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Abstract The solution of the mixed boundary value

problem of potential theory involves the computation of the

potential field generated by monolayer and double layer

source distributions on surfaces at which boundary condi-

tions are known. Closed-form analytical expressions have

been described in the literature for the potential field

generated by double layers having a linearly distributed

strength over triangular source elements. This contribution

presents the corresponding expression for the linearly dis-

tributed monolayer strength. The solution is shown to be

valid for all observation points in space, including those on

the interior, edges and vertices of the source triangle.

Keywords Boundary element method � Bioelectricity �
Linear shape functions

1 Introduction

The boundary element method (BEM) is a well-known

method for computing the (quasi-static) potential field

resulting from applied forces on the boundaries of piece-

wise homogeneous media, as well as within them. Exam-

ples of applications are those in electrostatics, deformations

in elastic media, and in bioelectricity. The basis of the

method was formulated by Smythe [27]. Theory and

examples of 2D applications can be found, in, e.g., [4].

Early applications to 3D are described in, e.g. [3, 10, 16],

more recent ones in [12, 23, 32].

In bioelectricity, the applied forces result from impres-

sed electric currents and the medium is a volume conductor

model comprising a set of closed non-intersecting surfaces

that are nested inside the body surface. The surfaces con-

sidered are the interfaces between regions having a dif-

ferent electric conductivity. The surfaces carry so-called

secondary sources. These are virtual sources that are placed

in a virtual, homogeneous, isotropic medium of infinite

extent. Their strengths are computed such that the conti-

nuity conditions of electric volume conduction theory at

these interfaces are satisfied [12, 22, 27].

The requisite basic computations involved in the BEM

are those of the potential fields generated by monolayer

and/or double layer sources distributed over the surfaces.

Based on the superposition theorem, the potential at each

field point is computed as the sum of the contributions of

the primary sources and those of the secondary current

sources on all of the small surface elements considered.

Prominent applications of the BEM in bioelectricity aim

at linking the potential field on a closed internal surface

that encompasses all primary sources to the potential field

on the thorax surface. Examples are the ones in which the

internal surface is the pericardium, the surface closely

encompassing the heart [3, 5, 13, 17, 25, 29], or the cortical

surface [2]. The solving of this type of mixed boundary

value problem (Cauchy problem [27]) involves both double

and monolayers [3, 20, 27, 29].

The interfaces that are relevant in the field of bioelec-

tricity generally have a complex shape. This necessitates a

numerical handling of the computation of the fields gen-

erated by the sources, both the primary and the secondary

ones [13]. To this end, the surfaces are subdivided into
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numerous, small planar elements. The triangular shape

produces a close fit of the mesh to the interfaces.

In early applications, the distribution of the source

strength over the triangle, the so-called shape function, was

taken to be uniform. However, this approach was soon

realized as being suboptimal since it creates an unrealistic

discontinuity of the source strength across the edges of

neighboring triangles. Instead, linear shape functions with

their strength at their vertices proportional to the local

potential have been proposed. Closed-form analytical

expressions are known for the potential fields generated by

source distributions on a triangle of the uniform double

layer [30], the linearly distributed variant [6] as well as for

the uniform monolayer [9].

Up until now, the field generated by the monolayer with

linearly distributed source strength has been computed on

the basis of numerical methods for solving the involved

integral. This article presents an exact, closed form

expression for this solution.

The organization of the article is as follows. First, in

Sect. 2, the basic notations used are listed, followed by the

introduction to the problem in hand. Next, a section is

included that describes the solution for the uniform

monolayer [9] in a notation that prepares the way for the

derivation for the linearly distributed monolayer presented

in the subsequent section.

Next, some examples are shown of the resulting

potential fields, including those for the situation in which a

field point coincides with one of the vertices of the source

triangle. This is the situation that is highly relevant in

BEM-based computations.

A further motivation for this contribution and the rele-

vance of the results is discussed in the final section. In an

appendix, the basic integrals used are listed. Moreover, for

the sake of completeness, the corresponding results for the

double layer are included, taken from the literature, but

now cast in the notation of this article.

2 Preliminaries

2.1 Notation

Throughout, vectors in 3D space are denoted by lower case

variables with an overhead arrow, e.g., r~; their lengths (unit

m) by dropping the arrow. The vector product of vectors a~

and b~ is denoted by a~� b~ (cross product), the scalar vector

product by a~ � b~ (dot product). The source triangle is

denoted by D; its normal n~ is found from the cross product

of any two of its edges. The norm of n~; denoted by n,

equals twice the area (SD) of the source triangle. The

normalized version of n~ is denoted by n~n:

Variables expressed in the domain of linear algebra are

denoted as follows. Column vectors are shown in lower-

case bold type face, e.g., applied to n~ this yields n. Row

vectors are primed. Vector norms are shown using regular

font. Column vectors having unit elements only are deno-

ted by u.

Matrices are shown in upper-case bold. The transpose of

a matrix M is primed: M0.

2.2 Problem statement

The fields produced by the sources on the basic, triangular

BEM element D to be discussed are the ones generated by

current source densities impressed over D. The pertinent

geometrical configuration is depicted in Fig. 1. The trian-

gle vertices are labeled (k, l, m) in a clockwise order when

viewed from the origin. The normal of the triangle is ori-

ented in the direction of a right-hand screw rotated in the

order of the vertices k, l, m. The edges of the triangle are

defined as e~k ¼ r~‘ � r~k; e~‘ ¼ r~m � r~‘; and e~m ¼ r~k � r~m:

3 The potential field generated by impressed

monolayer current distributions

The problem addressed in this article is the computation of

the potential Uðr~0Þ at field point r~0 resulting from a

monolayer with strength JDðr~Þ (unit A/m) that impresses a

point source type of electric current Iðr~Þ ¼ JDðr~Þ dS (unit

A) into the surrounding medium from an infinitesimally

small part of the triangle, dS, located at r~: In an analogy

with Coulomb’s law for point charges in infinite space [27],

Fig. 1 Diagram introducing the computation of the potential at the

origin generated by current source densities over a triangle. The

vector r~ points from the field point, here taken to be the origin, to

source locations on the triangle
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the potential field in the electric volume conduction prob-

lem is found from the superposition of the contributions of

the elementary sources:

U r~0ð Þ ¼ 1

4pr

Z

D

JDðr~Þ
R

dS; ð1Þ

with r the electric conductivity of the medium (unit S/m)

and R the length of the vector connecting field point r~0 to

source location r~:

The solution for an arbitrary field point is identical to the

one found by shifting the entire geometry such that the field

point of interest lies at the origin. By doing so, Eq. 1 may

be written as

U ¼ 1

4pr

Z

D

JDðr~Þ
r

dS; ð2Þ

with U ¼ Uðr~0 ¼ 0~Þ:

3.1 The uniform monolayer

For a uniform monolayer we have JDðr~Þ ¼ JD and Eq. 2

reduces to

U ¼ 1

4pr

Z

D

Jðr~Þ
r

dS ¼ JD

4pr

Z

D

1

r
dS: ð3Þ

The basic problem to be addressed is the solving of the

integral on the right, the factor scaling it being application

specific. In the literature, a multitude of papers dealing with

this the solution of the integral are documented [9, 11, 14,

15, 18, 19, 24], exhibiting different approaches to the

solution method and details of the results. Below, the

solution derived by Ferguson et al. [9] is presented in a

compact notation that is used throughout this article. The

solution, denoted as CD; reads

CD ¼ hXD þ h0c: ð4Þ

The variables shown represent:

• h: the height of the tetrahedron formed by the three vectors

defining the triangle and the field point (at the origin) as

shown in Fig. 1, computed from h ¼ r~kr~lr~m½ �=n; with

r~kr~lr~m½ � ¼ r~k � r~‘ � r~m denoting the triple vector product

of the vectors specifying the triangle vertices relative to

the field point. In the sequel this triple vector product is

denoted by T. Its numerical value equals that of the

determinant of the matrix of size 3 9 3 whose elements

are the vertex coordinates of the source triangle.

• XD: the solid angle subtended by the source triangle at

the field point (Eq. 25).

• h: a column vector with elements: hk ¼ r~kr~ln~n½ �=ek;

h‘ ¼ r~‘r~mn~n½ �=e‘; and hm ¼ r~mr~kn~n½ �=em: These repre-

sent the signed distances between the projection, p~; of

the field point on the plane of the source triangle and its

projections on the lines carrying the edges. The sign of

the elements is negative if, when traveling along the

line segment in the direction of the corresponding edge,

the projection p~ lies on the right, else it is positive

except if p~ lies on the line segment, where it is zero.

• c: a column vector with elements cj (j = k, l, m) that are

the line integrals over the edges j (Eq. 19).

An alternative derivation of Eq. 4, in which the solid angle

appearing in this expression is explained, is shown in [28].

4 The potential field of linearly distributed monolayer

current densities

We now turn to the main topic, the handling of the case

where the monolayer strength is linearly distributed over the

triangle. To this end, the monolayer strength is written as

JDðr~Þ ¼ Jðr~kÞwkðr~Þ þ Jðr~‘Þw‘ðr~Þ
þ Jðr~mÞwmðr~Þ;

ð5Þ

with (dimensionless) linear shape functions wjðr~Þ; j 2
ðk; ‘;mÞ having a unit value at any vertex j and zero value

at the remaining two.

Inserting Eq. 5 in 2 yields

U ¼ 1

4pr

X
j¼k;‘;m

Jðr~jÞ
Z

D

wjðr~Þ
r

dS; ð6Þ

showing the integral in Eq 2 as broken up into three sub-

integrals of identical type.

A function having the desired nature of wjðr~Þ for j = k is

wkðr~Þ ¼
r~‘r~mr~½ �
r~‘r~mr~k½ � ¼

r~‘ � r~m � r~
T

: ð7Þ

The other two are found by cyclic permutation of the indices

k; ‘; and m: Using r~k � r~‘ þ r~‘ � r~m þ r~m � r~k ¼ n~; a

property of the tetrahedron, it can be seen thatX
j¼k;‘;m

wj r~ð Þ ¼ 1; ð8Þ

as required.

In the following, the integral in Eq. 6 for index j 2
k; ‘;mð Þ is denoted by Cj; a scalar (unit m), and its vector

notation by a column vector C. By introducing z~k ¼ r~‘ � r~m;

we may write Cj as

Cj ¼
1

T
z~j �
Z

D

r~

r
dS: ð9Þ

Based on Eq. 8 and the additive property of integration, the

terms Cj must add up to the integral for the uniform

distribution, CD:
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Ck þ C‘ þ Cm ¼ CD: ð10Þ

Next, an auxiliary vector G~ (unit m2) is introduced:

G~ ¼
Z

D

r~

r
� dS~¼ �

Z

D

rr � dS~¼ �
I

r dc~; ð11Þ

in which the equality on the right follows from Stoke’s

theorem [27]. The value of the contour integral is

G~ ¼
I

r dc~¼
X

j¼k;‘;m

Z1

0

r kð Þe~j dk

¼
X

j¼k;‘;m

e~j

ej

Z1

0

r kð Þej dk ¼
X

j¼k;‘;m

e~j

ej
I1;j

; ð12Þ

with I1;j denoting the line integral I1 (Eq. 21) pertaining to

edge j; its column vector variant is denoted as I1.

By inserting the vector synthesis r~¼ 1
T

P
j¼k;‘;m z~j � r~

� �
r~j

in the left integral in Eq. 11, an alternative for G~ is found:

G~ ¼ 1

T

Z

D

X
j¼k;‘;m

z~j � r~
� �

r~j

r
� n~ndS

¼ n~n �
X

j¼k;‘;m

r~j
1

T

Z

D

z~j � r~
� �

r
dS:

By recognizing Cj as introduced in Eq. 9, we have

G~ ¼ n~n �
X

j¼k;‘;m

r~j Cj: ð13Þ

The vectors n~n � r~j are stored as the columns of a matrix N

of size 3 9 3 and a column vector y is defined by its

elements
P

j¼k;‘;m
e~j

ej
I1;j: Equating the final expression for G~

shown in Eq. 12 to the one in Eq. 13 yields N C ¼ y; from

which it may seem as if the solution C might be found.

However, the rank of matrix N is 2 since the vectors n~n �
r~j lie in the same plane, a plane normal to n~n: Hence, the

linear system is under-determined. This problem is dealt

with by adding Eq. 10 as a constraint, which leads to the

4 9 3 linear system

N

u0

" #
C ¼

y

CD

" #
; ð14Þ

The least squares solution of this system yields the

numerical column vector C,

C ¼ Z0n CD � E0c En I1

� ��
n; ð15Þ

in which Ec is a matrix whose columns are coordinates of

the edges of the source matrix after one step of cyclic

permutation, i.e., ½e‘ em ek�; and En a matrix whose col-

umns are the normalized edge vectors.

The three elements of C are the three integrals in Eq. 6,

thus yielding the final solution:

U ¼ 1

4pr

X
j¼k;‘;m

Jðr~jÞ Cj ð16Þ

resulting from combining Eqs. 6 and 16, an expression that

holds true throughout 3D space.

5 Results

The most pertinent result discussed in this article is the

closed form analytical expression Eq. 15, which, inserted

in Eq. 16, specifies the potential field generated by a cur-

rent monolayer over a triangle with linearly distributed

source density. Throughout, the pertinent variables are

expressed in SI units.

5.1 Numerical aspects

When testing numerical implementation of Eq. 16 the

computation of the cj factors, introduced in Eq. 4 and

specified in Eq. 19, proved to be the most sensitive ele-

ment. As discussed in Appendix 1, and based on the

physics involved, the argument of the logarithm must be

greater than one. To ensure this property in the wake of

rounding off steps in the numerical handling, the machine

epsilon was added to the numerator as well as to the

denominator in Eq. 19. Following this, for field points in

the plane of the source triangle, on its edges, at its vertices

as well as for field points very close to it, the results proved

to be accurate within machine precision.

5.2 Some examples

In the following, some examples are presented of potential

fields generated based on Eq. 16, also aimed at demon-

strating the major properties of these fields. In these

examples, a unit value of the conductivity r is assigned to

the medium.

Equation 16 was stated to be valid throughout 3D space.

This is illustrated in Fig. 2: the potential field in the plane of

the triangle. The [x y z] vertex coordinates are: A: [2 0 0], B:

[-1.5 2 0] and C: [-1 0 0]. The left panel depicts the situation

in which the linear distribution of the source current density

was specified by assigning a unit value (J = 1 A/m2) to

vertex A and zero values to the other two. The resulting field

generated by the uniform unit source density is shown on the

right panel. The nature of the fields resulting from assigning a

unit density to either vertex B or C is similar to the ones

shown in the left panel. The potential values at the vertices

4 Med Biol Eng Comput (2012) 50:1–9
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for the three basic linearly distributed cases and for the

uniform case, as well as the corresponding extremes are

listed in Table 1.

The corresponding fields on the plane z = 0.5 are shown

in Fig. 3.

Another view on the nature of the potential field of the

monolayer is presented in Fig. 4. It depicts the potential

profile along a line directed along the normal of the

source triangle (parallel to the z-axis), passing through its

center of gravity. The profile is generated by a uniform

density JDover the triangle (right panel Fig. 2). A char-

acteristic feature of the monolayer source is the discon-

tinuity in the slope of the potential profile, changing

abruptly (from 0.5 to -0.5 V/m for the uniform case)

when crossing the monolayer in a direction parallel to its

surface normal. Since Jz ¼ �r oU
oz and a unit value was

taken for JD as well as for r, the observed slope reflects

the symmetric outflow of one half of the surface current

density from each side of the monolayer. Figure 4 is the

quantification for the triangle of the general profiles of

this fundamental source type as discussed in the major

textbooks on potential theory (e.g., Figs. 1.7 in Panofski

and Phillips [20]).

The dotted lines represent the potential profile generated

by a single, equivalent monopole current source with

strength JDSD: It illustrates that at sufficiently large dis-

tances from the source triangle, the potential may be

approximated by that of a current monopole. The decay of

the potential is as 1/r. However, close to the triangular

source element the correspondence with the profile gener-

ated by the surface density is poor. The potential tends

toward infinite values close to the point source. Depending

on the accuracy aimed for, fields further away than, say,

three times the size of the triangle expressed, e.g., by the

radius of the circumscribed circle (2.07 for the triangle

shown in Fig. 2) may permit field computations based on

such equivalent sources.

For the computation of the most significant terms in the

BEM transfer matrix, the values at the vertices of the

source triangles, such approximations are inadequate, as

can be seen in Fig. 4.

In Appendix 3, dedicated analytical expressions are

shown for the values at the vertices. These have been

derived directly from Eqs. 19 and 20.

5.3 Comparison with numerical integration

Various algorithms have been published for solving inte-

grals of scalar functions f ðr~Þ over a triangle. These involve

weighted sums of function evaluations at selected nodes on

the triangle. Basic schemes are such as listed in Sect. 25.4

of [1], advanced ones such as in [26]. By increasing the

number of nodes the accuracy of the results can be

improved. However, if a closed form analytical solution is

lacking the accuracy can not be quantified. This problem is

more acute in cases where f ðr~Þ is singular, such as in Eq. 6.

Fig. 2 Left panel potential field

in plane of a monolayer linearly

distributed over a triangle, with

unit source density J at vertex A

and zero at vertices B and C;

iso-potential line spacing 0.025,

maximum: 0.18814. Right panel
corresponding result for

uniform source strength. Iso-

potential line spacing 0.05,

maximum: 0.45853. Location of

the maxima marked by ?.

Values at the vertices as listed

in Table 1

Table 1 Columns U(A), U(B), and U(C): the potential at vertices A,

B, and C of the source triangle specified in Fig. 2

J U(A) U(B) U(C) Max

[1 0 0] 0.06996 0.03794 0.05942 0.18814

[0 1 0] 0.03323 0.08582 0.06954 0.19607

[0 0 1] 0.03676 0.04788 0.12896 0.20679

[1 1 1] 0.13992 0.17164 0.25791 0.45853

The first three rows: linearly distributed monolayer, with the current

source density J at the vertices as specified in the first column, e.g.,

[1 0 0]: a local unit density at A and zero density at B and C. The

lower row lists the values for the uniform density, seen to be equal to

the respective column sums, as required. The final column lists the

extremes observed in the respective fields. These appear at different

locations and, hence, the sum of its first three rows needs not to be

equal to the value in the 4th row. Note that the values of diagonal

terms of the inner 3 9 3 matrix are one half of the values in the lower

row (the uniform case)
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In such cases iterative refinements of the spatial sampling

are used until a predefined convergence criterion is met. In

BEM applications, the number of function calls required

may be high and the ‘‘true’’ solution may not be found.

The performance of the Matlab function quad2d, based

on [26], using its default tolerance settings, was tested in its

computation of Eq. 6, while taking the results based on

Eq. 16, implemented by the author in a Matlab script

pdmltr, taken as the reference. Field points were used with

their 3D coordinates drawn from the standard Gaussian

density, which were shifted to the COG of the triangle

shown in Fig. 2. In runs with 1000 of such random field

points the maximum of the observed relative absolute

errors was typically 0.05%. The total computation time

required for the 1000 calls of quad2d was 6.3 s, when using

pdmltr it was 0.23 s, a time-ratio of about 28. In runs where

the field points were projected on the plane of the triangle,

the maximum of the relative absolute errors was high as

0.5%, the time-ratio increased up to 90. When restricting

the observation points to the vertices of the triangle, the

maximum relative error was 5.5e-6; the time-ratio

was 3.3.

6 Discussion

In this article, a closed form analytical expression is pre-

sented for computing the potential field generated by a

current monolayer current whose strength is linearly dis-

tributed on a triangle. The pertinent expressions are

Eqs. 15 and 16. These imply the correct treatment of the

singularity of the function 1/r for coinciding source and

field point locations. Expressions for handling this situation

are shown in Appendix 3.

The derivation of Eq. 16 was inspired by a dedicated

analysis [28] of de Munck’s procedure for finding the

corresponding solution for the linearly distributed double

layer [6]. The implementation of Eq. 16 is less forbidding

than may appear at first glance. The intermediate values of

computations such as triangle edge lengths, normals, solid

angles, and the logarithms are identical to the ones required

for computing the field generated by a double layer on a

triangle with linearly distributed strength (compare Eqs. 4,

15, 25, and 26).

Suggestions for using higher order shape functions have

been reported in the literature, e.g., [14]. When considering

their application on any given triangular mesh, one would

be well advised to contrast this to a straightforward

refinement of the triangulation in which all additional

nodes are projections of the triangle refinement onto the

actual, generally non-planar, geometry treated [31].

The interest in the use of the method of fundamental

solutions (MFS) appears to be increasing [8]. As in early

Fig. 3 As in Fig. 2, now with

the plane of observation at

z = 0.5. Dotted the projections

of the contours of the source

triangle at z = 0 (Fig. 2).

Maxima left and right panels:

0.098542 and 0.27704,

respectively; step sizes left and

right: 0.0125 and 0.025,

respectively

Fig. 4 Solid line potential profile along the axis parallel to the

z = axis, passing through the center of gravity (COG) of the source

triangle (right panel Fig. 2). Uniform monolayer strength JD = 1

A/m2. Dotted line potential profile of a current monopole with

strength JDSD located at the COG. Dashed-dotted line the tangent to

profile for z! 0 (slope: 0.5 V/m)
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BEM applications [10], this method implies the use of sets

of virtual monopolar sources, for which the infinite med-

ium potential field is indeed fundamental and simple.

However, by their nature these sources have an essential

singularity at their locus (Fig. 4), which necessitates the

inclusion of an extremely dense set of nodes in the han-

dling of boundary value problems. This holds true in

particular in situations where the boundaries of the non-

intersecting interfaces of different compartments are close

to one another. Statements made in the literature that the

MFS would obviate the meshing of the involved surfaces

conceal the fact that imaging the results demands the

construction of such meshes.

The closed-form analytical expression presented in this

paper is exact, may serve as the gold standard and is faster

than numerical procedures. For large-scale applications [2]

an implementation, e.g., in C??, will obviously yield

timing values that differ from the ones listed.

The numerical values listed in Table 1 may serve to

check any implementation of the basic expressions

described. A basic Matlab script for the involved compu-

tations is available upon request from the author.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

Appendix 1: The field produced by a line source

The expressions for the field produced by source distribu-

tions over a triangle comprise terms that can be interpreted

as the fields resulting from a line source. This problem is

discussed here in some detail to provide a correct physical

interpretation of such terms.

The problem to be solved is illustrated in Fig. 5. The

labels of the edge lengths of triangle ABC reflect those of

the opposite vertices. A current line density s (unit A/m) is

impressed in a conducting infinite medium surrounding a

line segment ‘‘a’’ with length a having end points B and C

relative to the field point A at the origin. The potential at

the origin, UðAÞ; is found by integration of the contribu-

tions of point current sources at positions r~ along the line

source segment, with strength Iðr~Þ ¼ sðr~Þa dk (unit A), in

which k is a dimensionless integration variable. Accord-

ingly, following (20.13), we have

UðAÞ ¼ 1

4pr

Z1

0

sðr~Þa
rðkÞ dk: ð17Þ

In the sequel, for ease of notation, the factor preceding the

integral is dropped.

The uniform case

In the sequel, a uniform line source density is assumed with

unit strength, i.e., sðr~Þ ¼ 1 A/m.

This leaves the following integral to be determined:

Iu ¼
Z1

0

a

rðkÞ dk: ð18Þ

Note that this expression is invariant to an overall scaling

of the geometry (Fig 5). The distance function rðkÞ can

be expressed as rðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k2 þ Q2kþ c2

p
; with Q2 ¼ b2

�a2 � c2:

The integral is a standard one. Using Dwight:380.001

listed in [7], we have

Iu ¼ ln 2a2kþ Q2 þ a rðkÞ
� �

jk¼1
k¼0

¼ ln
ðbþ aÞ2 � c2

b2 � ðc� aÞ2
:

ð19Þ

On the basis of the triangle inequalities, both numerator

and denominator in the fractions appearing in Eq. 19 are

non-negative. Moreover, with the zero reference potential

at infinity, the integral must be positive. Hence, the

fractions forming the arguments of the logarithms are

greater than one. Equation 19 holds true throughout 3D

space; at field points coinciding with the line source its

value is infinite.

The non-uniform case

For a line source density that varies linearly from B to C

along edge a we need to find Inu ¼
R 1

0
ck

rðkÞ dk:The solution

Fig. 5 Diagram introducing the computation of the potential at the

origin generated by a line source density along a line segment with

endpoints B and C. The vector r~is drawn from the field point at the

origin to an elementary part of the line source
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to this integral is as listed in Dwight:380.011 [7] and can be

expressed as

Inu ¼
b� c

a
þ a2 þ c2 � b2

2a2
ln
ðbþ aÞ2 � c2

b2 � ðc� aÞ2
: ð20Þ

The solution for the source strength increasing linearly

from C to A is simply found by exchanging c and b in

Eq. 20. This needs to be applied only to the constant term

and the factor scaling the logarithm. The logarithm itself is

unaffected. The summation of the two solutions yields the

solution for the uniform situation (Eq. 19), as required.

Appendix 2: The integral of rðkÞ over a line segment

In the field problem discussed in Sect. 4, the integral over a

line segment of rðkÞ appears, rather than that of its reci-

procal value appearing in (18). Using the result listed as

Dwight (3880.201) [7], and employing the same notation,

the result is

I1 ¼ 2bc2 þ ðb� aÞQ2 � D

2c
Iu

� ��
ð4cÞ; ð21Þ

with D ¼ Q4 � 4a2c2 the discriminant of the parabolic

expression in rðkÞ.

Appendix 3: The potentials at the vertices of the source

triangle

Equation 15 reduces for field points at the vertices of the

source triangle. For a triangle with vertices, A, B, and C,

with unit density at A, and zero densities at B and C the

reduced variants are listed in Eqs. 22a, 22b, 22c, and 22d.

The edge lengths are labeled a, b, and c, corresponding to

the opposite vertices A, B, and C, as is commonly used in

planar geometry.

CðAÞ ¼ hA

2
c; ð22aÞ

CðBÞ ¼ hA

2

c� b

a
þ b2 þ a2 � c2

2a2
c

� �
; ð22bÞ

CðCÞ ¼ CðAÞ � CðBÞ; ð22cÞ
Cuniform ¼ hAc ¼ 2 CðAÞ; ð22dÞ

with hA ¼ 2SD
a the distance between vertex A and edge a,

and c ¼ log
ðaþbÞ2�c2

b2�ðc�aÞ2 : After scaling Eqs. 22a, 22b, 22c, and

22d, applied to the triangle specified in Fig. 2, by 1
4p ; the

results are those listed in column UðAÞ of Table 1. The

other two columns are found by cyclic permutation of

the vertex and edge labels.

Appendix 4: The corresponding results for the double

layer

As discussed in Sect. 1, some BEM applications involve

source distributions of the double layer type. For the planar

triangle, the potential field can be viewed as if generated by

elementary current dipoles oriented normal to the source

triangle (dipole strength: dðr~Þn~n dS.

The potential at the field point (shifted to the origin)

follows from taking the integral of the contributions of

elementary current dipoles directed along the surface nor-

mal, with dipole strength dðr~Þ n~ndS (unit Am). The result,

with the source-field configuration shifted such that the

field point lies at the origin, is [21],

U ¼ 1

4pr

Z

D

r~

r3
� n~n dðr~Þ dS: ð23Þ

with dðr~Þthe current dipole surface density (unit Am/m2 =

A/m). If this density is uniform, i.e., dðr~Þ ¼ d; the solution

simplifies to

U ¼ d

4pr
XD; ð24Þ

with XDdenoting the solid angle subtended by the triangle

at the origin (as in Eq. 4) [21].

A numerically efficient and accurate expression for XD;

reads [30],

XD¼ 2atan2 ½r~kr~lr~m�; rkrlrmþ rkr~l � r~mþ rlr~m � r~kþ rmr~k � r~lð Þ;
ð25Þ

in which ATAN2(Y,X) is Matlab’s four quadrant arc-

tangent of X and Y: -p\= ATAN2(Y,X) \= p that

takes into account the separate signs of the two argu-

ments. This expression has the desirable property that its

sign changes if the field point crosses the surface ele-

ment [22].

Note that, as for the line source, Eq. 17, the potential is

invariant to an overall scaling of the geometry, viz., the

tetrahedron formed by the vertex indices of D and the

field point (Fig. 1). In contrast, the corresponding

expressions for the monolayer depend linearly on such

scaling.

The solution for the linearly distributed double layer

strength as derived by de Munck [6] shown below, using

the notation used in this article is

x ¼ 1

n2
Z0n XD � E0c En c T
� �

: ð26Þ

The three elements of the column vector x refer to

three linearly ‘‘weighted’’ solid angles, similar to those

of the C weights described in Eq. 4 for the distributed

monolayer.
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