consensus
approach to predict amyloidogenic sequence fragments.

An interesting observation was made for α-1-
antichymotrypsin since on one side, this protein was found
in the amyloid plaques from the hippocampus of Alzheimer
disease brains (Shoji et al., 1991; Padmanabhan et al., 2006; Tyagi
et al., 2013) and known to promote Aβ deposition in plaques
(Ma et al., 1994; Eriksson et al., 1995; Nilsson et al., 2001), thus
confirming its pathological role. On the other side, we found a
sequence homology with urocortin, a functional amyloid (Maji
et al., 2009). Moreover, the antibacterial peptide cathelicidin was
reported to act as immunomodulator that can contribute to the
development of autoimmune diseases (Kahlenberg and Kaplan,
2013) and promote inflammation (Takahashi et al., 2018). On the
other side, its exhibits a protective role as an inhibitor of amyloid
self-assembly of Aβ (De Lorenzi et al., 2017) and islet amyloid
polypeptide (IAPP) (Armiento et al., 2020).

Probability of Forming Transmembrane
Secondary Structures
Potential TM regions, either α-helices or β-strands have been
predicted from amino acid sequences of the 305 proteins.
Interestingly, for almost all AFPs at least one α- or β-TM
region was determined. Table 2 shows the regions that can
form TM α-helices or β-strands. The results of the predictions
for each TM predictor are shown in Supplementary Table 3.
Table 2 lists only α- or β-TM regions that meet the following
criteria: they are predicted with at least two or more TM
predictors, or the predicted TM region characterizes the same
residues and secondary structures as in experimentally solved 3D
structure of the soluble native form. In Supplementary Table 3

we have highlighted the regions which may form TM α-helices
(gray color) and the regions which may form TM β-strands
(yellow color).

For the majority of proteins, β-TM secondary structures were
more likely, but the ATMBpro predictor favored α-helices in
all cases. Compared to other TM predictors, the ATMBpro
tool is more restrictive in predicting whether a protein has the
potential to be TM or not, since only three of 30 proteins have
a high probability of being TM proteins (>0.5), seven have a

medium probability (≥0.1 and ≤0.5) and the rest have a very
low probability (<0.1). Interesting are also the predictions of
the MEMSAT-SVM predictor, which for 17 proteins emphasizes
the α-TM regions as pore-lining helices. In general, only one α-
TM region is predicted for the majority of proteins, while β-TM
regions are predicted more frequently, usually up to three or even
more regions per protein (Table 2, Supplementary Tables 3, 5).
Furthermore, the interfacial hydropaty profiles of all analyzed
proteins are represented in Supplementary Table 4. Noteworthy,
the results of FFPred3 search for membrane feature-based
functions showed some membrane gene ontology domains in
almost all analyzed proteins (Supplementary Table 6).

Cholesterol and Ganglioside Binding Motifs
For almost all 30 analyzed proteins cholesterol and ganglioside
binding motifs were detected. In Table 3 the sequences of CBM
and GBM according to codes [(L or V)-(1–5 residues)-(Y)-(1–
5 residues)-(K or R)], [(K or R)-(1–5 residues)-(Y or F)-(1–5
residues)-(L or V)] (Fantini and Barrantes, 2013), and [(K or
R)-(4–6 residues)-(F or Y or W)-(4–6 residues)-(K or R)] (Yahi
and Fantini, 2014; Fantini et al., 2020) are listed. Moreover, on
a schematic representation of each protein sequence, the GBM
and CBM motifs are highlighted in orange and green colors,
respectively (Supplementary Table 5).

Further on, the representative TM regions which include a
CBM are underlined in Table 2. Namely, all 19 pathological
AFPs were determined to possess at least one TM region, which
fulfilled the criteria of including all three regions (TM, CBM, and
GBM), while on the contrary; the functional AFPs and negative
control do not satisfy above mentioned criteria (Table 4). Among
the biologically non-relevant proteins α-phosphatidylinositol 3-
kinase and stefin A possess TM regions with the fulfilled criteria
(TM, CBM, and GBM), while myoglobin does not show TM
regions, which would fulfill TM-CBM-GBM criteria.

DISCUSSION

In accordance with the proposal of Dobson (2002) and Chiti and
Dobson (2017) that any protein under proper conditions can
transform into amyloid state, we determined the propensity to
form amyloids for all 30 AFPs (Table 1). However, the kinetics
of amyloid fibril formation is dictated by stability of the protein
and its tendency to form folding intermediates (Dobson, 2017)
as seen for example in the case of stefin B against stefin A (Jenko
et al., 2004).

Similarly, it is believed thatmost if not all amyloid proteins can
form oligomers, which exert toxicity via membrane binding and
perforation (Bucciantini et al., 2002; Stefani and Dobson, 2003).
The channel theory of Alzheimer’s disease (AD) was proposed in
1993 by Arispe et al. (1993a,b), who stated that β-amyloid (Aβ)
peptide perforates the plasma membrane, leading to the entry
of Ca2+ ions and downstream signaling, which eventually causes
cytotoxicity (Pacheco et al., 2015; Di Scala et al., 2016). Not long
ago, the structure of the Aβ oligomer that could perforate the
plasma membrane was proposed based on molecular dynamics
and solid state NMR (Ciudad et al., 2020), which contributes to
a better understanding of the possible mechanism of toxicity in
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TABLE 2 | Transmembrane α-helix and β-strand predictions for the set of 30 amyloid-forming proteins; in italics are TM regions with CBM.

ID Protein name TM regions ATMBpro probability

α-helix β-strand TM protein α-helix /β-strand TM protein

1 β-amyloid 23–38* 10–21, 30–40 0.831 0.808/0.023

2 α-synuclein 61–76* 33–42, 55–66, 72–82 0.132 0.096/0.036

3 Prion protein 90–109,

198–216*
/ 0.896 0.883/0.013

4 Tau protein / 13–21, 324–334, 359–368, 371–380 0.044 0.040/0.004

5 β-2 microglobulin / 50–56, 60–70 0.270 0.242/0.029

6 Cystatin C 95–112 41–49, 59–66 0.980 0.964/0.016

7 Transthyretin 104–119* 26–35, 65–81, 88–97, 105–111, 114–122 0.001 0.001/0.000

8 lysozyme C 20–35* 11–21, 34–42, 51–60 0.017 0.015/0.001

9 IAPP-amylin 13–28* 7–16 0.034 0.027/0.007

10 Calcitonin / 4–12 0.015 0.012/0.003

11 Prolactin / 81–91, 95–104, 162–171 0.415 0.413/0.002

12 Insulin / 31–39 0.057 0.049/0.008

13 TDP-43 385–400* 25–34, 54–63, 67–76, 147–155, 225–233, 264–274, 342–351 0.377 0.369/0.008

14 Superoxide dismutase 1 / 42–48 0.004 0.004/0.000

15 Stefin B (cystatin B) / 35–43, 49–58, 65–72 0.004 0.003/0.002

16 α-crystallin B chain / 25–34, 75–83, 114–123 0.010 0.010/0.000

17 α-1-antichymotrypsin 50–68*,

376–392*
31–37, 55–65, 73–83, 180–195, 217–230, 240–249 0.171 0.029/0.000

18 Stefin A (cystatin A) / 36–46, 53–59, 65–73 0.002 0.001/0.001

19 Myoglobin / 9–18, 29–37, 65–77 0.001 0.001/0.000

20 α-phosphatidylinositol 3-kinase / 8–14, 38–44, 74–83 0.043 0.025/0.018

21 Cathelicidin / 1–9, 19–26 0.003 0.003/0.000

22 Secretin / 6−13, 19–27 0.151 0.137/0.014

23 Corticoliberin / 9–16 0.078 0.067/0.011

24 GIP—gastric inhibitory polypeptide / 22–30 0.022 0.021/0.014

25 Urocortin 6–21* 9–16 0.186 0.186/0.046

26 α-crystallin A chain / 86–93 0.017 0.017/0.000

27 Obestatin / 6–11 0.054 0.029/0.025

28 Glucagon / / 0.015 0.009/0.006

29 Defensin-6 / / 0.006 0.006/0.000

30 β-endorphin / 14–20 0.037 0.024/0.013

*Pore-lining helix estimation by MEMSAT-SVM predictor. Bold values indicates core amino acids residues in motif.

AD (Press-Sandler and Miller, 2018). Meanwhile, Lashuel et al.
(2002) and Lashuel and Lansbury (2006) describe that APs are
formed by many amyloidogenic proteins and are a common
source of amyloid-induced toxicity. The mechanism of their
formation is still not well-understood and the imaging of pores
in living cells remains an open issue. However, not so recent ago
APs by Aβ were confirmed in living cells (Bode et al., 2017) and
the membrane repair response was induced by Aβ in C. elegans
model (Julien et al., 2018).

In order to get a deeper understanding of amyloid membrane
interaction, we used different bioinformatics and machine
learning tools to predict amyloidogenic (Table 1) and TM regions
(Table 2, Supplementary Table 3) in a set of 30 selected proteins,
all associated with protein misfolding and aggregation into
amyloid fibrils (Sawaya et al., 2007). Since machine learning
approaches are best suited to solve problems in the absence of

general theories (i.e., large amounts of data with noisy patterns),
they are ideal for usage in the case of protein complexity.
According to the results of the α-TM region predictions the
Memsat-SVM predictor is one of the most sensitive, since
this predictor is the only one that predicts α-TM regions in
25 proteins. However, Memsat-SVM predictor in benchmark
analyses in deed performed as one of the best TM predictors. In
particular performs well at predicting the correct number of TM
helices (95% accuracy) and also has a balanced number of over-
and under predictions, which is favorable to avoid bias toward
either type of prediction, and suggests good sensitivity while
avoiding over predicting helices. By statistical parameters has
very low rate of false positives (4%), for in comparison to others
predictors, which have in general rate of false positives >10%
(Nugent and Jones, 2009; Venko et al., 2017). The TMpred and
TMHMM predictors estimated α-TM regions in about one third
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TABLE 3 | Presence of potential cholesterol and ganglioside binding motifs.

ID Protein name Cholesterol binding motif

(L/V)-X1−5-(Y)-X1−5-(K/R)

(K/R)-X1−5-(Y/F)-X1−5-(L/V)

Ganglioside binding motif

(K/R)-Xn-(F/Y/W)-Xn-(K/R)

1 β-amyloid A 5–12

16–24

22–35

RNDSGYEV

KLVFFAEDVa

EDVGSNKGAIIGLM a,b*

5–16 RHDSGYEVHHQK

2 α-synuclein 34–41

53–65

KEGVLYVVb

GGAVVTGVTAVAQ a,b*

34–46 KEGVLYVVAEKTK

3 Prion protein 129–139

183–196

191–203

RENMHRYPNQV

RESQAYYQRGSSMV

RGSSMVLFSSPPV a

3–15

183–194

RPKPGGWNTGGSR

RESQAYYQRGSS

4 Tau protein 5–10

327–334

434–441

RQEFEV

LTFRENAKb

KLDFKDRV

322–334 KETHKLTFRENAK

5 β-2 microglobulin 19–27

58–65

75–82

KSNFLNCYV

KDWSFYLLb

KDEYACRV

58–68 KDWSFYLLYYT

6 Cystatin C 25–31

31–36

36–47

84–94

RALDFAV

VGEYNK

KASNDMYHSRALb

KAFCSFQIYAV

23–46 RRALDFAVGEYNK

7 Transthyretin 30–35

71–80

103–110

VHVFRKb

VEIDTKYYWKb

RRYTIAAL a,b

35–48 KAADDTWEPFASGK

8 Lysozyme C 1–8

14–25

31–41

119–130

KVFERCEL

RLGMDGYRGISLa,b

LAKWESGYNTRa,b

RDVRQYVQGCGV

21–33

107–119

RGISLANWMCLAK

RAWVAWRNRCQNR

9 IAPP-amylin 11–17 RLANFLVa,b 1–11 KCNTAFCATQR

10 Calcitonin 9–18 LGTYTQDFNKb 18–28 KFHTFPQTAIR

11 Prolactin 16–23

77–84

88–98

164–172

RDLFDRAV

KDFLSLIVb

RSWNEPLYHLVb

RLSAYYNLL b

88–102

164–177

RSWNEPLYHLVTEVR

RLSAYYNLLHCLR

12 Insulin 33–43 VEALYLVCGERb 43–50 RGFFYTPK

13 TDP-43 74–82

145–150

151–159

208–216

226–231

VVNYPKDNKb

KGFGFVb

RFTEYETQVb

REFSQYGDVb

RAFAFV b

151–160

208–219

RFTEYETQVK

REFSQYGDVMDV

14 Superoxide

dismutase 1

14–23

42–47

VQGIINFEQK

LHGFRV b

23–36 KESNGPVKVWGSIK

15 Stefin B (cystatin

B)

33–37

39–47

48–56

80–89

KKFPVb

KAVSFKSQVb

VAGTNYFIKb

LSNYQTNK

30–39

78–91

KENKKFPVFK

KPLTLSNYQTNKAK

16 α-crystallin B chain 22–32

44–50

72–79

82–89

RLFDQFFGEHLb

LSPFYLR

KDRFSVNLb

KHFSPEEL b

11–22

69–82

RRPFFPFHSPSR

RLEKDRFSVNLDVK

17 α-1-

antichymotrypsin

156–166

183–193

226–231

295–303

367–377

LINDYVKNGTR

VLVNYIFFKb

LTIPYFRb

RDYNLNDIL

RTIVRFNRPFL

154–166 KKLINDYVKNGTR

(Continued)
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TABLE 3 | Continued

ID Protein name Cholesterol binding motif

(L/V)-X1−5-(Y)-X1−5-(K/R)

(K/R)-X1−5-(Y/F)-X1−5-(L/V)

Ganglioside binding motif

(K/R)-Xn-(F/Y/W)-Xn-(K/R)

18 Stefin A (cystatin

A)

30–38

38–47

48–56

58–67

68–73

81–89

KTNETYKLb

KLEAVQYKTQVb

VAGTNYYIKb

RAGDNKYMHLb

KVFKSLb

VLTGYQVDK

30–44

58–71

KTNETYGKLAVQK

RAGDNKYMHLKVFK

19 Myoglobin 43–50

136–141

141–151

KFDKFKHL

LELFRK

KDMASNYKEL

43–51 KFDKFKHLK

20 α-

phosphatidylinositol

3-kinase

13–20

68–76

76–81

LYDYKKERb

RGDFPGTYVb

VEYIGR b

11–20

68–81

RALYDYKKER

RGDRPGTYVEYIGR

21 Cathelicidin 14–23

25–34

KIGKEFKRIVb

RIKDFLRNLV b

14–25 KIGKEFKRIVQR

22 Secretin / /

23 Corticoliberin / /

24 GIP—gastric

inhibitory

polypeptide

16–27 KIHQQDFVNWLLb /

25 Urocortin 34–40 RIIFDSV /

26 α-crystallin A chain 12–22

50–57

79–86

RTLGPFYPSRL

RQSLFRTV

KHFSPEDL b

66–79

89–100

104–116

RSDRDKFVIFLDVK

KVQDDFVEIHGK

RQDDHGYISREFHR

27 Obestatin / /

28 Glucagon 18–26 RAQDFVQWL /

29 Defensin-6 / /

30 β-endorphin / /

a In α-TM region.
b In β-TM region.
*Experimentally defined. Bold values indicates > 0.15.

of proteins, while the remaining α-TM predictors estimated α-
TM regions in only three of the 30 AFPs. Such a difference in the
sensitivity of α-TM regions predictors is somewhat surprising,
since most predictors for α-TM regions in benchmark analysis
showed very high (≥90%) sensitivities (Venko et al., 2017).
Anyhow, since of the amphipathic nature of the β-TM regions,
the hydrophobicity alone is an inefficient differentiating factor, so
in advanced β-TMpredictors the inclusion of non-linear statistics
and evolutionary profiles was added to optimize predictions
(Bagos et al., 2005). The recent benchmark analysis for β-TM
predictors presented in Venko et al. (2017) shows that the
PredβTM predictor based on machine-learning methodology
currently outperforms all state-of-art β-TM region prediction
methods. Indeed, in 27 proteins β-strand TM regions were
predicted with the PredβTM predictor. Some predictors were
less sensitive (PRED-TMBB, B2Tmpred, MEPx-BB), while the
remaining predictors did not predict any β-TM regions. This
fact is consisted with the estimated sensitivity of the separate
β-TM predictors in the study by Roy Choudhury and Novič
(2015). In general, the comparison between amyloidogenicity
and TM potential is evident for 21 AFPs. As shown in Table 2,

at least one or more TM regions in each protein were predicted
by several TM region predictors. However, the estimation
with the ABTMpro predictor shows that most of them have
a very low TM probability score. It is interesting that those
ones which appear in amyloid or neurodegenerative diseases
(such as Aβ, cystatin C and prion) have a high probability
of behaving as TM proteins (Di Scala et al., 2016; Kandel
et al., 2017). However, in most AFPs sequences both TM
secondary structures α-helices and β-strands were predicted,
thus it is hard to decide, which one is the preferred one in AP
formation. Tsigelny et al. (2012) in their study of α-synuclein
membrane interaction provided reasonable explanation of this
ambiguity and pointed out that during membrane binding and
TM transition both secondary structures possibly occur. Their
computational analysis of α-synuclein TM scores predicted that
the region including residues 64–79 resembles a TM helix,
since this region contains a significant number of hydrophobic
residues that could play a critical role during the process of
membrane penetration. Further analysis shows that α-synuclein
α-helical conformer penetrates the membrane and undergoes
change in the secondary structure with portions of the α-helices
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TABLE 4 | Representation of 30 amyloid-forming proteins (AFPs) according to

amyloid category and fulfilled criteria of including all three domains

(transmembrane, cholesterol, and ganglioside binding regions).

Amyloid category No. of AFPs No. of AFPs fulfilled

TM-CBM-GBM

criteria

Pathological 19 19

Functional 7 0

Biologically non-relevant 3 2

Negative control 1 0

converting intoπ-helices and eventually extending into β-strands
(Sepúlveda et al., 2014).

For the 42 amino acids long β-amyloid (Aβ) they have
recently by using a combination of molecular dynamics
calculations and solid state NMR measurements determined the
structure of the pore-forming oligomers in lipid environment
[tetramers/octamers, PDB: 6RHY (Ciudad et al., 2020)]
(Figure 3B). Using several TM predictors, we showed that
for the Aβ peptide, both types of TM regions are possible
(Table 2, Supplementary Table 3). Although the ATMBpro
predictor seems to prefer the α-helix structure, Ciudad et al.
(2020) showed in their semi-empirical study that β-strand
structures might be involved in the oligomerization and pore
formation by Aβ. The two regions (G9-A21 and K28-A42)
were confirmed as TM segments and both in formation of
β-strands (Ciudad et al., 2020). Thus, predictors defined the
second β-strand segment (A30-V40) correctly, while the first
segment was determined by B2TMpred (Y10-A21) and partly
with PRED-TMBB (F4-H14) predictor.

The architecture of the Aβ tetramer [PDB: 6RHY (Ciudad
et al., 2020)], which could form pores in membranes, showed that
the secondary structure in the oligomer differs from that present
in the soluble monomers. Two α-helices were determined in the
monomer [PDB: 1IYT (Crescenzi et al., 2002)], while antiparallel
β-strands are present in the tetramer. This seems to be consistent
with α to β secondary structure transition on the membrane.
Indeed, it is known that many amyloidogenic proteins transform
into β-sheet conformation before aggregating into amyloid
fibrils. This type of oligomers with higher β-structure of Hyp was
shown to bemore toxic (Evangelisti et al., 2016). It is possible that
α-helical parts on the lipid rafts, rich in gangliosides, undergo
a secondary structure transition from α to β. It is remarkable
that possible ganglioside binding sites can be detected for 25
analyzed AFPs (Table 3, Supplementary Table 5). For example,
comparing human stefins B and A, such a site is found at the end
of the α-helical part of stefin B (K30-K39), whereas in stefin A it
prolongs up to residue 44 (K30-K44) (which is an overpredicted
α-helix (Žerovnik et al., 1999). Both proteins also demonstrate
another potential ganglioside binding site from residues K56-
R68 (stefin B) and R58-K71 (stefin A), which resides in the
third β-strand of native soluble form [PDB: 1DVD, (Žerovnik
et al., 2011)]. The importance of cholesterol and ganglioside-
binding domains in AP formation was experimentally shown

in study of Di Scala et al. (2016). Mutation or deletion of
these motifs in α-synuclein and Aβ abolished pore formation.
Therefore, in our study another remarkable property of AFPs
was observed, namely, that also the cholesterol binding domains
in TM regions were found in 25 AFPs (Table 3). In general the
CRAC and/or CARC domains were detected in TM regions, but
occasionally some mispredicted unrealistic cholesterol binding
domains outside TM regions were also observed. This is in
accordance with observations of Fantini and Barrantes (2013).

The schematic mechanism of Aβ pore formation based
on the possible tetramer structure (Ciudad et al., 2020) is
depicted in Figure 3B. Derived from the case of Aβ we propose
a more general mechanism (Figure 3A). This may apply to
most amyloidogenic proteins, including cystatin C and the
stefins A and B, which are involved in the typical amyloid
disease; the hereditary amyloid angiopathy (cystatin C) or in a
progressive myoclonal epileptic syndrome EPM1 with features
of neurodegeneration (stefin B) and are non-physiological (such
as stefin A) serving as model proteins in our previous work on
protein aggregation to amyloid fibrils (stefins A and B) (Žerovnik
et al., 1999, 2010; Anderluh and Žerovnik, 2012). In Parkinson’s
disease, the calcium-permeable pores formed by small oligomers
of α-synuclein are thought the primary pathological species
(Sepúlveda et al., 2014; Di Scala et al., 2016; Press-Sandler
and Miller, 2018; Li et al., 2020). Our predictions for α-
synuclein (residues 30–80) are in concordance with previously
experimentally confirmed AP domains (Figure 2) (Sepúlveda
et al., 2014). For the islet amyloid polypeptide and calcitonin
experiments have also been conducted, which further confirm
our assumption that many amyloidogenic proteins have potential
to induce toxicity via pore formation (Press-Sandler and Miller,
2018). The islet amyloid polypeptide (IAPP or amylin) is a
highly amyloidogenic peptide, and it has been hypothesized that
transient membrane-bound α-helical structures of human IAPP
are precursors of the amyloid deposits formation. The high-
resolution structure of rat IAPP in the membrane-mimicking
detergent micelles composed of dodecylphosphocholine was
solved and α-TM region (A5-S23) was characterized (Nanga
et al., 2009). The characterized regions are almost identical to
our TM predicted regions; α-helix (A13-S28) or β-strand (C7-
L16). While the MD simulations of possible structures of “amylin
membrane channels” in various lipid bilayers using relatively
large sizes of oligomers (12–36-mers) have been investigated
and demonstrate the β-strands interfacing with the pore (Press-
Sandler and Miller, 2018). The amphipathic α-helix was also
experimentally determined in the membrane environment for
the hormone calcitonin (T6-Y22) (Motta et al., 1991) and (S5-
L19) (Hashimoto et al., 1999). The characterized regions are
consistent with our TM predicted region for β-strand (L4-L12).

Furthermore, by using molecular dynamics and other
computational methods the toxicity mechanism of transactive
response DNA-binding protein 43 (TDP-43), which has the
prion-like C-terminal domain (residues 258–414) and is
believed to be a major component of neuronal inclusion
bodies in amyotrophic lateral sclerosis, was studied. By the
unbiased atomic-detailed molecular dynamics simulations, the
C-terminal fragments of TDP-43 were observed to aggregate
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and form disordered-toroidal pores in a lipid bilayer (Chen
et al., 2016). Apart, the interaction of tau protein with
membranes was recently investigated experimentally, in aim
to characterize the effect of the tau-membrane interactions
on the function, aggregation, and toxicity of tau in neuronal
cultures. Although, the atomic structures of tau oligomers
are unknown and currently it seems that the lack of the
structure might delay the future studies on tau oligomers
on membrane surfaces (Press-Sandler and Miller, 2018).
Interestingly, the only relevant region predicted in tau protein
is β-TM region (324–334) and is located in exon 10,
which contains the microtubule-binding region and is only
expressed in 4-repeat (4R) tau isoforms, while 3-repeat
(3R) tau isoforms are produced without exon 10 (Kametani
and Hasegawa, 2018). The rest of the proteins that were
analyzed in our study, up to our knowledge, do not have
experimentally solved 3D structures of their oligomers in
membrane environments.

It is worth to highlight a comparison of amyloidogenic
peptides with the antimicrobial ones. Although they do
not share common sequences, typical secondary structures,
or the same biological activity, both exhibit membrane-
disruption ability to induce cytotoxicity (Zhang et al., 2014).
The interactions with membranes may be on the surface or
within the cell membrane. Consequently, membrane interactions
may affect the structure of the amyloid species and at
the same time, the structure of the membrane that leads
to cytotoxicity. Despite the existence of different membrane
disruption mechanisms, the formation of TM pores appears
to be a generic mechanism applicable to both antimicrobial
and amyloidogenic membrane interacting peptides (Zhang
et al., 2014; Press-Sandler and Miller, 2018). A comparison of
different computationally modeled and experimental observed
amyloid channels reveals several common features in channel
structure and activity. Amyloid membranes channels preferably
contain a U-shaped β-strand—turn-β-strand conformation
(Zhang et al., 2014). In general, three models for the
mechanism of membrane interaction/perforation by amyloid
or antimicrobial peptides have been proposed: pore model,
carpeting model, and detergent-like model (Zhang et al., 2014;
Press-Sandler and Miller, 2018). However, the understanding of
the molecular mechanisms of amyloidogenic proteins interaction
with membranes remains a challenge to both experimental and
computational studies.

CONCLUSIONS

Even though all proteins may under certain conditions form
amyloid state (according to Dobson, 2002), they differ in the
propensity and likehood to form such a state, depending on
thermodynamic and kinetic factors and environment, such as
temperature, pH, reactive oxidative species—i.e., free radicals
(ROS) and the crowding milieu. In our analysis we cannot
predict all these factors but get by using various predictive
methods a number expressing the propensity to transform into
amyloid state (Table 1). From the functional point of view,

among the 30 analyzed amyloid forming proteins (AFPs), we
can differentiate those, which are a hallmark of disease and
are termed “pathological” (19 cases), those that are biologically
non-relevant (3), those that are “functional” (7) and a putative
negative control (Table 1). The results of our study confirm a
common feature of AFPs to possess regions of TM segments,
either α-TM helices or β-TM strands, as proposed by several TM
predictors (Table 2). Moreover, interactions of amyloidogenic
proteins with membranes via lipid rafts rich in gangliosides and
cholesterol are indicated (Table 3), as the predictions confirm
such binding sites in all of the 19 pathological AFPs, while they
are not fully present in functional amyloids (Table 4). Based
on the membrane interaction and structural data of a generic
oligomer type of an AFP (Aβ) leading to AP (Tsigelny et al., 2012;
Ciudad et al., 2020), we suggest, that such mechanism of induced
toxicity via AP formation could be indeed a generic property
(Bucciantini et al., 2002). Since Ciudad et al. (2020) emphasize
that toxicity arises from the hydrophilic residues located on the
edges of the β-sheets, which lead to the formation of lipid-
stabilized pores, the oligomerization and the α-TM helix or β-
TM strand transition on the membrane surface (on lipid rafts)
seem to be the common key events. Hopefully, in the near future
stable TM regions that were defined in this study will be further
confirmed experimentally for several amyloidogenic proteins.
Thus, potentially, all AFPs can under certain circumstances form
APs and become toxic. It depends, where and how this happens
and if it leads to pathology or is transient, perhaps signaling
proteotoxic stress to cells (Protter and Parker, 2016).
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