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Review Article

To make the reader understand the concept of  how 
antimicrobial peptides (AMPs) play a role in the host 
defense and thereby provide an outlook for the implications 
of  these proteins in therapeutics.

INTRODUCTION

The ora l  cav i ty  comprises  approximate ly  of  
700 microorganisms, of  which nearly 150–200 species 
are present in all the individuals.[1] Four hundred bacterial 
species can be found in periodontal pocket; however, only 
eight bacterial species have consistently been associated with 
the development of  periodontitis including Aggregatibacter 
actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia), 
Treponema denticola, Fusobacterium nucleatum, Eubacterium 
nodatum, Prevotella intermedia and Prevotella nigrescens.[2] The 
innate immune system rich in antimicrobial proteins and 
peptides initially controls this bacterial microflora.

AMPs are oligopeptides that are biologically active 
molecules produced by different sources including plants, 
animals, microorganisms and mammals. In humans, 
AMPs are widely distributed in saliva, epithelium and 
neutrophils having a broad range of  antimicrobial activity 
and are effective in immune activation, wound healing and 
inflammation.[3] AMPs are less toxic and have antimicrobial 
specificity due to which they kill specific target cells without 
affecting the host cells; therefore, decreased resistance is 
developed by target cells against them.[4] They also serve 
as antitumor agents, contraceptive agents, drug delivery 
vectors, mitogenic agents and signaling molecules in signal 
transduction pathways. Approximately 106 human AMPs 
have been identified to date, of  which at least 45 different 
AMPs are present in human saliva and gingival crevicular 
fluid (GCF).[5]

A serious challenge to antimicrobial therapies has emerged due to rapid increase in drug-resistant infections 
creating an urge for the development of alternative therapeutics. Antimicrobial peptides (AMPs) have gained 
importance because of their broad-spectrum antimicrobial activities and mediator-like functions linking 
innate and adaptive immune responses. The multidimensional properties of these peptides hold promising 
potentials as prophylactic and antimicrobial agents. This review discusses various AMPs and their role in 
combating microorganisms and infections along with its clinical implication.
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MECHANISM OF ACTION

Interactions of  AMPs with microbial cell membranes 
have led to dynamic interchange in their structure and 
topologies.[6] The primary mechanism for antimicrobial 
activity of  AMPs is the electrostatic interaction of  peptides 
with negatively charged molecules on the membrane. In 
target cells, AMPs can also exert antimicrobial activity by 
cell membrane translocation and inhibition of  essential 
cellular processes including nucleic acid synthesis, cell wall 
synthesis, protein synthesis and enzymatic activities.[7] Based 
on the mechanism of  action, they are broadly categorized 
into membrane acting peptides, for example, defensin, 
LL‑37, melittin and nonmembrane acting peptides, for 
example, human neutrophil peptide (hNP)‑1, buforin 
II, pleurocidin and dermaseptin.[8,9] In target cells, the 
damage of  membrane is promoted by AMPs either by 
the formation of  pores, by thinning of  membrane or by 
disruption of  lipid bilayer as explained by various models 
summarized in Table 1.[9‑14]

CLASSIFICATION OF ANTIMICROBIAL PEPTIDES

Antimicrobial peptide database (APD) has proposed a 
three‑dimensional structure classification approach.[15] 
According to the classification, AMP structures are classified 
into four families: α, β, αβ and non‑αβ based on the 
types of  secondary structures. AMPs in the α family 
consist of  α‑helical structure. Peptides in the β family 
are characterized by at least a pair of  two β‑strands in the 
structure. The αβ family contains both α and β structures; 
in contrast, the non‑αβ family has neither α nor β structure.

More recently, the APD3 proposed a classification 
according to the covalent bonding pattern of  polypeptide 
chains.[15] In this, AMPs were divided into four classes. All 
linear peptides where chemical modifications occur within 
the same amino acid belonged to the first class (UCLL). In 
the second class (UCSS), peptides in which one chemical 

bond is present between the side chains of  different amino 
acids of  the polypeptide were included in the study. The 
peptides in which a chemical bond occurred between the 
side chain of  one residue and backbone of  other residue 
were grouped in Class 3 (UCSB). The fourth class (UCBB) 
comprised of  all peptides with a circular backbone wherein 
a covalent bond is formed between the N‑ and C‑termini 
of  the polypeptide.[15]

TYPES OF ORAL ANTIMICROBIAL PEPTIDES 
AND THEIR ROLE IN DISEASE

Defensins
These are innate defense molecules due to their capability 
of  killing all kinds of  Gram‑positive and negative bacteria, 
fungi as well as viruses such as herpes simplex.[5] These 
peptides are short, cationic with low molecular weight 
and unique, characteristic beta‑sheet fold structure which 
consists of  three disulfide bonds among six cysteines. On 
the basis of  their length, location, position of  cysteine and 
folding of  peptide chains, human defensins are classified 
as α‑defensins (hNP) and β‑defensins.[16]

Alpha‑defensins
They are further subclassified into six types, such as hNP‑1, 
hNP‑2, hNP‑3, hNP‑4 and hNP‑5 and hNP‑6 (paneth 
cells of  intestinal mucosa). In amino acid sequences, the 
neutrophils secreting them are almost identical except at the 
N‑terminus resulting a change in antimicrobial spectrum 
of  defensins. The hNP‑1 or hNP‑2 actively destroy 
Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia 
coli as compared to hNP‑3 and hNP‑4[17] which are active 
against Candida albicans, E. coli and Streptococcus faecalis.[18] 
hNP‑5 and hNP‑6 are not expressed in the oral cavity as 
they are present in the enteric system.[19]

Polymorphonuclear neutrophils present in the junctional 
epithelium consist of  hNP in the periodontium, hence 
can be detected in GCF. The most abundant peptide 

Table 1: Mechanism of action of antimicrobial peptides
Energy independent uptake mechanisms[9‑15] Energy dependent uptake mechanism[9‑15]

Barrel stave model Toroidal pore model Carpet model Macropinocytosis
Peptides insert perpendicularly 
into the lipid core of target 
membrane‑forming barrels

↓
Transmembrane pores

↓
Leakage of cytoplasmic content

↓
Cell lysis

Peptides insert into the lipid membrane
Forces the lipid membrane to bend 
constantly into the pores

↓
Transmembrane pores get lined by 
inserted peptides as well as lipid head 
groups

↓
Depolarization of membrane

↓
Cell death

AMPs cover the membrane 
like a carpet

↓
When these peptides reach 
a threshold concentration

↓
Membrane disintegration

↓
Cell lysis

Peptides bind with the membrane
↓

Inward folding of plasma membrane
↓

Vesicle formation
(called macropinosomes)

↓
Antimicrobial action

AMP: Antimicrobial peptides
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present in saliva is hNP‑1‑3 (99%).[19] In patients with 
lichen planus, leukoplakia and squamous cell carcinoma, 
a higher concentration of  salivary hNP‑1 is seen.[20,21] 
Patients having dental caries have low salivary levels of  
α‑defensins (hNP‑1, ‑2 and‑3) and are used as caries risk 
assessment.[22]

Beta‑defensins
They are small, cationic peptides having antimicrobial 
activity that are principally expressed in epithelial cells 
of  various tissues and organs such as gingiva, skin, 
gastrointestinal tract, respiratory tract and kidney.[1] In the 
oral cavity, only human beta‑defensins (hBD‑1, hBD‑2 
and hBD‑3) are expressed.[23] Out of  28 hBD genes, only 
4 (hBD 1‑4) have been detected in the gingival epithelium.[24] 
Within the suprabasal layer of  normal gingiva, hBD‑1 and‑2 
are localized, and within the basal layer in undifferentiated 
epithelial cells, hBD‑3 peptide is expressed.[25]

During gingivitis, chronic periodontitis and aggressive 
periodontitis, different patterns of  expression for hBD 
have been suggested. hBD‑1 obstructs normal flora from 
becoming opportunistic and is expressed continuously; on 
the other hand, hBD‑2 and‑3 are more effective against 
almost all pathogens and are induced in response to bacterial 
lipopolysaccharides (LPS), tumor necrosis factors (TNF‑α), 
pro‑inflammatory mediators (interleukins [IL‑1 β] and 
interferons).[26‑28] hBD‑1 and‑2 were detected less frequently 
in tissue samples from patients with gingivitis as compared 
to healthy subjects; however, expression of  hBD‑3 was 
at similar levels in both. The expression of  hBD‑2 gene 
was higher in gingival tissue samples when compared with 
expression of  hBD‑1 and‑3 and detected more strongly in 
aggressive periodontitis patients as compared to gingivitis 
and chronic periodontitis subjects.[29,30] Furthermore, in 
samples from patients with peri‑implantitis, hBD‑1 was 
expressed more strongly than hBD‑2.[31]

Histatins
These are cationic peptides with low molecular weight, 
synthesized by the parotid and submandibular salivary ducts 
cells in healthy adults at a concentration of  50–425 µg/ml.[32] 
They are named as histidine‑rich proteins, comprising 7–38 
amino acid residues in length and have at least 12 histidine 
residues. These are predominantly antifungal and the three 
main members are His‑1, His‑3 and His‑5. However, by 
means of  proteolytic cleavage of  these members, the other 
members are generated.[33] Certain functions of  histatins 
are inhibition of  growth of  Candida species, bonding of  
metal ions in saliva, regulation of  oral hemostasis[34] and 
formation of  acquired enamel pellicle due to high affinity 
for enamel surfaces.[35]

Histatins at physiological concentration (15–30 lM), 
especially Hst‑5, inhibit Candida species. The Candidacidal 
activity of  Hst M (middle portion of  Hst‑3) is similar to 
the full‑length molecule indicating the potential future use 
of  short length antifungal peptides for oral ointments.[36] In 
patients with human immunodeficiency virus (HIV), histatin 
5 12‑mer P113 (Demegen) appears to be a promising AMP 
and works as a mouth rinse for oral candidiasis.[1]

Cathelicidins (LL‑37)
These belong to the α‑helical peptides family, do not 
have cysteine and are located at the carboxyl terminus 
of  a 15–18 kDa highly conserved cathepsin‑L‑inhibitor 
(cathelin)‑like domain.[37] Human cationic antimicrobial 
peptide (hCAP18) is the only cathelicidin that has been 
found in humans in the oral cavity and respiratory 
tract.[38] It was demonstrated that saliva, sweat, neutrophils, 
monocytes and epithelial cells of  tongue, buccal and lingual 
gingival epithelium express LL‑37/CAP18.[39]

Functions[40‑44]

• It acts as a chemotactic factor for monocytes, 
neutrophils, mast cells and T‑cells

• Potent antimicrobial and antiviral activity against many 
Gram‑negative and positive bacteria, fungi, viruses and 
parasites

• Neutralizes the activity of  LPS by binding with it
• Suppresses the reverse transcriptase activity of  HIV‑1.

In patients with aggressive and chronic periodontitis, 
high levels of  LL‑37 were found.[45] An inherited bone 
marrow disorder with a severe congenital neutropenia 
is seen in patients with Kostmann syndrome, as there 
is a lack of  LL‑37 in saliva and plasma along with 
severe periodontal destruction.[46] Treating patients with 
recombinant granulocyte colony‑stimulating factor 
restores the neutrophil levels, but this result is not similar 
in higher concentrations of  LL‑37 and is also associated 
with recurrence of  periodontal infection. On the 
contrary, restored neutrophil levels with normal plasma 
concentration of  LL‑37 are seen in patients who have 
received bone marrow transplants.[47]

Adrenomedullin
Adrenomedullin is produced from cells of  adrenal medulla, 
kidney, lung as well as epithelial lining of  skin, gut and oral 
cavity[48] when microbes come in contact with epithelial 
cells. The expression of  adrenomedullin gene is upregulated 
by pro‑inflammatory cytokines such as IL‑1 and TNF‑α.[49]

AMP is present mostly in the GCF and saliva with 
larger concentrations in whole saliva approximately 
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55–65 pg/mL. It is effective against both Gram‑positive 
and Gram‑negative bacteria of  the oral cavity.[50,51] 
Adrenomedullin is increased in periodontally affected sites 
as compared to healthy sites.[52]

Statherin
It is a 5.4 kDa basic histadine‑rich peptide present in saliva 
and GCF with antimicrobial properties. In C‑terminal 
peptide, growth of  statherin inhibits anaerobic bacteria 
and prevents plaque formation as crystallization of  calcium 
phosphate is restrained by them.[53] It is used as a biomarker 
in the proteomic analysis of  saliva.[54]

Azurocidin
It is a 37 kDa cationic antimicrobial protein identified by 
salivary proteomics and is expressed in azurophil granules 
of  neutrophils. Azurocidin is a 251‑amino acid protein and 
consists of  two cysteine residues in positions 52 and 68. 
They have a strong affinity for LPS and therefore exhibit 
strong antibacterial properties towards Gram‑negative 
bacteria.[55]

C–C motif chemokine 28
It is present mostly in saliva and exhibits both broad‑spectral 
antimicrobial activity and chemotactic activity. This is 
a 128‑amino acid peptide secreted by epithelial cells 
and salivary glands.[54] C–C motif  chemokine 28 is a 
salt‑sensitive peptide and causes an increase in permeability 
of  cell membrane.[56]

Neuropeptides
The neuropeptides, calcitonin gene‑related peptide and 
substance P are expressed in GCF,[57] salivary fluids contains 
neuropeptide Y and vasoactive intestinal peptide.[58] 
Since the minimum inhibitory concentrations (MIC) 
required to be effective against C. Albicans and bacteria 
are higher than their concentrations which varies from 
2 to 45 pg/ml; therefore, their antimicrobial role is 
extremely limited.[59]

The site of  expression of  the explained AMPs along with 
their MIC for targeted microorganisms is summarized in 
Table 2.[26‑28,59‑64]

Table 2: Antimicrobial peptide genes and their dosage for targeted microorganisms
AMP’s Gene Site of expression Target MIC

Adrenomedullin[60] ADM Epithelium P. gingivalis
S. mutans
E. coli

MIC: 7.75×104 µg/ml
MIC: 12.5 µg/ml

[]β defensin‑1
hBD‑1[26]

DEFB1 Suprabasal layer of 
stratified epithelium and 
saliva

P. gingivalis
A. actinomycetemcomitans
F. nucleatum

MIC: 50 µg/ml
MIC: 20 µg/ml

β defensin‑4
β‑defensin‑2
hBD‑2[27]

DEFB4A Gingival epithelium and 
saliva

P. gingivalis
S. mutans

MIC: 34.6‑>250 µg/ml
MIC: 4‑8 µg/ml

β Defensin 103
β‑defensin‑3
hBD‑3[61]

DEFB103A Skin and salivary gland P. gingivalis
A. Actinomycetemcomitans
S. mutans
T. Denticola
F. nucleatum
S. sanguinis
P. intermedia

MIC: 3‑5 µg/ml
MIC: 15.7 µg/ml

Cathelicidin (LL‑37)[61] LL‑37 Neutrophils, inflamed 
epithelia, submandibular 
glands and saliva

P. gingivalis
A. actinomycetemcomitans
S. gordonii
P. intermedia
F. nucleatum
S. sanguinis

MIC: >125 µg/ml
MIC: 37.8 µg/ml

C‑C motif chemokine 28[22] CCL28 Salivary glands and saliva S. mutans IC50: 1.7 µM
HNP‑1
Neutrophil defensin 1[62]

DEFA1 Neutrophils, bone marrow 
and gingival crevicular fluid

S. mutans
P. aeruginosa
A. actinomycetemcomitans
P. gingivalis

MIC: 4.1 µg/ml
MICl: 10.3 µg/ml

HNP‑2
Neutrophil defensin 2
HNP‑3
Neutrophil defensin 3[63]

DEFA1
DEFA3

Neutrophils, bone marrow 
and gingival crevicular fluid

P. gingivalis
A. actinomycetemcomitans

No activity: (>200 µM)
No activity: (>500 µg/ml)

Neuropeptide Y[59] NPY Salivary fluid P. aeruginosa
S. mutans

MIC: 134.3 µg/ml
MIC: 210.9 µg/ml

Statherin[64] STATH Oral cavity Oral anaerobes MIC: <12.5 µg/ml, >100 µg/ml

AMP: Antimicrobial peptides, MIC: Minimum inhibitory concentrations, P. gingivalis: Porphyromonas gingivalis, S. mutans: Streptococcus 
mutans, E. coli: Escherichia coli, A. actinomycetemcomitans: Aggregatibacter actinomycetemcomitans, F. nucleatum: Fusobacterium nucleatum, 
T. Denticola: Treponema denticola, S. sanguinis: Streptococcus sanguinis, P. intermedia: Prevotella intermedia, P. aeruginosa: Pseudomonas aeruginosa
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Advantages of antimicrobial peptides[22]

• Broad‑spectrum activity (anti‑inf lammatory, 
antibacterial, antiviral and antifungal)

• Rapid onset of  killing with potentially low levels of  
induced resistance.

Disadvantages of Antimicrobial peptides[22]

• Systemic and local toxicity with susceptibility to 
proteolysis

• Reduced activity based on salt, serum and pH 
sensitivity

• Sensitization and allergy after repeated application with 
natural resistance

• Confounding biological functions (e.g., angiogenesis)
• High manufacturing costs.

Future implications of antimicrobial peptides
AMPs have multiple functions including antimicrobial 
activity, innate immune response and play a key role 
in cancer biology.[65] Peptides from plants exhibiting 
antimicrobial activity may also be applied to prevent or 
treat infectious disease, as an alternative to human AMPs.[66] 
Potential use of  hydroxychavicol, a piper betel leaf  extract, 
as an oral health‑care agent has been suggested, due to its 
inhibitory activity against oral microorganisms. Synthetically 
generated AMPs may also have a great potential for clinical 
application in addition to natural peptides.[67] At present, 
determination whether AMPs should be applied for 
prevention or treatment of  periodontal infections is in 
primitive stage.[68]

CONCLUSION

AMPs have diverse structural and antimicrobial properties 
and are one of  the most promising future drug candidates 
for reduction of  infections and resistance of  microbial 
drugs. They are potentially applied as drug delivery vectors, 
signaling molecules, immune modulators, antitumor agents 
and may also possess other biological activities. Therefore, 
for clinical development of  peptide‑based therapeutics, 
understanding the versatile biological properties of  AMPs 
can be of  extreme importance.
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