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Automated Protein Subfamily Identification
and Classification
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Function prediction by homology is widely used to provide preliminary functional annotations for genes for which
experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic
error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these
errors in function prediction but has been difficult to automate for high-throughput application. To address this
limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline
uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification,
followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring
scheme using family and subfamily HMMs enables classification of novel sequences to protein families and
subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to
subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an
information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation
patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional
subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of
subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between
homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely
high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://
phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily
identification and subfamily HMM construction. Biologists wishing to provide their own subfamily definitions can
do so. Source code is available on the Web page. The Berkeley Phylogenomics Group PhyloFacts resource contains pre-
calculated subfamily predictions and subfamily HMMs for more than 40,000 protein families and domains at http://
phylogenomics.berkeley.edu/phylofacts/.
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transferred horizontally, or adopted new functions. Phyloge-
nomic analysis thereby enables a biologist to “fill in the

Introduction

While millions of novel genes have been discovered in
recent years, the function of the majority of genes remains

blanks” with an extremely low error rate, and often with
significant detail [15-18]. The value of phylogenomic ap-
unknown. Since experimental characterization of gene proaches to gene function prediction has spurred the recent
function is neither simple nor inexpensive, computational

development of a number of methods automating one or
methods have been developed to predict function, with

more steps in the phylogenomic inference protocol. Many of

varying levels of accuracy [1,2]. Among the most exciting these automate the process of collecting, aligning, and

methods for predicting gene function developed in recent
years is an approach called phylogenomics [3].

The standard protocol for functional classification of novel
genes is transfer of annotation from a database hit, i.e,

clustering homologs, but do not actually assign function
[19-24]. Others focus primarily on the assignment of function
[25-29]. While each of these approaches has distinct

.. . N advantages, none are designed for fast classification of novel
predicting function based on sequence similarity between an € €

unknown gene and one whose function is (presumably)
known. This concept has given rise to many functional Editor: Jonathan A. Eisen, University of California Davis, United States of America
annotation methods [4-9]. Unfortunately, transferring the

annotation of the highest-scoring database hit has been
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shown to be prone to systematic error caused by changes in
protein function following gene duplication, speciation,
domain shuffling, and other evolutionary processes [10-13].
Moreover existing database annotation errors can be Abbreviations: EC, enzyme commission; EPQ, errors per query; EVD, extreme value

’ distribution; GO, gene ontology; GPCRDB, G-protein coupled receptor database;
HMM, hidden Markov model; ML, maximum likelihood; MR, majority rule; MSA,
multiple sequence alignment; NHR, nuclear hormone receptor; NIC, number of
independent counts; NJ, neighbor joining; SCI-PHY, Subfamily Classification in
Phylogenomics; SCOP, Structural Classification of Proteins; SFLD, Structure

propagated by this approach [14].
By contrast, phylogenomic inference employs phylogenetic
analysis of an entire protein family in order to predict

function for individual members. By overlaying experimental
data on the phylogenetic tree, a biologist can identify where,
in evolution, genes may have been duplicated, lost, or
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Function Linkage Database; SHMM, subfamily hidden Markov model; SVM, support
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sequences or identification of new functional subtypes. The
protocol outlined in this paper enables improved specificity
of functional inference and facilitates prediction of func-
tional shifts in new sequences.

We present two methods useful in automating phyloge-
nomic inference: de novo subfamily identification using SCI-
PHY (Subfamily Classification in Phylogenomics) and classi-
fication of novel sequences using subfamily hidden Markov
models (HMMs). These two methods form part of a computa-
tional pipeline for phylogenomic inference of gene function
that was originally developed for the functional classification
of the human genome at Celera Genomics [30]; the methods
reported here have been revised to improve both accuracy
and computational efficiency. In the first stage, functional
subfamilies are defined either through the use of expert
knowledge or computationally. In the second stage, these
subfamilies are used to construct subfamily Hidden Markov
models (SHMMs) [31]. In the third stage, sequences predicted
to be members of the family are then tested for subfamily
membership and either assigned to one of the existing
subfamilies or predicted to represent an entirely novel
subtype not included in the original dataset.

De Novo Subfamily Identification

De novo subfamily identification—partitioning of sequen-
ces in a dataset into subtypes—provides two advantages for
high-throughput systems of functional classification. First,
assuming at least one subfamily member has been exper-
imentally characterized, it becomes possible to infer function
for other members of the subfamily. Second, the identifica-
tion and curation of known subfamilies enables biologists to
use sequence-based classification methods (e.g., using profiles,
HMMs [32], or support vector machines (SVMs) [33]) to assign
novel sequences to existing subtypes.

Existing methods for de novo identification of specific
subtypes fall into two camps: those that define clusters using
pairwise similarity, e.g., InParanoid [24], OrthoMCL [21],
Ncut [25], CD-HIT [22,34], and those that cluster by cutting a
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phylogenetic or hierarchical tree, e.g., RIO [29], Orthostrap-
per [28], Secator [35], SCI-PHY.

Both Secator [35] and SCI-PHY identify subfamilies using
hierarchical tree construction and analysis. Secator uses a
sequence dissimilarity measure to define an optimal cut of
the tree. SCI-PHY uses minimum description length princi-
ples from information theory to cut the tree into subfamilies
[36]. SCI-PHY exploits two powerful tools to construct a
hierarchical tree: Dirichlet mixture densities [37] and relative
entropy [38]. Dirichlet mixture densities are used to construct
profiles for subtrees due to their utility in enhancing
sensitivity with no reduction in specificity [39]. Relative
entropy is used as a distance function between subtree
profiles to determine the join order in the tree. See Methods
for details.

SCI-PHY is a fast method of subfamily identification which
uses only sequence information, in contrast to phylogenetic
tree methods that require species information to resolve
orthologs from paralogs for functional analysis. Therefore,
SCI-PHY is especially advantageous in situations where
species information is not known, such as in environmental
sequences. Our experiments show that SCI-PHY subfamilies
correspond closely to subtypes found by experts and also to
conserved clades identified using standard phylogenetic tree
analysis.

Functional Classification of Unknown Sequences to
Defined Subfamilies

The availability of subfamily classifications enables high-
throughput functional annotation: as new sequences are
released to the sequence databases, sequence-based classi-
fication methods can be used to efficiently assign unknown
sequences to pre-defined subtypes. Several classes of methods
have been developed for this task. Profiles and HMMs are
statistical models that generalize the information in a
multiple sequence alignment (MSA) [32], and can be used to
develop subfamily profiles or HMMs, as described in this
paper. However, most profile/HMM libraries (e.g., PFAM [40],
the NCBI CDD [41], SMART [42], etc.) have focused on
modeling large diverse clusters of proteins spanning many
different functions, enabling high sensitivity, but affording
only a fairly coarse level of functional annotation [29].

Methods designed specifically for classification of sequen-
ces to predefined subfamilies include the profile-based
method of Hannenhalli and Russell [43] and SVMs [44].
Hannenhalli and Russell developed a profile-based subfamily
classification system that attempts to determine which align-
ment positions discriminate between subfamilies. SVMs use
both positive and negative training examples to allow
classification of sequences to different subtypes (e.g., [33]).
Weston et al. developed a semi-supervised algorithm that
incorporates unlabeled proteins into an SVM-based discrim-
inative classifier [45].

Our approach to classification of novel sequences to
functional subfamilies uses subfamily hidden Markov models
and a computationally efficient scoring system [31]. Note that
subfamilies may be either automatically or manually defined;
the system is independent of the origin of the classification.
Subfamily HMMs are constructed using an information-
sharing protocol that enables small subfamilies to benefit
from the information contained in the rest of the family (such
as catalytic residues showing universal conservation) while
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retaining specificity at subfamily-defining regions or motifs.
This improves the sensitivity of the subfamily HMM to detect
new members while providing for extremely high specificity
of classification. A preliminary study of SHMM performance
on a small dataset of nine protein families has been
previously published [31]. Here, we present results on a
larger, representative dataset of 515 families, and compare
SHMMs to other sequence classification systems.

Identification of Novel Subtypes

The ability to predict novel subtypes in a protein family is
extremely valuable in identifying functional shifts in newly
sequenced genomes. In addition to classification of novel
sequences to predefined subfamilies, we present a method of
logistic regression of positive and negative examples for
subfamilies. This method enables discrimination between
novel sequences that can be reliably classified to an existing
subfamily and those that are more likely to represent entirely
different subtypes from any previously observed.

Results

Benchmark Datasets

SCOP-PFAMb515. 515 full alignments were selected from
the PFAM resource [40] to assess remote homolog detection
capabilities of subfamily HMMs relative to family HMMs. We
used the Structural Classification of Proteins (SCOP) resource
[46] to select PFAM families that corresponded to a single
SCOP superfamily, and filtered this set to choose a single
representative for each SCOP fold. The dataset selected is
thus not biased toward any particular fold type, and results
can be expected to generalize well to novel protein families
and folds.

Enzyme classification. A subset of 57 families from SCOP-
PFAMb15 contains sequences with multiple enzymatic func-
tions based on all four fields of their Enzyme Classification
(EC) [47] number. In each of these PFAM families, only a
fraction of the sequences have been assigned an EC number.
The subfamily prediction methods are given all sequences to
classify, but only scored on those sequences with EC numbers.
To reduce the possibility that an EC number assigned to a
sequence was based on a region not included in the PFAM full
MSA, we ignored any members whose PFAM alignments
reflected less than 75% of the sequence length.

EXPERT. This dataset contains five extensively curated
protein families from three different resources, with addi-
tional subdivisions of two of the families to create a total of
eight classifications of expert-defined subtypes. We selected
the enolase and crotonase enzyme families from the
Structure-Function Linkage Database (SFLD) [48], a manually
curated resource that incorporates mechanistic, sequence,
and structural information for several diverse enzyme
families to derive functional subtypes based on conserved
chemical mechanisms. We selected the aminergic and
secretin families of 7TM receptors from the GPCRDB (G-
protein coupled receptor database) [49] and the nuclear
hormone receptor (NHR) family from NucleaRDB [50]. The
GPCRDB and NucleaRDB classify sequences at varying levels
of functional specificity, indicated here by the use of level
indices. For instance, NHRs have been divided into three
levels, from fairly coarse (NHR level 1) to highly specific (NHR
level 3). The amine receptors were subdivided by the
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GPCRDB into a coarser level 1 and a more specific level 2.
This produced a total of eight datasets spanning different
levels of functional specificity: Enolase, Crotonase, Amine
levels 1 and 2, NHR levels 1-3, and Secretin.

Results of De Novo Subfamily Identification on Benchmark
Datasets

We compared SCI-PHY to three other methods for protein
subfamily identification that depend only on sequence
information: Secator, Ncut, and CD-HIT. CD-HIT takes a
user-specified minimum percent identity as a parameter for
determining cluster membership; we present results for two
identity cutoffs: a comparatively low value (40%) in order to
identify fairly general functional groups, and a higher value
(70%) that has been identified as the minimal identity
required to guarantee functional similarity within subfamilies
[51,52]. We refer to these as CD-HIT40 and CD-HIT70.
Results for additional percent identity values are available in
Dataset S1. Secator, CD-HIT40, CD-HIT70, and SCI-PHY
were compared on the EXPERT and EC datasets, spanning a
total of 62 distinct protein superfamilies each containing
multiple subtypes. Due to Ncut’s high computational cost, we
analyzed Ncut performance on the EXPERT dataset only.

We used three scoring functions—purity, edit, and varia-
tion of information—to measure the agreement between the
reference subtypes in each benchmark dataset and the
subfamilies predicted by the methods tested. The purity score
is a simple measure of each method’s ability to properly
separate reference subtypes, measured by the fraction of
predicted subfamilies that contain sequences of only one
reference subtype. Since perfect purity can be achieved
trivially by placing every sequence in its own class, we exclude
singleton subfamilies from the purity calculation. The edit
distance between the two dataset partitions measures the
number of split or merge operations required to transform
one partition into the other. For instance, if one partition
contains two clusters whose members are found as one large
cluster in the other partition, a single merge or split
operation suffices to transform one into the other, producing
an edit distance of 1. On the other hand, if a cluster of %
members in the reference (trusted) partition is divided into k
singletons in the predicted partition, [loge k| merge
operations are required. Thus, the edit distance penalizes
over-division of a reference subtype more than it does two or
more reference subtypes being merged. The Variation of
Information (VI) distance [53] calculates the amount of
information (in bits) within each partition that is not present
in the other. A perfect score of zero indicates that the
partitions are identical. The purity score and edit and VI
distances were chosen to be complementary measures: purity
represents the overall precision or specificity in separating
functional subtypes, while the edit and VI distance are
somewhat analogous to sensitivity or recall. An ideal
subfamily classification will produce classes having sequences
of only one type (perfect precision) and maximize the size of
these clusters (perfect recall). The purity function provides a
means to measure the first attribute, while the edit and VI
distances provide a means to measure the second.

Finally, we also assessed agreement between SCI-PHY
subfamilies and phylogenetic trees and found that SCI-PHY
subfamilies typically correspond to well-supported clades
within the family (Dataset S2).
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Table 1. De Novo Subfamily Identification for the EXPERT Set

Family Amine L1 Aminel2 Crotonase Enolase NHR L1 NHR L2 NHR L3 Secretin

Subtypes/sequences 7/358 31/358 10/365 8/472 8/412 27/412 77/412 15/153

Pure/total subfamilies (percent) ~ SCI-PHY 36/37 (97) 32/37 (87) 15/16 (94) 26/26 (100)  29/29 (100)  28/29 (97) 11/29 (38)  14/16 (88)
SECATOR  10/14 (71) 6/14 (42) 3/7 (43) 8/9 (89) 3/5 (60) 1/5 (20) 0/5 (0) 3/6 (50)
NCUT 7/8 (88) 7/8 (88) 14/16 (88) 65/66 (98) 24/25 (96) 22/25 (88) 10/25 (40) 8/10 (80)
CD-HIT40  22/33 (67) 16/33 (49) 47/47 (100) 16/18 (89) 28/28 (100)  24/28 (86) 9/28 (30) 7/11 (64)
CD-HIT70 67/67 (100) 66/67 (99) 65/65 (100) 73/73 (100) 57/57 (100) 57/57 (100) 41/57 (72) 31/31 (100)

Edit distance SCI-PHY 38 36 32 70 38 21 54 15
SECATOR 49 61 53 32 6 23 71 9
NCUT 40 62 23 99 30 23 57 14
CD-HIT40 64 84 55 28 30 21 69 25
CD-HIT70 107 85 213 177 90 71 70 35

VI distance SCI-PHY 1.55 0.90 1.05 1.37 1.62 0.39 0.95 0.56
SECATOR  1.44 1.14 1.29 0.87 0.43 132 2.39 091
NCUT 2.08 3.01 0.63 2.75 1.38 0.57 1.21 1.15
CD-HIT40 1.94 1.37 228 0.56 1.47 0.45 1.16 1.25
CD-HIT70 253 1.31 3.77 3.19 2.55 1.25 0.70 0.99

Singletons SCI-PHY 6 6 22 52 17 17 17 6
SECATOR 34 34 46 29 5 5 5 0
NCUT 27 27 9 35 9 9 9 3
CD-HIT40 4 4 18 14 10 10 10 3
CD-HIT70 47 47 158 112 41 41 41 19

We compared the performance of SCI-PHY, SECATOR, NCUT, CD-HIT40, and CD-HIT70 on eight functional classifications for five protein families (the expert classifications gave two and

three levels of functional specificity for the Amine and NHR families, respectively).

Subtypes/sequences: the number of expert-derived subtypes/the number of sequences in each classification. The percentage of pure subfamilies is given in parentheses.
Pure/total subfamilies: the fraction of pure non-singleton subfamilies/the total number of non-singleton subfamilies for each method.

Singletons: the number of single-sequence clusters for each method.
doi:10.1371/journal.pcbi.0030160.t001

EXPERT dataset. These experiments highlighted the classic
tradeoff between specificity and sensitivity. High purity and
low edit and VI distances for a method indicate that the
subfamily decomposition achieved by that method is very
similar to the reference partition. Of all the methods tested,
SCI-PHY has the most consistent performance in combining
both high purity and low distance to the reference partition.
For instance, SCI-PHY has the best (lowest) edit and VI
distances of all methods tested, ranking first for four out of
eight EXPERT datasets. Secator comes next, with the best edit
or VI distance for two of the eight datasets. Other methods
tested have either high purity but a large distance (e.g., CD-
HIT70) or sacrifice purity for a lower distance (CD-HIT40
and Secator). The performance of the Ncut method differed
between the families; for example, it performed very well with
the crotonase family, but then clustered 317 of the 328
sequences in the aminergic family, spanning multiple GPCR
subtypes into one subfamily. The single notable exception is
the enolase family, for which SCI-PHY, Secator, and Ncut
produced a large number of singleton clusters (52, 29, and 35,
respectively), giving each a poor distance score. A detailed
comparison of performance of the different methods on the
adreno-receptor family of GPCRs is given in Dataset S3. An
overview of all method performances on the EXPERT dataset
is shown in Table 1.

Assessing de novo subfamily identification accuracy by
comparison with expert-defined subtypes presents unique
challenges. First, there is a wide variation in expert
definitions of functional classes—some expert-defined sub-
types are highly specific and span short evolutionary
distances, while others cluster proteins at a much coarser
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level and may include highly divergent sequence pairs.
Similarly, subfamily prediction methods tend to aim at
different points in this spectrum. For instance, CD-HIT40
clusters at a fairly coarse level and has comparatively poor
purity scores for highly specific expert-defined levels, but
fairly good edit and VI distance scores. By contrast, CD-
HIT70’s subfamily purity is the best of the five methods
tested, but it has the worst edit distance on seven out of eight
classifications, and the worst VI distance on four of the eight
datasets.

Comparing de novo subfamily identification methods
against an expert-defined hierarchy reveals the inherent
biases of these methods, as each tends to target a different
level of a functional hierarchy. This is illustrated by
comparison of subfamily prediction methods to the different
levels in the aminergic GPCR and NHR families in the
EXPERT dataset. Here, Secator’s division of the NHR family
is closest to the coarse level 1 classification (although
Secator’s purity scores are poor even at this level), while
SCI-PHY and CD-HIT40 match the more specific level 2
classification. CD-HIT70 performs very well at the most
specific level (NHR L3), with high purity and low VI distance.
Interestingly, CD-HIT with a 50% identity cutoff (CD-HIT50)
seems to give a better balance of purity and distance than CD-
HIT70 (Dataset S1), despite the identification of 70% as the
minimal identity required for functional specificity [51,52].
Nonetheless, CD-HIT50 has worse edit and VI distance scores
than SCI-PHY in seven of the eight classifications, and only
marginally better purity.

The different scoring functions used to evaluate subfamily
identification highlight the standard problem in function
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Table 2. Wilcoxon Signed Rank Tests for De Novo Subfamily
Detection on the EC Dataset

Method SECATOR SCI-PHY CD-HIT40 CD-HIT70
SECATOR P: 0.71 (0.003) (1.9 X 10°°) (1.9 X 1077)
V: 0.91 0.018 40 X 1077 57 X 107"
E: 89 0.005 63 X 1077 6.4 x 10 '°
SCI-PHY P: 0.80 (0.007) (12X 1079
V: 1.07 50 X 1072 23 % 107°
E: 10.8 32X 10°° 6.4 x 107"
CD-HIT40 P: 0.88 (27 X 107
V: 144 38 X 1078
E: 14.7 73X 107°
CD-HIT70 P: 0.97
V: 2.07
E: 30.0

Diagonal entries are the mean scores for the method. P, purity score; 1.0 is perfect,
indicating that all subfamilies contain sequences from a single EC class. V, variation of
information distance; E, edit distance. A distance of zero in either case indicates that
predicted subfamilies are identical to EC classes. Off-diagonal entries are the Wilcoxon
signed rank p-values between methods for the corresponding score. In comparison of
two methods for a particular score, parentheses around the p-value indicate that the
method listed in the column is better; plain values indicate that the row method is better.
For instance, the CD-HIT70 method has better purity than any other method, but much
worse VI distance. This is a consequence of the tradeoff between small, pure clusters and
large mixed clusters.

doi:10.1371/journal.pcbi.0030160.t002

prediction: achieving a balance between sensitivity and
specificity. The purity score measures specificity, whereas
the distance functions correspond more closely to sensitivity.
There are subtle differences between the two distance
functions. Both the edit distance and the VI distance penalize
over-division as well as mixing of subtypes, but the edit
distance penalizes over-division of subtypes proportionately
more than joining a few subtypes into large clusters. The edit
distance thereby favors methods such as Secator and CD-
HIT40 that produce fairly coarse clusterings. The VI distance
takes cluster size into account, and errors in large clusters
(affecting many sequences) contribute more to the distance
than errors in small clusters. These effects are illustrated by
the change in distance-based rank between SCI-PHY and
Secator for the Secretin family. On this family, SCI-PHY had
a better VI distance than Secator, but a worse edit distance.
Examining the two predicted partitions relative to the expert
division into subtypes shows why. The SCI-PHY subfamily
prediction had high purity (only one SCI-PHY subfamily
merged two different subtypes together), but somewhat over-
divided expert subtypes, splitting three expert subtypes into
multiple subfamilies and producing six singleton subfamilies.
In contrast, Secator had low purity (three of the six
subfamilies produced by Secator joined several subtypes
together, placing nearly 70% of the sequences in the family
into mixed subfamilies) but did not subdivide expert
subtypes, and very few split operations were required to
obtain the expert classification.

Results on the EC dataset. Performance for the EC dataset
(Table 2) was quite similar to that on the EXPERT set, except
that SCI-PHY has slightly lower purity than CD-HIT40 (while
still maintaining superior edit and VI distances), and slightly
higher distance scores than Secator, but with superior purity.
On this dataset, Secator has the lowest purity over the
families tested (71%), but has the best average VI and edit
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distance scores (0.91 and 8.9, respectively). CD-HIT70 has
near-perfect subfamily purity (97%), but the worst distance
scores (2.07 and 30.0). SCI-PHY lies between these two
extremes: very good subfamily purity (80%) and quite close
to the expert partition (1.07 and 10.8). Results for additional
parameterizations of CD-HIT are given in Dataset S2.

Classifying unknown sequences: Subfamily HMM classifi-
cation accuracy. HMMs and profiles are very effective at
detecting distant homologies. Since primary sequence
diverges more rapidly than 3-D structure, the scientific
community uses the ASTRAL datasets of solved structural
domains from the SCOP database [54-56] to assess perform-
ance at remote homolog detection. SCOP domain pairs
belonging to the same superfamily are considered homolo-
gous. Domain pairs belonging to different SCOP folds are
considered unrelated. Perfect performance requires ranking
all superfamily pairs above all fold-disagreement pairs.

We compared the ability of family and subfamily HMMs
(for subfamilies defined by SCI-PHY) to identify remote
homologs using the SCOP-PFAMb15 dataset, spanning 515
PFAM families representing unique 3-D folds. Results of these
experiments show that subfamily HMMs significantly increase
the separation between true homologs and spurious matches
by improving the scores of related sequences. For instance, at
an e-value cutoff of 10720, SHMMSs detected 73% of SCOP
superfamily members, whereas family HMMs detected only
31%. This increase in score significance for homologous
sequences comes at no cost in error rate: ROC plots of
subfamily and family HMMs superpose closely, with the AUC
of subfamily HMMs being slightly greater than the AUC of
family HMMs (Figure 1). Our information-sharing protocol
improves the overall sensitivity of subfamily HMMs: compar-
isons of the method with “naive” subfamily HMMs—those
built directly from subfamily alignments without information
sharing—shows that, on average, “informed” SHMMs im-
prove e-values for family members by approximately nine
orders of magnitude (Dataset S4).

We tested subfamily classification accuracy using leave-
one-out experiments. Ten sequences from each family in the
SCOP-PFAMb515 dataset were individually removed from the
alignment, SHMM parameters were estimated without the
withheld sequence, and the sequence was then scored against
all SHMMs. 98.5% were assigned to their original subfamily,
producing an error rate of only 1.5%. Since many of the
sequences tested were highly similar to sequences present in
the alignments, we also tested classification accuracy follow-
ing alignment editing to remove sequences with different
levels of percent identity to the chosen sequence. We
compared SHMM performance with the use of BLAST, and
to the sub-profile method of Hannenhalli and Russell [43].
The results are given in Table 4. All three methods achieve
similar performance on this dataset. We also assessed
subfamily HMM and Hannenhalli and Russell sub-profile
performance based on subtypes defined by experts rather
than by SCI-PHY, and found similar results (Dataset Sb5).

In these experiments, the Hannenhalli and Russell sub-
profile method showed only a marginal improvement in
classification accuracy over the BLAST and HMM methods, in
contrast to earlier work, which showed a dramatic improve-
ment over BLAST and HMM-based classification for more
divergently related families [43]. We believe that this result is
due to the coarse classification used in the previous experi-
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Figure 1. Comparison of Family and Subfamily HMM Performance on Remote Homolog Detection

Blue: family HMM results. Red: subfamily HMM results.

(A) Coverage (x-axis) is plotted against e-value (y-axis). Coverage (or recall) is the fraction of homologous pairs (i.e., from the same SCOP superfamily)
that receive a score of equal or greater significance. The e-value curves converge at a coverage of 0.79, the same coverage at which false positives first

arise. This corresponds to an e-value of approximately 0.01.

(B) ROC curve for family and subfamily HMMs, weighted by superfamily size. Subfamily HMMs receive an AUC of 0.947; family HMMs receive 0.943.
(C) ROC curve for unweighted data. Subfamily HMMs and family HMMs have AUCs of 0.758 and 0.740, respectively. Together, these data show that
while subfamily HMMs do not detect more homologs at a given false positive rate, they do find many more homologs at a given significance cutoff.

doi:10.1371/journal.pcbi.0030160.g001

ments, in which highly diverse families were divided into only
two or three subtypes which were individually quite diverse.
The sub-profile method attempts to determine which
columns discriminate between subtypes, but having a larger
number of subtypes reduces the likelihood that any column
will show distinct conservation patterns in all the subtypes.
More specific partitions thus reduce the advantage of the sub-
profile method. The marginal improvement of the sub-profile
method to SHMMs and BLAST in these experiments may also
be related to our providing it the “true” alignment from the
input MSA, instead of requiring it to align the sequences
separately, as was required by the SHMM and BLAST
methods.

Classifying unknown sequences: Detecting novel subfami-
lies. Protein families naturally expand in size to accommo-
date additional homologs produced by genome-sequencing
initiatives. Many of these new members will belong to known
subtypes, but some will represent novel subtypes having
distinct functions. We have developed an online algorithm to
assess the likelihood that an unknown sequence represents a
novel subfamily.

Since classification of sequences to existing subfamilies
based on top subfamily HMM scores has an extremely low
error rate, we treated this task as a binary classification
problem, asking the question, “Does the test sequence belong
to the top-scoring subfamily, or does it represent a novel
subtype?” We used logistic regression to predict the

probability of subfamily membership based on the HMM
reverse score (Figure 2). The sigmoid logistic curve gives a
smooth transition between obvious members and obvious
non-members, and gives a better sense of the confidence of
our prediction than a simple score threshold. At the same
time, it is easy to fit and makes no assumptions about the
distributions of the scores.

We tested novel subtype identification as follows. For each
PFAM MSA containing at least three SCI-PHY subfamilies, we
removed an entire SCI-PHY subfamily (selected at random)
and re-estimated HMM parameters for the remaining
subfamilies. Retained sequences were used to fit regression
curves for each SHMM by all-against-all scoring within the
family. Each sequence from the withheld subfamily was then
scored against the new set of SHMMSs, and the probability that
it belonged to the top-scoring subfamily was calculated. We
assessed subtype detection sensitivity for a range of member-
ship probability thresholds (Figure 3A). Even at very low
acceptance thresholds, logistic regression correctly discrim-
inates between novel sequences and members of existing
subfamilies; at the lowest tested threshold of 0.01, 80% of the
sequences were correctly classified as novel subtypes.

We then assessed the impact of this classification protocol
for the complementary task: subfamily classification of a test
sequence belonging to an existing subfamily. In this case, we
repeated the 5,103 leave-one-out experiments described in
the previous section, this time fitting regression curves to

Table 3. Error in Function Prediction Is Revealed by Clustering the Misannotated Sequence with Its Homologs Using SCI-PHY

Accession Source Description Species GO Function [Evidence Code]
P41338 UniProt Acetyl-CoA acetyltransferase Saccharomyces cerevisiae Acetyl-CoA C-acetyltransferase

(EC 2.3.1.9) (Acetoacetyl-CoA thiolase) activity [IDA] identical protein binding [IPI]
25286398 GenBank Acetoacetyl-CoA reductase (EC 1.1.1.36) Yarrowia lipolytica
Q8QZT1 UniProt Acetyl-CoA acetyltransferase, mitochondrial Mus musculus acetyl-CoA C-acetyltransferase activity [IDA]

precursor (EC 2.3.1.9)

The misannotated sequence is highlighted in red. Gene Ontology evidence codes: IDA, inferred from direct assay; IPl, inferred from physical interaction

doi:10.1371/journal.pcbi.0030160.t003
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Table 4. Novel Sequence Classification on the SCOP-PFAM515
Dataset, after Removal of Sequences Similar to the Target
Sequence

Percent ID Number of Sequences SHMM BLAST Sub-Profile
30% 1,674 74.25 73.17 74.37
40% 3,174 81.82 81.54 82.13
50% 4,181 90.34 91.94 91.29
60% 4,614 95.77 96.47 96.10
70% 4,813 97.28 98.00 98.96

Withheld sequences were classified using either SHMMs, BLAST, or the Hannenhalli and
Russell Sub-Profile method, after removal of sequences with identity greater than the
given threshold. In some cases, this resulted in removal of all members of the subfamily;
these were removed from the results. The total number of sequences tested is given in
the Number of Sequences column.

doi:10.1371/journal.pcbi.0030160.t004

each subfamily and calculating the probability that the
withdrawn sequence was a true member of the best-scoring
subfamily. At high stringency (i.e., requiring a high subfamily
membership probability), the number of mis-classified se-
quences (false positives) is minimal, but sensitivity is reduced
(Figure 3A). At a threshold of 0.10, both classification
accuracy and novel subtype detection algorithms produce
an impressive success rate of 88%.

An unanticipated effect of this thresholding process was to
greatly reduce the fraction of false positive classifications
(Figure 3B). Virtually all classification errors in the leave-one-
out experiments possessed scores well below the norm for
their top-scoring subfamily, and were eliminated at very low
thresholds. For instance, a membership probability threshold
of 0.05 lowered the error rate from 1.5% to 0.3%.

Detecting errors in the input alignment using SHMMs: based on
prior observations that substantial disagreements between a
SCI-PHY subfamily decomposition and classification based
on top-scoring SHMM are often diagnostic of errors in the
input MSA, we examined errors in classification in the first
set of novel subtype detection experiments. We found that
many of these errors were singleton subfamilies whose
sequences were assigned incorrectly to another subfamily.
We suspected that each of these sequences may have been
misaligned in the original MSA, causing SCI-PHY to classify
the sequence as a separate subfamily instead of joining it to
the top-scoring subfamily. To test this hypothesis, we selected
all singleton sequences that were erroneously accepted by
another subfamily at a probability threshold of 0.7, and we re-
aligned each to its top-scoring SHMM. 13 of the 47 tested
singleton sequences showed substantial changes in alignment
between the initial input MSA and the new alignment (>5
residues shifted). When these revised alignments were
submitted to SCI-PHY, six of the sequences were joined into
the (now larger) subfamily to which they had been assigned in
the novel subtype detection experiments. We show an
example in Figure 5.

Genome-scale precomputation of subfamilies and subfam-
ily HMMs. We have applied the methods described here in
the construction of a phylogenomic HMM library, the
PhyloFacts Universal Proteome Explorer, with more than
40,000 protein family “books” and more than 1.2 million
HMMs to enable subfamily classification of novel sequences

@ PLoS Computational Biology | www.ploscompbiol.org
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Figure 2. Logistic Regression for Novel Subtype Identification

The logistic regression fit for an example subfamily is shown. True
subfamily members (X) and other family members (+) are shown,
together with the fitted curve. When the two classes cannot be
completely separated, as in this case, we see a smooth transition in the
probability of subfamily membership.
doi:10.1371/journal.pcbi.0030160.9g002

[57]. Each book contains an MSA, SCI-PHY subfamily
decompositions, one or more phylogenetic trees, family and
subfamily hidden Markov models, experimental data, Gene
Ontology annotations, predicted 3-D structures, PFAM
domains, and more. We also provide the SCI-PHY Web
server that allows users to upload an MSA for subfamily
identification and subfamily HMM construction [58]. Biolo-
gists wishing to provide their own subfamily definitions can
do so. See http://[phylogenomics.berkeley.edu/SCI-PHY/.

Annotation transfer and detection of misannotated sequen-
ces. We present an illustration in which clustering sequences
using SCI-PHY enables detection of existing errors in
database annotations.

The GenBank sequence JC7675 (Table 3, shown in red) from
yeast has been annotated as “Aceto-acetyl-CoA reductase (EC
1.1.1.36).” However, the gene coding for this protein, patl, has
been shown to be a peroxisomal acetoacetylCoA thiolase (EC
2.3.1.9) required for n-decane utilization in Yarrowia lipolytica
[69]. The Thiolase family includes both acetoacetylCoA
transferase (EC 2.3.1.9) and 3-ketoacylCoA thiolase (EC
2.3.1.16). The SCI-PHY subfamily classification for this
sequence reveals that it is more closely related to EC 2.3.1.9,
encoding “AcetylCoA-acetyl transferase.” Aceto-acetyl-CoA
reductase catalyzes redox reactions, while acetylCoA-acetyl
transferase performs a thiolytic cleavage. The clustering of
proteins into SCI-PHY subfamilies helps detect and correct
this possible misannotation. Note that PFAM is unclear on the
classification of this sequence, placing it into the thiolase
family which includes both EC 2.3.1.9 and EC 2.3.1.16. Detailed
phylogenomic analysis for this protein can be found in the
PhyloFacts book “Thiolase” (http://[phylogenomics.berkeley.
edu/book/book__info.php?book=bpg000891).

Additional examples of effective annotation transfer and
error detection are given in Dataset S6.
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Figure 3. Novel Subtype Identification and Classification Accuracy as a Function of the Threshold on Subfamily Membership Probability

(A) The red line shows the fraction of novel subfamilies correctly detected; the blue line shows the fraction of subfamily members correctly classified in
leave-one-out experiments. Novelty detection is quite robust to the threshold setting, obtaining 80% success rate even at the lowest threshold (0.01).
(B) The fraction of sequences classified to an incorrect subfamily during leave-one-out experiments. While low to begin with, the false positive error
drops dramatically with the imposition of even a small threshold. A threshold of 0.10 probability of subfamily membership seems to be optimal; the
false-positive classification rate is just 0.3%, while overall subfamily classification and novel subtype detection accuracy are both 88%. The x-axis shows
the logistic regression probability threshold for subfamily membership assignment.

doi:10.1371/journal.pcbi.0030160.9g003

Discussion

Phylogenomic analysis is widely regarded as the method of
choice for high-accuracy functional annotation but has had
limited application due to the technical complexity of this
protocol. This paper focuses on methods to automate a
phylogenomic pipeline using defined subfamilies followed by
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Figure 4. The Encoding Cost as a Function of the SCI-PHY Iteration for
the Secretin Family

We subtract the encoding cost of the null hypothesis (that all sequences
belong in a single subfamily) from the cost of encoding the subclass
alignments at each iteration of the algorithm (y-axis: CoStiteration —
Cost,)- At program commencement, the number of subclasses equals
the number of sequences and the encoding cost is high. The encoding
cost curve decreases steadily to a minimum when similar sequences are
joined and then increases as subtrees with different amino acid
preferences are joined. The point in the agglomeration for which the
encoding cost is minimal is used to determine a cut of the tree into
subtrees, defining the SCI-PHY subfamily decomposition. If the minimum
occurs when the encoding cost is zero, then all sequences are placed in a
single class (i.e., no subfamilies are predicted). Negative “Encoding Cost”
values indicate savings relative to the null hypothesis, and provide
support for a division of the sequences into two or more subfamilies.
doi:10.1371/journal.pcbi.0030160.g004
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construction of HMMs for these subfamilies, which can then
be used to classify novel sequences.

A large fraction of phylogenomic inference tools focus on
the identification of orthologs as the basis of annotation
transfer, under the assumption that orthologs—related by
speciation from a common ancestor—are likely to maintain
the same function. Methods developed for phylogenomic
inference that use species information in conjunction with
phylogenetic tree analysis to identify orthologs include RIO
[29], Orthostrapper [28], and SIFTER [27]. While functional
inference based on orthology is likely to have the highest
specificity, this requirement is effectively quite limiting in
practical application. First, annotation transfer based on
strict orthology to characterized sequences will be highly
restricted due to the small fraction of sequences having
experimentally verified function (see, e.g., [27]). Second,
orthology detection requires species information; this is not
always available, for example, in environmental sequence
analysis [60,61]. For these reasons, methods of subfamily
identification that use only sequence information (such as
SCI-PHY) can be quite useful. In addition, restricting func-
tional inferences to strictly defined orthologs may be
unnecessarily restrictive as sub-functionalization following
gene duplication is quite common: our analyses of the five
families included in the EXPERT dataset show that a
significant fraction of expert-defined subtypes include
paralogous sequences.

Any division of a family into functional subtypes is
somewhat arbitrary, as proteins have different levels of
molecular function ranging from the fairly coarse (e.g,
catalytic activity) to highly specific (e.g., substrate recogni-
tion). For this reason, some protein classification databases,
such as the GPCRDB [49], present a hierarchy of functional
classes rather than a single subfamily definition. For instance,
the human type 1 serotonin receptor (UniProt accession
P08908) is classified to the GPCRDB serotonin type I
receptors, a subtype of the serotonin receptors, which belong
to the amine (or aminergic) GPCR family, which forms a
subclass of Class A rhodopsin-like GPCRs. Other resources
provide single-level classifications, which similarly range from
coarse to highly specific. Each of these approaches to
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Figure 5. Discordance between Subfamily Membership and Top-Scoring SHMM Can Be Indicative of Misalignments

Sequence Q85220, a singleton subfamily, was classified to its sibling subfamily, N2581. We show a comparison of the sequence as aligned in the original
MSA (Q85220-orig) and after alignment to SHMM N2581 (Q85220-N2581). The consensus sequence for SHMM N2581 is also shown (N2581-consensus).

After realignment, much of the sequence has been shifted, and several
doi:10.1371/journal.pcbi.0030160.9g005

functional classification has its own merits. Similarly, biolo-
gists can select subfamily prediction methods appropriate to
an intended use: for highly specific definitions of molecular
function, CD-HIT70 and SCI-PHY will be most appropriate.
For more coarsely grained clusters, CD-HIT40 and Secator
will be preferred.

Subfamily identification methods that rely on an MSA as
input, including SCI-PHY and Secator (and most phyloge-
netic tree construction algorithms), tend to be quite sensitive
to alignment errors. We therefore recommend careful
attention to the construction of the MSA for the family.
Removing columns having many gap characters is analogous
to alignment masking prior to phylogenetic tree construc-
tion, and is recommended. A protocol for collecting and
aligning homologs is given in [18].

Using Subfamily HMMs to Classify Novel Sequences

Our results show that subfamily HMMs provide high
specificity of sequence classification to functional subtypes,
providing a kind of automated phylogenomic inference that
approximates the results achievable from a more compute-
intensive phylogenetic reconstruction. The information-
sharing protocol we present produces subfamily HMMs that
generalize effectively to distant homologs. Information
sharing leverages available training data and helps to smooth
estimated amino acid distributions to prevent overly specific
HMM parameters in small subfamilies. This information-
sharing protocol more efficiently separates homologs from
non-homologs than subfamily HMMs without information
sharing, but at a slight cost in subfamily specificity (i.e., the
error rate for subfamily classification without information
sharing is 0.8%, while our standard information-sharing
protocol has an error rate of 1.5%).

In these experiments, family and subfamily HMMs showed
similar classification error rates, although subfamily HMMs
produce much more significant e-values for true positives, in
addition to identifying subfamily membership. This suggests a
simple way to reduce the computational burden of using
SHMMs, which we use in practice. Rather than scoring novel
sequences against all SHMMs from all families, we screen
sequences for family membership using family HMMs and
then identify the appropriate subfamily by scoring the
sequence only to the SHMMs of that family. Since most
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motifs now clearly match the N2581 consensus sequence (red boxes).

HMM libraries contain thousands of families, the average
increase in scoring runs due to the use of SHMMs is then
marginal.

Logistic regression of subfamily HMM scores enables us to
discriminate between sequences representing entirely novel
subtypes and sequences that can be assigned to existing
subtypes. This confers a unique capability to subfamily
classification systems that is critical to prevent overly specific
(incorrect) predictions of molecular function for novel
sequences.

All methods of constructing subfamily models as a means of
classifying novel sequences will be sensitive to the inclusion of
outlier sequences in a family. A single or small number of
outlier sequences normally have minimal effect on a profile
or HMM constructed for the family as a whole (since their
contribution is typically washed out by the dominant group)
and may remain undetected. However, the use of subfamily
models, whether through subfamily HMMs, as outlined here,
or by another method, can magnify the power of these
outliers to attract and recruit their relatives. This may be
desirable when outliers are actual homologs, but is generally
not desirable in the case of spurious database hits. However, if
non-homologous outliers can be flagged, their corresponding
subfamily models can be used as decoys, differentiating true
family members from those that only appear to be related.

Materials and Methods

SCI-PHY de novo subfamily identification. The input to SCI-PHY
is an MSA, from which a hierarchical tree and subfamily decom-
position are estimated. SCI-PHY uses agglomerative (bottom-up)
clustering to construct a hierarchical tree: the input objects form the
leaves in the tree; similar objects are joined by edges to form subtrees,
and the process is iterated until a rooted tree is obtained.

Algorithm

Input: MSA

Initialization:

Each sequence forms a separate class (leaf in tree). For each class,
construct a profile, using Dirichlet mixture densities [37]. Compute
the pairwise distances between all classes, using relative entropy
(Equation 1) between their profiles. Find the closest pair.

Agglomeration:

While (#classes >1) do:

1. Join the two closest classes into a new class, represented by a new
node in the tree. Add edges from the new node to each daughter
node.

2. Construct a profile for the new class based on the joint MSA.

3. Compute the distance between this new class and other classes
(Equation 1).
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4. Compute the encoding cost of this partition, under a Dirichlet
mixture density (Equation 2).

Output:

1. Hierarchical tree.

2. Predicted subfamilies, corresponding to the stage in the
agglomeration having the lowest encoding cost.

Subtree profile construction: each class (individual sequence or set of
sequences) is represented by a profile [62] of amino acid distribu-
tions. Profiles are estimated using Dirichlet mixture densities [37],
which helps generalize the amino acid distributions to include
probabilities for similar amino acids at each position.

Distances between profiles: the distance function between profiles is a
symmetrized form of relative entropy [38] summed over the align-
ment length (the total relative entropy or TRE). The TRE for profiles p
and ¢ is averaged over all columns ¢, such that both p, and ¢,
distributions are based on columns with >1 amino acid (i.e., neither
column contains only gap characters).

20 i i
TRE(p.q) = 3 Zmog% o' (1)
c i=1 c c

where p[i is the probability of amino acid 7 at position ¢ in profile p.

Encoding cost determination of subfamily decomposition: subfamily
identification is achieved using minimum-description-length princi-
ples to determine a cut of the tree into subtrees. There are a very
large number of potential tree cuts; we employ a heuristic that
examines only those partitions produced during the agglomerative
clustering. At each iteration in the tree-building process, we have a
forest of distinct subtrees that correspond to a particular cut of the
tree. For each of these cuts, we evaluate the cost to encode the
current set of subtree alignments under a Dirichlet mixture density
[36,37]. The encoding cost function, assuming all subfamilies are
independent, is defined as

s
EncodingCost = N log S — Z Z log P(nat), (2)
s=1

¢

where N is the number of sequences in the MSA, S is the current
number of subtrees, and P(n, | o) is the probability of n, the ordered
vector of observed amino acids for subfamily s at column ¢, under the
Dirichlet mixture density o.

P(n, | o) is obtained by integrating out the multinomial parameter
0 from the model (see [63] for a review of the relevant mathematics).
The canonical formulation for this quantity is

P(n|o) = / P(n;|8)P(6]o)db

Z( i+ ) P
- ZqJW ®)

In this equation, Z is the normalizing constant for the Dirichlet
distribution, A is the jlh component of o, and q is its mixture
coefficient.

The encoding cost function has two components: the first term is
the cost to encode the subfamily labels for each sequence; the second
term is the cost to encode each of the subtree alignments for that
stage in the agglomeration. The two terms have opposite effects. The
first term is large at program commencement when the number of
subfamilies is largest, and reduces at each iteration, until it reaches
zero at program termination, when there is one subfamily. The
second term is minimized when the sequences within each subfamily
are very similar to each other. At program commencement, for an
input MSA with N sequences, there will be N separate subfamily
alignments to be encoded. As the algorithm continues, the number of
subfamilies decreases, until at program termination there is a single
subfamily. As very similar sequences are joined into subtrees, the
encoding cost decreases. For most protein families, the encoding cost
curve decreases steadily to a minimum and then increases as subtrees
with different amino acid preferences are joined. The stage in the
agglomeration for which the encoding cost is minimal is used to
determine a cut of the tree into subfamilies. See Figure 4.

Sequence weighting in subfamily profile construction. Sequence
weighting is a standard approach in profile and HMM construction to
prevent large subgroups from dominating amino acid distributions
[64]. We use sequence weighting in both SCI-PHY tree construction
and in SHMM construction.

We estimate sequence weights for each subfamily in a two-step
process. In the first step, we estimate the total number of
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independent counts (NIC) in the alignment, as follows. We compute
for every position in the alignment the frequency of the most
frequent amino acid (ignoring gaps) to derive the positional
conservation propensity. We then find the average of this value over
all columns having at least one amino acid to obtain the overall
conservation propensitly P,,ns).- The NIC for the alignment can then
be defined as NIC = N!=Fo» where N is the number of sequences in
the alignment. This has the effect of producing an NIC of 1 when the
sequences in the alignment are 100% identical, and having the NIC
approach N as the diversity in the alignment increases. In the second
step, the relative weights for sequences in each subfamily can then be
derived independently (e.g., [64]), normalizing them to sum to the
NIC for that subfamily.

Subfamily HMM construction. The input to subfamily HMM
construction is an MSA and a decomposition of the alignment into
subfamilies. We construct SHMMs in a multi-step process.

Subfamily HMM architecture and transition parameters: first, we
construct a family HMM using the entire input MSA as input and
the SAM w0.5 software, developed by the University of California
Santa Cruz (UCSC) Computational Biology group to optimize hidden
Markov models for remote homolog detection [56]. To construct the
subfamily HMM, the overall architecture and transition parameters
in the family HMM are copied without modification for each SHMM.
Keeping the overall architecture fixed enables sequence alignments
to any SHMM to be easily mapped to the family as a whole.

Match-state amino acid emission parameter estimation: we first identify all
positions that are conserved across the family as a whole, allowing
gaps. The probability distribution for these positions is taken from
the family HMM and fixed within all subfamilies, representing their
common functional or structural role. This heuristic also enables
small subfamilies to have conserved distributions at positions that
clearly define the family as a whole. Next, we identify columns in
subfamily alignments containing only gap characters; the match state
distributions for these positions are copied from the corresponding
match state of the general HMM. This heuristic compensates for any
fragmentary or partially aligning sequences included in the MSA. For
all other columns, we estimate the amino acid distributions for each
subfamily s using an information-sharing protocol enabled by the use
of Dirichlet mixture densities. For notational simplicity, we suppress
the ¢ index in the equations that follow.

Step 1. We estimate a posterior Dirichlet mixture density & from
the prior density o using the weighted amino acid counts in s. The
mixture coefficients ¢ are updated by setting each component j to its
posterior probability given the observed (weighted) counts ny:

4 = P(on,) (4)

The component parameters o;; are also updated to include the
weighted counts n,; of observed amino acids:

Qi = Oj; 4 1y (5)
where i ranges over the twenty amino acids.

Step 2. We then include counts from other subfamilies s' in
proportion to their probability under &, obtaining the vector of total
training counts ¢ as

t=n,+ Y P(ng|@)n, (6)

s'#s

Step 3. Finally, we obtain a posterior estimate of the amino acid
distribution from the original o using ¢ rather than n
t; + Otji

0= S P(oyl) i ”)
J

2] + [oy]

where |x| indicates the magnitude of x.

Thus, the generalization capability of subfamily HMMs is
enhanced by adding in weighted counts from subfamilies having
similar amino acids at corresponding positions.

Details of experimental validation. Construction of benchmark datasets.
SCOP-PFAMb15: protein families from the PFAM [40] resource were
selected according to the following criteria: (1) the PFAM alignment
had to match exactly one SCOP superfamily, and (2) SCI-PHY analysis
of the alignment had to detect >2 subfamilies. The first criterion was
determined based on scoring the Astral PDB90 dataset of structural
domains [65] against all the HMMs in PFAM using the HMMER
software (version 2.3.2) [66], and accepting only those PFAM families
matching exactly one SCOP superfamily within the family gathering
threshold. The second criterion was chosen to ensure that comparing
subfamily and family HMM performance would be informative. Since
each SCOP fold can contain numerous superfamilies, PFAM families
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meeting these criteria were filtered based on the top HMM score to
select a single representative of each SCOP fold, to ensure that no
fold dominated the results. This produced a set of 515 PFAM families.
PFAM full alignments for these families were edited to remove
sequences with >95% identity to other sequences in the MSA,
columns with >70% gaps, and fragmentary sequences having >30%
gap characters in the remaining columns.

EC dataset construction: the SCOP-PFAM515 families were examined
to find those containing multiple enzymatic functions based on EC
numbers obtained from the UniprotKB [67] database for sequences
aligning over >75% of their lengths. The requirement of a minimum
fractional alignment was included to prevent an assigned enzymatic
function being associated with a domain not represented by the
PFAM family selected. 57 families having multiple EC numbers
remained after this procedure.

Since the majority of the sequences in each of these families had no
assigned EC numbers, subfamily clustering methods were performed
on the full (edited) alignments, but accuracy was assessed using only
annotated sequences aligning over >75% of their lengths.

EXPERT: we selected the enolase and crotonase enzyme families
from the SFLD [48], the amine and secretin families from the
GPCRDB [49], and the NHR family from NucleaRDB [50]. For the
enolase and crotonase families, the full-length sequences were aligned
to the structural alignment for the families downloaded from the
SFLD Web site. The common domain in the aminergic GPCRs was
identified by aligning the full-length sequences from GPCRDB to the
PFAM 7tm__1 HMM (PF00001). Similarly, the PFAM 7tm__2 HMM
(PF00002) was used for the secretin-like GPCRs. The ligand-binding
domain of nuclear hormone receptors was identified using the PFAM
Hormone__recep HMM (PF00104). Next, we constructed an MSA for
the identified domains from each family using the MUSCLE software
[68]. Finally, we masked columns with >70% gap characters and made
the alignment non-redundant at 98% identity (by restricting the
alignment to a representative set such that no two sequences had
>98% identity).

Evaluating predicted subfamilies relative to expert-defined subtypes. Several
scoring functions were developed to enable us to evaluate the
performance of predictive methods. Subfamily purity is measured as
the fraction of subfamilies that contain only one expert subtype or
EC number. The VI is a distance metric on partitions [53]. As such, it
obeys the triangle inequality: VI(A,B)+ VI(B,C) > VI(A,C) for partitions
A,B,C. Given two partitions, the VI index measures the amount of
information in each partition that is not shared between them. It is
calculated as

VI = H(S) + H(S') — 21(5,S") (8)

where H is the entropy of a partition, and / is the mutual information
between two partitions:

H(S) = i " og 2k (9)

o
L o Np i oy
1(8,8)=35 T‘flog"T (10)

Here, ny, is the number of items in cluster k of partition S, n;, ;- is the
number of overlapping items between cluster k in partition § and
cluster k" in partition §’, K and K’ are the total number of clusters in
partitions § and §', respectively, and N is the total number of items in
the set.

The Edit Distance is defined as the minimum number of split or
merge operations required to transform one partition into the other.
A split or merge affecting multiple data points is considered one
operation. For instance, two clusters containing five sequences may
be merged into one ten-sequence cluster with an edit distance of one.
The edit distance between a reference and a predicted partition with
clusters k and %', respectively, is calculated as

Edit—?(Zn\y) -K—-K' (11)

kk'

where 7, equals 1 if clusters k and £" have items in common, and zero
otherwise, and K and K' are the number of clusters in each partition.
Like the VI distance, the edit distance is a metric on partitions.
Identical partitions will have an edit distance of zero. The edit
distance is bounded by 2(N — v/N).

SHMM construction and performance: HMM construction and scoring:
we used the UCSC Sequence Alignment and Modeling (SAM) software
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system [69,70] to score sequences in both fold prediction and
classification experiments. All family HMMs were estimated using
the SAM w0.5 software. Reverse scores for SHMMs and family HMMs
were derived using the hmmscore program and local-local scoring
(SAM parameter -sw 2). Family HMM e-values for sequences were
calculated using the SAM recommended protocol: family HMMs were
calibrated with the hmmscore program using the -calibrate option
prior to scoring. Raw SHMM scores were obtained by scoring a
sequence against all SHMMs in the family and retaining the top score.
SHMM e-values were derived by fitting EVD parameters to raw
SHMM scores for randomly generated sequences, using a maximum
likelihood approach similar to that implemented in HMMER [71,72;].
E-values were calculated based on a fixed database size of 10°.
Weighted coverage and ROC curves were calculated by normalizing
the contribution of each true positive by the size of its superfamily, so
that all superfamilies contributed equally to the dataset [73].

Subfamily classification and novel subtype detection: for leave-one-out
experiments, we chose ten sequences at random from each family,
which were removed and tested separately. Sequences drawn from
singleton subfamilies were replaced and not used. The modified
alignment was then used to construct a new set of SHMMs, keeping
the original SCI-PHY subfamily decomposition. To simulate classi-
fication of remotely related sequences, all sequences having identity
greater than a specific cutoff to the withheld sequence were also
removed from the alignment. We tested cutoffs of 30%, 40%, 50%,
60%, and 70% identity (see Table 4). In some cases, there were no
sequences below the threshold within the subfamily; these were
removed from the test. For the BLAST method, test sequences were
assigned to the subfamily of the highest-scoring hit. To enable direct
comparison, the Hannenhalli and Russell sub-profile method was re-
implemented to use HMMs constructed from SAM w0.5 software
rather than HMMER as in [43].

In the novel subtype detection experiments, we removed up to five
complete subfamilies at random from each family, ignoring families
with only two subfamilies (preventing the case where regression
curves would have been trained with no negative examples). Results
were normalized by subfamily size. Logistic regression parameters
were fit using the iteratively re-weighted least squares (IRLS, [74])
algorithm (implemented in R [75]).
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