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Abstract

Preferences can change as a consequence of making hard decisions whereby the

value of chosen options increases and the value of rejected options decreases. Such

choice-induced preference changes have been associated with brain areas detecting

choice conflict (anterior cingulate cortex, ACC), updating stimulus value (dorsolateral

prefrontal cortex, dlPFC) and supporting memory of stimulus value (hippocampus

and ventromedial prefrontal cortex, vmPFC). Here we investigated whether resting-

state neuronal activity within these regions is associated with the magnitude of indi-

viduals' preference updates. We fitted a dynamic causal model (DCM) to resting-state

neuronal activity in the spectral domain (spDCM) and estimated the causal connectiv-

ity among core regions involved in preference formation following hard choices. The

extent of individuals' choice-induced preference changes were found to be associated

with a diminished resting-state excitation between the left dlPFC and the vmPFC,

whereas preference consistency was related to a higher resting-state excitation from the

ACC to the left hippocampus and vmPFC. Our results point to a model of preference

formation during which the dynamic network configurations between left dlPFC, ACC,

vmPFC and left hippocampus at rest are linked to preference change or stability.

K E YWORD S

decision-making, dynamic causal modelling, preference formation, resting-state fMRI

1 | INTRODUCTION

Decisions do not only reveal preferences (Rangel, Camerer, & Monta-

gue, 2008; Samuelson, 1938)—they also shape them. When people

make hard decisions, that is, choices between equally preferred items,

the chosen option typically gains in subjective value, while the

rejected alternative loses in subjective value (e.g., Chammat et

al., 2017; Izuma et al., 2010; Voigt, Murawski, & Bode, 2017; Voigt,

Murawski, Speer, & Bode, 2019). This phenomenon is referred to as

choice-induced preference change (reviewed by Izuma &

Murayama, 2013; Murayama, Izuma, Aoki, & Matsumoto, 2016). It

suggests that preferences are not as rigid as originally assumed but

are adapted during the decision-making process (Slovic, 1995).

Until recently, dominant explanations of the choice-induced pref-

erence change effect assumed that preferences are adjusted after a

choice has been made. The theory of cognitive dissonance

(Festinger, 1957) posits that preferences are adjusted at the time of

re-evaluation of the options in order to reduce dissonance between

preferences (both options are liked equally) and the choice just made

(one option was rejected) (Harmon-Jones, Harmon-Jones, &

Levy, 2015). In support, neuroimaging studies have found that the

dorsal part of the anterior cingulate cortex (ACC) is associated with

initial conflict detection between upcoming decisions and existing

preferences (i.e. forced to reject an item individuals dislike). It has

been proposed that after the initial detection of conflict between

upcoming action plans and existing preferences, the dorsolateral
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prefrontal cortex (dlPFC) (particularly the left) is involved in the imple-

mentation of changes in the underlying neural representation of value,

which has been suggested to be encoded in the ventromedial prefron-

tal cortex (vmPFC) (Izuma et al., 2010). Our recent study was the first

to reveal that the left dlPFC was already associated with the imple-

mentation of preference changes at the time of making such hard

decisions (Voigt et al., 2019). This finding challenges existing explana-

tions, suggesting that preferences are updated ‘in the moment’ while

a hard choice is being made. In addition, there is now strong evidence

that memory plays a critical role in preference formation processes

(Weilbächer & Gluth, 2016). Choice-induced preference change

effects only seem to occur for those items for which decision out-

comes are remembered (Chammat et al., 2017; DuBrow, Eberts, &

Murty, 2019; Salti, El Karoui, Maillet, & Naccache, 2014; Voigt et

al., 2019). This memory-depended change in value has been associ-

ated with left hippocampus activity, a core region involved in episodic

memory processing (Bird & Burgess, 2008) and vmPFC activity at the

time of re-evaluation (Chammat et al., 2017; Voigt et al., 2019). Thus,

the left hippocampus might have an important role in representing

preferences changes in the longer term. Taken together, these studies

suggest that the neural dynamics among ACC, vmPFC, left dlPFC and

left hippocampus are critical for choice-induced preference change

effects to occur. However, although the dynamic functionality of

these brain areas has been confirmed by several studies (e.g.,

Chammat et al., 2017; Izuma et al., 2010; Mengarelli, Spoglianti,

Avenanti, & di Pellegrino, 2015; Voigt et al., 2019), the neural net-

work's effective connectivity remains poorly understood. A better

understanding of it would shed further light on its functional rele-

vance for preference changes.

Furthermore, reported findings and effect sizes for the choice-

induced preference change effect vary considerably across studies

and participants (Chen & Risen, 2010; Izuma et al., 2010; Salti et

al., 2014; Voigt et al., 2017). However, no study to date has addressed

the origin of these individual differences. One intriguing possibility is

that the base reactivity of an individual's neuronal network associated

with choice-induced preference change effects is predictive of the

strength of the effect in the individual.

The present study asked whether variability in choice-induced

preference change effects are partially determined by inter-individual

differences in the dynamic organisation of the brain network compris-

ing ACC, vmPFC, left dlPFC and left hippocampus (henceforth

referred to as the ‘preference formation network’). To this end, we

measured resting-state functional magnetic resonance imaging

(rsfMRI), which captures low-frequency fluctuations in the blood oxy-

gen level-dependent (BOLD) signal. These fluctuations have been

repeatedly shown to explain variation of task-evoked brain activity

and behavioural performance in cognitive tasks (Vaidya & Gor-

don, 2013); for example, resting-state functional connectivity can

explain variability in risky choices (Wei et al., 2016), impulsivity (Li et

al., 2013) and preference consistency across time (Mackey et al.,

2015). However, as resting-state functional connectivity reflects tem-

poral correlations between spatially distant brain signals, this analysis

cannot answer questions about causal influences of one brain area

over the other. We therefore capitalised on recent advances in model-

ling the endogenous fluctuations in resting state fMRI data using

spectral dynamic causal modelling (spDCM; Friston, Kahan, Biswal, &

Razi, 2014). In contrast to functional connectivity analysis, spDCM

has the capacity to identify causal (directed) connections between dis-

tributed brain areas (i.e. effective connectivity; Friston, Harrison, &

Penny, 2003). Resting-state spDCM allows the investigation of multi-

ple neuronal systems simultaneously and has also been shown to be

more robust and sensitive to detect individual differences than sto-

chastic DCM (Friston et al., 2014; Razi et al., 2017; Razi, Kahan,

Rees, & Friston, 2015). A recent study (Jung et al., 2018) provided evi-

dence that the similarity between baseline effective connectivity dur-

ing task and during rest was associated with faster reaction times.

Investigating brain dynamics in the absence of task stimuli provides

knowledge about baseline connectivity patterns, which in turn may

relate to behavioural and cognitive manifestations of preference for-

mation and stability. As we aimed to determine whether the future

expression of task effects (i.e. choice biases and the tendency to

express stability) is—to some extent—already associated with direc-

tional connectivity of the preference formation network at rest,

spDCM provided an optimal tool to address this research question.

We hypothesised that effects related to choice-induced preference

change effects relate to changes in the effective connectivity between

brain areas involved in the detection of conflict and the implementa-

tion of preference updating (i.e. ACC and vmPFC; left dlPFC and

vmPFC, respectively). Consequentially, effects that reflect consistency

in preferences instead of a change in preferences might not be associ-

ated with pathways triggering and implement changes in the underly-

ing representation of value. These effects might instead be linked to

brain regions related to memory for value, such as the vmPFC and left

hippocampus (Weilbächer & Gluth, 2016).

2 | MATERIALS AND METHODS

2.1 | Participants

In order to measure the intrinsic causal network dynamics of the pref-

erence formation network, resting-state fMRI data was aquired for 22

human participants (13 females; age 18 and 37 years; M = 23.57,

SD = 4.93). The number of participants was chosen based on a sample

size estimation study revealing that 20 participants are sufficient to

get reliable DCM predictions (Goulden et al., 2012). Previous research

showed that this sample size is sufficient for robust model predictions

when applying spDCM to rsfMRI data (Park, Friston, Pae, Park, &

Razi, 2018; Preller et al., 2019; Tang, Razi, Friston, & Tang, 2016). All

participants were right-handed, English speakers with normal or

corrected-to-normal vision, who fasted for 4 hrs prior to the study.

No participant had significant health problems (including neurological

and psychiatric disorders) or was on psychoactive medication affect-

ing cognitive function or cerebral blood flow. Participants were naïve

to the purpose of the study, gave informed consent prior to com-

mencing the experiment and were reimbursed with AUD 60 for their
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time. The study was approved by the University of Melbourne Human

Research Ethics Committee (no. 1442440) and was conducted

according to the Declaration of Helsinki.

2.2 | Experimental procedure

Participants underwent an fMRI session, which was divided into an

initial task-free fMRI (i.e. resting-state fMRI) sub-session and a subse-

quent task-based fMRI session. The results from the fMRI session

have been reported previously (Voigt et al., 2019). Because the task-

based session succeeded the resting-state MRI session, BOLD signals

during the resting state session could not have been modulated by

the task (Tambini, Ketz, & Davachi, 2009). The full study protocol of

the experiment is outlined in further detail in our previous publication

(Voigt et al., 2019), but all relevant sections are reported again below.

2.2.1 | Task-free fMRI session

Participants rested while fixating a central black crosshair (i.e. eyes-

open resting-state protocol). Whole-brain images were acquired on a

3 T Siemens MAGNETOM scanner (Erlangen, Germany) with a stan-

dard 20-channel head coil (38 axial slices; time of repetition,

TR = 2,200 ms; echo time, TE = 30 ms, resolution 3 × 3 × 4 mm with

a 1 mm gap). During a total acquisition time of 8.12 min, 220 volumes

were acquired for each participant using a single-shot gradient-echo

echo-planar imaging (EPI) sequence. In addition, a high-resolution

T1-weighted magnetisation-prepared rapid gradient echo (MPRAGE)

covering the whole brain was acquired (TR = 1,900 ms; TE = 2.49 ms;

T1 = 900 ms; flip angle = 9�; 192 slices; field of view, FOV = 240 mm).

2.2.2 | Task-based fMRI session

In order to assess choice-induced preference changes, following the

resting-state fMRI session all participants completed two main tasks:

an incentive-compatible free choice task (Voigt et al., 2017), followed

by a choice memory task (Figure 1). Only the behavioural performance

of this session will be reported in the present study.

2.2.3 | The incentive-compatible free-choice task

The task consisted of four task phases: valuation phase 1, decision

phase 1, valuation phase 2 and decision phase 2. Neuroimaging data

were acquired during the decision phases and the second valuation

phase.

i Valuation phase 1. For each trial (292 trials in total), participants

indicated how much they were willing to pay (WTP) for a snack

food item on a continuum from $0 to $4 within 3 s. Right-handed

responses were measured by moving a graphical slider along a

continuous valuation scale. All responses were made via an MRI-

compatible fibre optic trackball that was controlled by the

Curdes' Current Designs 932 interface (www.curdes.com).

ii Decision phase 1. A maximum of 80 ‘hard’ and 40 ‘easy’ choice

pairs were created, based on the responses of the valuation

phase 1, by pairing either items with highly similar (hard) valua-

tions or dissimilar (easy) valuations, respectively. Half of the hard

and easy choice pairs (60 total trials) were shown in a pseudo-

randomised order, requiring participants to make binary decisions

for the item they preferred within a 3 s response window. Partici-

pants pressed either the left or right button of a trackball devise

to select the choice option that was presented on the left or right

of a central fixation cross.

iii Valuation phase 2. This task phase was identical to the first valua-

tion phase. Participants were instructed that the purpose was not

to probe their memory of the first valuation, but to provide

another, independent valuation.

iv Decision phase 2. This task phase was identical to the first deci-

sion phase except that the remaining half of 60 choice pairs were

presented. This allowed us to use the first and second valuations

for these items as a control sequence (valuation–valuation–

F IGURE 1 The incentivised free-choice task consisted of four consecutive phases (adopted from Voigt et al., 2017): valuation phase 1,
decision phase 1, valuation phase 2 and decision phase 2. This task was followed by a choice memory task
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choice), assessing changes in valuation that were attributable to

regression-to-the-mean effects (Chen & Risen, 2010).

2.2.4 | The choice memory task

Participants were presented with the 240 snack food items sequen-

tially and indicated for each whether they remembered having previ-

ously chosen or rejected it. Critically, participants were asked to

distinguish whether they were absolutely certain (options: Chose! or

Rejected!; trials labelled ‘remembered’), or whether they felt that they

were guessing (Chose? and Rejected?; trials labelled ‘guessed’) their

response.

2.3 | Behavioural data analyses

2.3.1 | Linear mixed effect modelling of
behavioural data

Choice-induced preference change effects were assessed via linear

mixed effects modelling using the lme4 package (Bates, Mächler,

Bolker, & Walker, 2015) in R. The WTP change scores for each indi-

vidual item were computed by subtracting an item's first WTP values

from its second WTP values. Mean-corrected WTP values were used

for this subtraction in order to eliminate any variability in WTP indica-

tions that were not related to the experimental manipulations. These

values were obtained by subtracting the average bid for the respec-

tive participant's session from the raw score of each single trial (Voigt

et al., 2017).

As choice-induced preference change effects can only be

expected for hard decisions (e.g., Izuma et al., 2010; Salti et al., 2014;

Sharot, De Martino, & Dolan, 2009; Voigt et al., 2019), the key ana-

lyses were conducted for hard decision trials only. The final model

was established via backwards elimination of variables by comparing

the full starting model to alternatives models based on significant

changes in their Bayesian information criterion (BIC) and log-likeli-

hood ratio testing. The Satterthwaite degrees of freedom approxima-

tion was used to compute p-values.

2.3.2 | Behavioural outcome measures

To quantify individual differences in choice-induced preference

changes, a rejection bias, choosing bias and preference consistency mea-

sure were computed for each participant.

2.3.3 | Rejection bias

The rejection bias reflects the degree to which rejection of an item

induced a decrease in preferences. The rejection bias was computed

by subtracting the (mean-corrected) valuation change (i.e. first WTP

values minus second WTP values) following rejection during a hard

choice obtained in the experimental control sequence (valuation–valua-

tion–choice) from the (mean-corrected) valuation differential in the

intervention sequence (valuation–choice–valuation). Only remembered

items were considered, given that reliable choice-induced preference

change effects were only found for those items (Chammat et al., 2017;

Salti et al., 2014; Voigt et al., 2017). The final scores were multiplied by

−1 to ease interpretation, meaning that higher rejection bias scores cor-

responded to a higher impact of rejection on preference decreases.

2.3.4 | Choosing bias

The choosing bias reflects the extent to which choices induced an

increase in preferences. The choosing bias was computed by sub-

tracting the valuation change (i.e. mean-corrected first WTP values

minus second WTP values for hard choices) following choosing an

item during a hard choice obtained in the experimental control

sequence (valuation–valuation–choice) from the valuation differential

in the intervention sequence (valuation–choice–valuation). Again, only

remembered items were considered. Higher choosing scores cor-

responded to a higher impact of choosing on preference increases.

2.3.5 | Preference consistency

In addition to the specific biases, a preference consistency measure

was derived, which was not biased by an interspersed choice. The pref-

erence consistency score was computed for each participant by calcu-

lating the Pearson's correlation coefficient between the WTP values of

the first valuation and second valuation in the valuation–valuation–

choice condition, because in this condition, the WTP assessments were

not biased by a nested choice. As such, this measure indicated the reli-

ability of WTP values for the two subsequent time points.

2.4 | Resting-state fMRI data analysis

2.4.1 | Pre-processing

Functional images were preprocessed using SPM12. The preprocessing

steps consisted of slice time correction, realignment, spatial segmentation

and normalisation to the standard EPI template of the Montreal Neurologi-

cal Institute (MNI), and spatial smoothing using a Gaussian kernel of 8 mm

FWHM. None of the participants had head motion exceeding 3 mm.

2.4.2 | Region of interest (ROI) selection and time
series extraction

Four ROIs were identified as key nodes for effective connectivity

analysis, which were based on convergent findings from previous neu-

roimaging studies investigating the neural correlates of choice-induced
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preference changes (Chammat et al., 2017; Izuma et al., 2010; Voigt et

al., 2019). The identified neural network comprised of the ACC, the

vmPFC, the left dlPFC and left hippocampus (Figure 2a). The MNI coordi-

nates for these regions were based on the functional neuroimaging group

findings from the task-based fMRI session with the same participants

(Voigt et al., 2019). Specifically, the MNI coordinates for the ACC were

identified from the peak voxel activation associated with hard versus easy

choices (i.e. decision conflict; MNI −6 26 4), the MNI coordinates for the

vmPFC were identified from the peak voxel activation associated with the

representation of subjective monetary value (MNI 3 50 −4), the MNI coor-

dinates for the left dlPFC were identified from the peak voxel activation

associated with preference changes during the process of making hard

choices (MNI −24 5 47) and, finally, the MNI coordinates for the left hippo-

campus were the identified from peak voxel activation associated with

memory-dependent preference changes at the time of re-evaluation (MNI

−24 −28 −16).

To extract BOLD fMRI time series corresponding to the aforemen-

tioned ROIs (Figure 2b), the pre-processed data were used to establish

the residuals of a General Linear Model (GLM). Six head motion param-

eters and WM/CSF signals were added to the GLM as nuisance regres-

sors. Finally, we selected the MNI coordinates as the centre of a 6-mm

sphere to compute the principal eigenvariate and to correct for con-

founds. As the hippocampus is an anatomically small area relative to

the other regions, ROI masks for the hippocampus were created by

using a sphere with 6 mm radius around their reported peak voxel acti-

vation (in combination with anatomical para- and hippocampal masks

from the AAL atlas to ensure that all voxels within the created sphere

were within the hippocampal formation). Figure 2a illustrates the loca-

tion of the four nodes with the corresponding time series.

2.5 | Spectral dynamic causal modelling

The spDCM analyses were performed using the functions of DCM12

(revision 7196) as implemented in SPM12. In order to address our

main hypotheses, we focused on spDCM analyses that assessed how

F IGURE 2 (a) The four nodes used in the spectral dynamic causal modelling (spDCM) analyses. The time series from four region of interests
(ROIs) were used to invert the spDCMs with the fully connected intrinsic architecture. (b) The time series of the ROIs are shown for a typical
subject. (c) The initial model assumed a fully connected intrinsic architecture, comprising of each node's self-inhibition (AI) and connectivity
among each node (AE) (i.e. 4

2 = 16 parameter model). For abbreviations and MNI coordinates of the ROIs of the spDCM refer to text
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changes in effective connectivity in the proposed choice-induced

preference formation network were modulated by individuals' (a)

rejection bias (RB), (b) choosing bias (CB) and preference consis-

tency (PC).

2.5.1 | First-level spDCM analysis

At the first-level, a fully connected model was created for each partici-

pant (i.e. 42 = 16 connectivity parameters, including four inhibitory

self-connections) (Figure 2c). Next, we inverted (i.e. estimated) the

DCMs using spectral DCM, which fits the complex cross-spectral den-

sity using a parameterised power-law model of endogenous neuronal

fluctuations (Razi et al., 2015). This analysis provides measures of

causal interactions between regions, as well as the amplitude of

endogenous neuronal fluctuations within each region. Model inver-

sion was based on a variational Laplace procedure (Friston, Mattout,

Trujillo-Barreto, Ashburner, & Penny, 2007). This Bayesian inference

method uses Free Energy as a proxy for (log) model evidence, while

optimising the posterior density under a Laplace approximation of

model parameters. After the full spDCM for each participant was esti-

mated, we employed a network discovery procedure using Bayesian

model reduction (Friston & Penny, 2011) to find the best model that

explained the data.

2.5.2 | Second-level spDCM analyses

To characterise how group differences in neural circuitry were modu-

lated by RB, CB and PC, hierarchical models over the parameters were

specified within a hierarchical Parametric Empirical (PEB) framework

for DCM (Friston et al., 2016).

2.5.3 | Model 1: Effective connectivity of
rejection bias

To investigate the effect of RB on the intrinsic effective connectivity

of the preference formation network, the following hierarchical model

was estimated within a PEB framework:

DCM = b0 + b1RB + b2CB + e

RB was modelled as a main regressor of interest, whereas CB was

modelled as regressors of no interests.

2.5.4 | Model 2: Effective connectivity of
choosing bias

Model 2 was designed to assess how choosing bias, controlling for an

individual's rejection bias, affected the neural circuity of the food

choice network. CB was modelled as a main regressor of interest,

whereas RB was modelled as regressors of no interests.

DCM = b0 + b1CB + b2RB + e

2.5.5 | Model 3: Effective connectivity of
preference consistency

Finally, individuals' preference consistency scores were regressed on

the dynamic causal models of each individual's preference formation

network. As behavioural analyses have showed that an individual's

bias is independent of their choosing or rejection bias (see Results),

these scores were not included (see Supporting Information for the

description and outcome of Model 4, which includes these as regres-

sors of no interest).

DCM = b0 + b1PC + e

All behavioural parameters were mean-centred to enable that the

intercept of each model was interpretable as the mean connectivity.

We only report effects (i.e. changes in directed connectivity) that have

a posterior probability >0.95. In order to determine the robustness of

observed effect sizes, leave-one-out cross-validation was performed.

This assesses predictive validity of each model by measuring signifi-

cant relationships between the model's predictions and

observed data.

3 | RESULTS

3.1 | Behavioural results

3.1.1 | Choice-induced preference change effect

Behavioural results revealed a bidirectional memory-depended

choice-induced preference change effect (Figure 3a). Choosing

between equally valued options increased subsequent WTP values

(β = .26, SE = 0.10, p < .05) and rejecting decreased subsequent WTP

values (β = −.17, SE = 0.08, p < .05). No choice-induced preference

effects were observed for easy decisions (i.e. deciding between differ-

ently valued items) or when past choice outcomes were guessed or

forgotten. Details of these group-level results are reported in a previ-

ous article (Voigt et al., 2019).

3.1.2 | Choosing bias and rejection bias

The degree to which choosing and rejecting shaped preferences for

remembered choice outcomes varied considerably across individuals

(Figure 3b). Fifty-five percent of participants showed an increase of

preferences for items that they remembered to have chosen. This bias

corresponded to an average increase of $0.26 (SD = $0.17; ranging

from $0.03 to $0.52) in the items' WTP bidding scores. The remaining

45% of participants expressed a choosing bias smaller than zero, for

which preferences decreased on average $-0.27 (SD = $0.31; ranging

from $−0.002 to −$0.86).
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Rejecting an item decreased its subsequent value by $0.36 on

average (SD = $0.19, ranging from $0.01 to $0.83) in 73% of partici-

pants. Twenty-seven percent expressed a rejection bias in the oppo-

site direction and their preferences increased, on average by = $0.49

(SD = $0.17, ranging from $0.04 to $0.61). In accordance with previ-

ous reports (e.g., Salti et al., 2014; Voigt et al., 2017), the effect of

rejecting an item's WTP value was nominally larger than the effect of

choosing. This difference was, however, not significant (t[21] =

.93, p = .36).

3.1.3 | Preference consistency

There was a strong preference consistency between the two valuation

stages of the control sequence in which choice did not bias individ-

uals' WTP scores (M = 0.71, SD = 0.22; ranging from 0.12 to 0.95).

This finding is consistent with previous reports in which incentive-

compatible WTP measures were established as reliable preference

assessments (e.g., Voigt et al., 2017, Supplementary Information).

There was no significant association between individuals' preference

consistency and rejection bias scores (Pearson's r = .30, p = .18) or

choosing bias scores (Pearson's r = .16, p = .47; Figure 3c).

3.2 | Spectral dynamic causal modelling results

On the subject-level, time-series from ROIs associated with the pref-

erence formation network were selected and used to first define and

estimate a fully connected DCM for each participant and condition

using Variational Laplace (Friston et al., 2007; Figure 1). The average

predicted variance by each individuals' final reduced model was very

high (M = 96.64, SD = 3.70, range = 83.97–99.31), indicating great

model convergence (Figure 4 for further diagnostics). Individual con-

nectivity strengths (i.e. first level DCMs) and common connectivity

across subjects are presented in Figure SI1 and Figure SI2 in

Supporting Information, respectively.

F IGURE 3 (a) The memory-depended, bidirectional choice-induced preference effect. The change in WTP of the intervention sequence,
valuation–choice–valuation (turquoise), is contrasted to the WTP change of the control sequence valuation–valuation–choice (blue) (Voigt et
al., 2019). (b) The rejecting bias (blue) and choosing bias (purple) for each of all participants. (c) Pearson's bivariate correlations revealed no
significant relationship among rejection bias (RB), choosing bias (CB) or preference consistency (PC)

F IGURE 4 First level DCM model convergence statistics indicating good model convergence. (First) Predicted variance explained for each
individual were above the minimum threshold of 10% (M = 96.63; SD = 3.70). (Second) The largest absolute parameter estimate did not fall below
the typical connection strength of 1/8 Hz (M = 1.32; SD = 0.33) (Third). The effective number of parameters are reported in terms of divergence
between the posterior and prior densities over parameters (M = 234.95; SD = 62.71. (Fourth) Posterior correlations among all parameters were
low, indicating identifiable parameters. All post-hoc diagnostic statistics were obtained via spm_dcm_fmri_check (Zeidman et al., 2019)
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3.2.1 | Effective connectivity of rejection bias

Individuals with a higher rejection bias showed a decrease in the excit-

atory connectivity from ACC to vmPFC (−0.77 Hz, 95% CI [−1.21,

−0.33]) and left hippocampus (−0.32 Hz, 95% CI [−0.74, −0.01]),

respectively. The excitatory connectivity from the left dlPFC to

vmPFC was also reduced in individuals with an increased rejection

bias (−0.43 Hz, 95% CI [−0.86, −0.01]). These individuals further

showed a higher self-inhibition of ACC (1.07 Hz, 95% CI [0.63, 1.51])

and left hippocampus (0.65 Hz, 95% CI [0.21, 1.09]) and a lower self-

inhibition of vmPFC (−0.33 Hz, 95% CI [−0.75, 0.09]). Results are

summarised in Table 1 and Figure 5a. Leave-one-out cross-validation

revealed that these effects sizes were large enough to predict group

effects with an out-of-sample estimate (r = .34, p = .04).

3.2.2 | Effective connectivity of choosing bias

Similar to the rejection bias, a higher choosing bias was associated

with decreased excitatory connectivity between left dlPFC and

vmPFC, although to a lesser extent (−0.25 Hz, 95% CI [0.15, −0.66]).

In terms of self-connections, there was a lower disinhibition of left

dlPFC (−0.34 Hz, 95% CI [0.08, −0.78]) and higher disinhibition of the

left hippocampus (−0.27 Hz, 95% CI [0.18, −0.71]) in individuals with

a higher choosing bias. Results are summarised in Table 2 and

Figure 5b. Leave-one-out cross-validation revealed that these effects

sizes were not large enough to predict group effects with an out-of-

sample estimate (r = .76, p = .86).

3.2.3 | Effective connectivity of preference
consistency

Results for preference consistency approximated a reversed effect in

comparison to rejection and choosing bias. Specifically, the excitatory

projections from ACC to vmPFC (0.80 Hz, 95% CI [0.58, 1.02] and left

hippocampus (0.17 Hz, 95%CI [−0.05, 0.38]) were increased in indi-

viduals with a higher preference consistency. Further, the excitatory

influence of left hippocampus on the vmPFC was enhanced in individ-

uals with a higher preference consistency (0.39 Hz, 95% CI [0.20,

0.62]). The self-inhibition of ACC (−0.63 Hz, 95% CI [−0.84, −0.47])

and left hippocampus (−0.34 Hz, 95% CI [−0.51, −0.17]) decreased

with a higher preference consistency. Results are summarised in

Table 3 and Figure 5c. Supplementary analyses investigating prefer-

ence consistency whilst explicitly controlling for preference changes

revealed near-identical results. However, in addition to the results

original results, a higher dlPFC-vmPFC effective connectivity was

found (Figure SI4, Table SI1). Leave-one-out cross-validation revealed

that these effects sizes were large enough to predict group effects

with an out-of-sample estimate (r = .29, p = .04).

4 | DISCUSSION

In utilising recent advances in modelling the endogenous low-fre-

quency fluctuations in the rsfMRI BOLD signal (Friston et al., 2014;

TABLE 1 Effective connectivity of rejection bias

Connectivity

RB

relationship

Effect size in Hz

(95% CI)

Excitation ACC ! vmPFC − −0.77 [−1.21, −0.33]

dlPFC ! vmPFC − −0.43 [−0.86, −0.01]

ACC ! Hippo − −0.32 [−0.74, 0.10]

Self-inhibition ACC + 1.07 [0.63, 1.51]

vmPFC − −0.33 [−0.75, 0.09]

Hippo + 0.65 [0.21, 1.09]

Abbreviations: ACC, anterior cingulate cortex; dlPFC, dorsal-lateral pre-

frontal cortex; Hippo, Hippocampus; RB, Rejection bias; vmPFC,

ventro-medial prefrontal cortex.

F IGURE 5 Spectral dynamic causal modelling results. Green/red arrows indicate a positive/negative relationship with the respective
behavioural measure. Plus/negative sign indicates excitation/inhibition of connection. CB, choosing bias; PC, preference consistency; RB,
rejection bias
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Park et al., 2018), the present study is the first to reveal the underly-

ing causal network dynamics associated with individuals' preference

formation and stability scores. We recently provided evidence that

choice-induced preference change effects can already be explained by

activation during the choice phase itself, that is, before an active,

explicit re-evaluation takes place. Our resting-state analysis approach

allowed us to look back even further and explore factors that might

moderate this effect before participants even made choices: We

hypothesised that the initial intrinsic causal dynamics in the very same

neural network that were associated with task-related effects during

choice might already explain parts of the effect's variance. In other

words, we aimed to understand whether the connectivity dynamics

might play a role in participants' susceptibility for expressing such

biases (or preference stability) before being in a decision situation.

Our results show that individuals with higher choice-induced prefer-

ence changes had a diminished influence of areas involved in cogni-

tive control (i.e. left dlPFC and ACC) on regions computing decision

value and recalling memory of past choices (i.e. vmPFC and left hippo-

campus). The network dynamics showed a reversed dynamic in sce-

narios in which the decision context did not prompt a change in

preferences, but individuals relied on previously learned values (i.e.

preference consistency). These results indicate that the strength of

the expression of choice-induced preference change and preference

consistency effects was partly determined by inter-individual differ-

ences in the brain's intrinsic effective connectivity architecture. More-

over, our results point to a model of preference formation in which

the dynamic communication among ACC, left dlPFC, vmPFC, and left

hippocampus at rest might be linked to an individual's ability to flexi-

bly adapt their preferences depending on the decision context.

Regarding the proposed mechanisms, we note, however, that the

relationship between task-based and resting-state effective connec-

tivity and its behavioural correlates remains elusive. The inter-individ-

ual variations in effective connectivity do not necessarily overlap with

the inter-individual variations in effective connectivity during task

performance (Fox & Raichle, 2007; Jung et al., 2018). In other words,

our study cannot determine conclusively whether the individual dif-

ferences in preference formation associated with the resting-state

network dynamics are identical to the network dynamics that would

have been observed during task. At this stage, only one study has

investigated the relationship between effective connectivity for rest-

ing and task states and their relation to behaviour (Jung et al., 2018).

The authors found that when task-related increases in connectivity

correlated with the intrinsic connectivity in their memory task, or

intrinsic connectivity increased during resting state, processing speed

was slower. This means that when effective connectivity for the task

was less similar to connectivity at rest, participants showed faster

response times. Future studies are needed to address whether the

resting-state dynamics revealed in our study are also engaged during

task performance and how potential deviations might translate to dif-

ferences in behavioural performance.

Our behavioural results show that choosing and rejection biases

were not expressed evenly across participants. Whereas the majority

of our participants expressed decreasing preferences after rejecting

items, only slightly more than half of the sample showed preference

increases after choosing items. These individual differences are in line

with recent research reporting stronger average rejection bias effects

compared to choosing bias effects (e.g., Izuma et al., 2010; Salti et

al., 2014; Sharot et al., 2009; Voigt et al., 2017). One explanation for

why rejecting (‘losing’) an option might have a larger impact than

choosing (‘gaining’) an option on future preferences might be related

to loss aversion, the effect of losses looming larger than gains (Kahne-

man & Tversky, 1979). It is therefore possible that rejecting/losing is

more emotionally salient than choosing/gaining (Sokol-Hessner & Rut-

ledge, 2019), leading to stronger memory traces of the former when

updating preferences. Regarding preference consistency, we repli-

cated findings of our earlier study showing that individuals showed a

high consistency in their preferences, confirming that incentive-com-

patible preference (i.e. WTP) assessments were reliable (Voigt et

al., 2017). To explain the behavioural differences in choice biases and

preference consistency, we assumed that these did not simply reflect

noise, but that they might (at least to some extent) be meaningful.

Our spDCM analyses explored whether and how the intrinsic causal

dynamics of the neural network underlying adaptive preference

changes during hard decisions (i.e. ACC, left dlPFC, vmPFC and left

hippocampus; Chammat et al., 2017; Izuma et al., 2010; Voigt et

al., 2019), and we found that it explained a significant fraction of the

observed behavioural variability.

Our spDCM results showed that the smaller the impact of brain

areas involved in the computation of self-controlled choice (i.e. ACC

and left dlPFC) on regions associated with the computation and repre-

sentation of preferences (i.e. vmPFC and left hippocampus), the higher

the choice-induced preference change effect was. Specifically, there

was reduced resting-state excitatory connectivity from left dlPFC to

TABLE 2 Effective connectivity of choosing bias

Connection

CB

relationship

Effect size in

Hz (95% CI)

Excitation dlPFC ! vmPFC − −0.25 [0.15, −0.66]

Self-inhibition dlPFC − −0.34 [0.08, −0.78]

Hippo + −0.27 [0.18, −0.71]

Abbreviations: CB, Choosing bias; dlPFC, dorsal-lateral prefrontal cortex;

Hippo, hippocampus; vmPFC, ventro-medial prefrontal cortex.

TABLE 3 Effective connectivity of preference consistency

Connection
PC
relationship

Effect size in
Hz (95% CI)

Excitation ACC ! vmPFC + 0.80 [0.58, 1.02]

ACC ! Hippo + 0.17 [−0.05, 0.38]

Hippo ! vmPFC + 0.39 [0.20, 0.62]

Self-inhibition ACC − −0.63 [−0.84, −0.47]

Hippo − −0.34 [−0.51, −0.17]

Abbreviations: ACC, anterior cingulate cortex; Hippo, hippocampus; PC,

preference consistency; vmPFC, ventro-medial prefrontal cortex.

VOIGT ET AL. 3085



vmPFC as well as from ACC to vmPFC and left hippocampus in indi-

viduals with a higher rejection bias as well as in individuals with a

higher choosing biases. A weaker resting-state excitation from the

dlPFC to the vmPFC might facilitate the rapid generation of new

choice-related value signals, instead of incorporating these with previ-

ous value representations in the vmPFC, which might explain the

association with higher rejection biases. Our task-based fMRI results

are in support of this conjuncture, showing that left dlPFC was associ-

ated with rapid preference changes during the process of deciding

between equally valued alternatives (Voigt et al., 2019), whereby

vmPFC activity has been associated with continuous encoding of

value representations after the choice (Izuma et al., 2010; Sharot et

al., 2009). Other studies revealed that vmPFC and dlPFC compute

value (Hare, Hakimi, & Rangel, 2014; Rudorf & Hare, 2014); however,

value computation was lagged in vmPFC compared to dlPFC

(Baumgartner, Knoch, Hotz, Eisenegger, & Fehr, 2011; Hare,

Camerer, & Rangel, 2009). Given dlPFC's rich reciprocal connections

to motor areas, this area has been shown to be involved in generating

motoric response components related to the choice (MacDonald,

Cohen, Stenger, & Carter, 2000). Previous studies further linked

dlPFC-vmPFC effective connectivity to controlled, regulated decision-

making (Hare et al., 2009) and context-specific attribute valuation

(Rudorf & Hare, 2014), in which dlPFC modulates the value-computa-

tions in vmPFC by integrating choice attributes according to current

behavioural goals. In the context of our results, this could mean that

lower excitation between these regions could give dlPFC a stronger

weight when executing the decision and hence a stronger role in con-

structing the new value during choice. Higher excitation between left

dlPFC and vmPFC, on the other hand, might lead to more closely inte-

grated updating, with an additional strong weight on the previous

value representation, leading to smaller updates (and hence smaller

choice biases). In support, we found that the excitation at rest

between left dlPFC and vmPFC was less reduced for choosing biases

as opposed to rejection biases, which might be a possible baseline

neuronal correlate of the finding that behaviourally the rejection bias

was on average more pronounced than the choosing bias in our and

previous studies. Supplementary analyses investigating preference

consistency whilst controlling for preference changes revealed near-

identical results. The only difference was that in addition, a higher

dlPFC-vmPFC effective connectivity was found, which further

strengthens this conclusion.

In scenarios in which individuals were required to access

memorised item values, our results revealed a stronger resting-state

excitation of the left hippocampus on vmPFC. Previous studies

showed that left hippocampus activity (Chammat et al., 2017; Voigt et

al., 2019), as well as its functional (Ross, LoPresti, Schon, &

Stern, 2013; Wimmer, Li, Gorgolewski, & Poldrack, 2018) and effec-

tive connectivity (Gluth, Sommer, Rieskamp, & Büchel, 2015) to the

vmPFC, play an essential role in memory-guided decision-making. The

hippocampus itself is a core area involved in encoding and retrieval of

memories (Bird & Burgess, 2008). Although, as previously noted, we

cannot directly elucidate whether these task-based results directly

translate to our findings of resting-state networks, it is possible that

the increased resting-state excitation from the left hippocampus on

vmPFC might facilitate the integration of memory on value computa-

tion processes, explaining the improved ability for remembering and

accessing memories of past value-based choices. Our results further

reveal that preference consistency was associated with an increased

resting-state excitation from ACC to vmPFC as well as left hippocam-

pus, which is the opposite direction to rejection biases. As this trian-

gular resting-state network (i.e. ACC, vmPFC and left hippocampus)

was found for rejection biases and for preference consistency, it might

reflect a facilitation top-down cognitive control mechanism that medi-

ates the impact of irrational contextual biases. If preference consis-

tency is required, this mechanism is enhanced (as reflected by

increased excitatory connectivity within the network), enabling the

individual to eliminate the impact of contextual biases. However, in

the case of difficult decision scenarios, this mechanism is tuned down

(as indicated by decreased excitation within the triangular network),

which might assist the individual to use choice history biases for

updating value, which could in turn enable the individual to facilitate

the decision process (Voigt et al., 2019).

Taken together, our study is the first to reveal how resting-state

dynamics within the preference formation network relate to prefer-

ence formation and stability. Preference changes and stability relate

to opposite resting-state network dynamics of areas involved in mem-

ory and value processing. Of course, our results do not directly speak

to the specific roles of these regions in the cognitive processes of

interest. However, it is reasonable to speculate that brain areas

involved in memory and value processing need to work in tandem to

enable the individual to change (if a change in preferences is indicated

as in hard decision scenarios) or to remain consistent (if no change in

cognitive representation is required, e.g., in two subsequent valuation

assessments). For hard decisions, preferences might be updated online

as early as during the process of making decisions (Voigt et al., 2019),

and these online updates, which become behaviourally relevant in the

long-term, are also more efficiently stored in episodic memory. While

our study is only the first step in deriving an understanding of this

interplay of brain regions at rest and how this might translate into the

expression of the behavioural effects, complementary future task-

based studies will be required to examine how the revealed resting-

state network dynamics are related to network dynamics during task

performance.
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