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Abstract
We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO

E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited

by thymoquinone with no residual ATPase activity. The process of inhibition was fully revers-

ible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thy-

moquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and

non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a

molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial

and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

Introduction
ATP synthase is the principal energy generating enzyme in all organisms from bacteria to ver-
tebrates through oxidative phosphorylation or photophosphorylation. This is a highly con-
served enzyme with two sectors F1 and Fo. F1 is composed of α3ß3γδε and Fo of ab2c10–14. ATP
hydrolysis and synthesis occur on three catalytic sites in the F1 sector, whereas proton move-
ment occurs through the membrane embedded Fo [1,2]. A transmembrane proton gradient al-
lows the flow of protons through the Fo sector. Proton gradient-driven rotation of γ-subunit
causes conformational changes in the α/β subunits which in turn results in ATP synthesis or
hydrolysis depending on the direction of the proton gradient. This terminal enzyme of oxida-
tive phosphorylation is also the smallest known biological nanomotor [3,4,5,6].

ATP synthase is an important molecular drug target for many diseases, like cancer, tubercu-
losis, obesity, and microbial infections [7,8,9]. The presence of ectopic ATP synthase in partic-
ular can make it an attractive drug target in a number of cellular processes. For example,
inhibition of ATP synthase has been suggested as an anti-angiogenic therapeutic to block
tumor angiogenesis [10] and a decrease in lung carcinoma was observed by inhibiting ectopic
ATP synthase [11]. Blocking the synthesis of ATP by targeting subunit c of ATP synthase is
being used to treat tuberculosis [12]. Another drug, Bz-423 that induces apoptosis in lymphoid
cells, has been found to inhibit the mitochondrial ATP synthase [13]. Also, it is been shown
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that ectopic ATP synthase may be a suitable molecular target for inhibiting HIV-1 proliferation
in vivo [14].

A variety of natural and modified plant based molecules are known to induce either
complete or partial inhibition of ATP synthase with potential resulting health benefits
[7,15,16,17,18]. Some health benefits of fruits, vegetables, and other phytochemicals are cred-
ited to the polyphenols present in them. These phytochemicals are known for their antioxi-
dants, chemopreventive, chemotherapeutic, and anti-microbial properties [7,19,20,21,22,23].
Some dietary polyphenolic compounds were shown to block the action of cell constituents that
promote growth of tumor cells by binding to the multiple molecular targets in the body, includ-
ing ATP synthase [19,24].

Thymoquinone (TQ) is a major phytochemical compound found in the medicinal plant Ni-
gella sativa an annual flowering plant in the family Ranunculaceae (Fig 1). Thymoquinone has
been tested against many cancer cell lines and has exhibited potent inhibitory effects on lung,
prostate, and breast cancer studies [25,26,27]. It is also known to have anti-oxidant, anti-in-
flammatory and anti-diabetic, antibacterial, antifungal, antitussive, and neuroprotective effects
[28,29,30,31,32]. Although TQ is being used for centuries and has been observed to be effective
against many disease conditions but its mode of action or molecular target is not known. Previ-
ous studies suggested that the dietary benefits of several polyphenolic compounds could be as-
sociated with their interaction with ATP synthase. For this purpose, we studied the inhibitory
effects of thymoquinone on F1Fo ATP synthase and the growth of E. coli cells. Our results show
that thymoquinone strongly inhibits ATPase activity and bacterial growth, thereby suggesting
that the beneficial effect of thymoquinone as antitumor or antimicrobial agent may in part be
linked to its inhibition of ATP synthase.

Materials and Methods

Thymoquinone
Thymoquinone with 99% purity (274666-5G) was purchased from Sigma-Aldrich Chemical Com-
pany. TQ is unstable in aqueous solution and is light sensitive therefore it was dissolved in DMSO

Fig 1. Structures of thymoquinone (TQ).

doi:10.1371/journal.pone.0127802.g001
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and kept in dark [33]. In ATPase assays the maximal volume of DMSO used was 3.64%. In this
study and earlier we noted that up to 40% DMSO by itself has no effect on membrane bound F1Fo
of E. coliATP synthase [34]. All other chemicals used in this study were ultra-pure analytical grade
purchased either from Sigma—Aldrich Chemical Company or Fisher Scientific Company.

Growth in limiting glucose medium; preparation of E. coli F1Fo

membranes; purification of E. coli F1; assay of ATPase activity of
membranes or purified F1

Purified F1 or membrane bound F1Fo was isolated from the wild-type pBWU13.4/DK8 E. coli
strain [35]. Growth yield on limiting glucose (fermentable carbon source, 3–5 mM) and succi-
nate (non-fermentable carbon source) measuring oxidative phosphorylation was measured as
in [36]. In this procedure both wild-type with ATPase gene and null strain (pUC118) in ab-
sence of ATPase gene are grown on limiting glucose and succinate. Growth on succinate re-
quire ATP synthase so in absence ATPase gene null strain is expected to grow between 40–50%
which is due to glycolytic pathway.

F1 Fo bound E. colimembranes were prepared as in [37,38]. This procedure involves three
washes of the initial membrane pellets. Wash one in a buffer containing 50 mM TES pH 7.0,
15% glycerol, 40 mM 6-aminohexanoic acid, 5 mM p-aminobenzamidine is followed by two
subsequent washes in the buffer containing 5 mM TES pH 7.0, 15% glycerol, 40 mM 6-amino-
hexanoic acid, 5 mM p-aminobenzamidine, 0.5 mMDTT, 0.5 mM EDTA. Membranes were
washed twice more by resuspension and ultracentrifugation in 50 mM TrisSO4 pH 8.0, 2.5 mM
MgSO4 before the experiments. F1 was purified as in [39]. F1 samples (100μl) were passed twice
through 1-ml centrifuge columns (Sephadex G-50) equilibrated in 50mM TrisSO4 pH 8.0 to re-
move catalytic site bound-nucleotide. ATPase activity was measured in 1 ml ATPase cocktail
containing 10 mMNaATP, 4 mMMgCl2, 50 mM TrisSO4, with pH 8.5 at 37°C. Reactions
were initiated by the addition of 1 ml ATPase cocktail to purified F1 or membranes and
stopped by the addition of SDS to 3.3% final concentration. Liberated Pi was measured as in
[40]. For membranes (30–50 μg protein), reaction times were 20–30 min. For purified F1
(20 μg protein), reaction time was 5–10 min. All reactions were found to be linear with respect
to time and protein concentration. SDS-gel electrophoresis (10% acrylamide) and immuno-
blotting with rabbit polyclonal anti-F1-α and anti-F1-β antibodies was used to check the integ-
rity and purity of protein (Fig 2) [41,42,43].

Thymoquinone induced inhibition of ATPase activity
Membranes or purified F1 (0.2–1.0 mg/ml) were preincubated with varied concentrations of thymo-
quinone for 1hour at room temperature, in 50 mMTrisSO4, pH 8.0 buffer. The volume of TQ
added was in the range of 0–20μl in a total reaction volume of 550μl. Then 1 ml ATPase cocktail
was added to measure the ATPase activity. Inhibitory exponential decay curves were generated
using SigmaPlot 10.0. The best fit line and IC50 value for the curve was obtained using a single 3 pa-
rameter model. Statistical significance of the relationship between TQ concentration and enzyme
activity was analyzed by linear regression. The range of absolute specific activity for membrane
bound F1Fo was 13–20 and for purified F1 was 18–28 μmol/min/mg at 30°C for different prepara-
tions. These absolute values were used as 100% benchmark to calculate the relative ATPase activity.

Reversal from thymoquinone induced inhibition of ATPase activity
Reversibility was measured by dilution of the membranes and by passing the inhibited purified
F1 through 1ml centrifuge columns. In reversibility by dilution membranes were reacted with
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150 μM concentration of thymoquinone for 60 min at room temperature. Then 50 mM
TrisSO4 pH 8.0 buffer was added to reduce thymoquinone concentration to non-inhibitory lev-
els and incubation continued for an additional 60 min at room temperature before ATPase
assay. For purified F1, TQ inhibited enzyme was twice passed through 1 ml centrifuge columns
before measuring the ATPase activity. Control samples without TQ were incubated for the
same time periods as the samples with TQ.

Results

Strong inhibition of E. colimembrane bound F1Fo or purified F1 ATPase
activity by TQ
Previously several phytochemicals were shown to bind and inhibit E. coli ATP synthase
[18,19,24,34]. Recently there has been increased interest in TQ regarding its possible therapeu-
tic utility for multiple diseases, particularly as an anticancer or antimicrobial agent. For this

Fig 2. Immunoblotting of wild-type purified F1 andmembrane bound F1Fo ATP synthase with anti-F1-α antibody.Wild-type purified F1 (0.4μg) and two
membrane bound F1Fo preparations (4μg) were run on 10% SDS-polyacrylamide gel with membranes from null mutants DK8 and pUC118/DK8 controls.
Protein bands were transferred to nitrocellulose and immunoblotted using anti-F1-α antibody.

doi:10.1371/journal.pone.0127802.g002

Inhibition of E. coli ATP Synthase by Thymoquinone

PLOS ONE | DOI:10.1371/journal.pone.0127802 May 21, 2015 4 / 12



reason we studied TQ induced inhibition of ATP synthase. TQ caused complete inhibition of
purified F1 or membrane bound F1Fo ATP synthase with ~0.3% residual activity (Fig 3). As
shown in Fig 3 there is a significant inverse relationship between TQ concentration and en-
zyme activity (r = 0.9355; P<0.0001). Maximal inhibition of 99.70% was observed at 150 μM
concentration. Each data point represents an average of four experiments, using two indepen-
dent membrane preparations. The standard error for mean inhibition at varied TQ concentra-
tions did not overlap for virtually all estimates. The maximal standard error of estimates at
95 μMTQ is ±10.5148.

Reversal of ATPase activity of purified F1 or membrane enzyme from
thymoquinone inhibition
TQ induced inhibition of ATP synthase was found to be reversible. Both purified F1 or mem-
branes regained activity after dilution of TQ or removal by passing through centrifuge columns
(Fig 4). Again the inhibitory concentrations were determined based on data from Fig 3. The in-
hibited samples were passed twice through 1 ml centrifuge columns and ATPase activity was

Fig 3. Complete inhibition of ATPase activity of membrane-bound ATP synthase by TQ.Membranes
were preincubated for 60 min at 23°C with varied concentration of TQ and then 1 ml of ATPase cocktail was
added and activity measured. For details are given in Materials and Methods section. Each data point
represents average of four experiments done in duplicate tubes, using two independent membrane F1Fo

preparations. Thus, mean given with standard error for each inhibitory concentration is N4 where N
represents the sample size.

doi:10.1371/journal.pone.0127802.g003
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measured. It was found that activity was restored to the near normal level as in absence of the
TQ (Fig 4). Reversibility data indicates that the observed inhibition is not the result of protein
denaturation and that the enzyme retains the ability to reactivate upon release of the com-
pound by dilution or removal through centrifuge columns. Such results indicate non-covalent
interaction between TQ and ATP synthase.

As shown in Fig 3 for membrane bound F1Fo ATP synthase the mean maximum inhibition
achieved at 150 μMTQ was 96.2% with standard error ± 2.65, while the mean maximum rever-
sal was 84.67 with standard error ± 7.31. For purified F1 the mean maximum inhibition
achieved at 150 μMTQ was 95.67% with standard error ± 2.33, while the mean maximum re-
versal was 89.67 with standard error ± 7.86.

Inhibition of growth on limiting glucose and succinate medium in
presence of TQ
As shown in Table 1 TQ potently inhibited the growth of wild-type E. coli pBWU13.4/DK8
strain in limiting glucose (containing Ile and Val) and succinate (non-fermentable carbon
source). 45 to 48% reduction in wild-type growth was observed in presence of 150 μMTQ. No

Fig 4. Reversal of TQ induced inhibition by dilution and passing through centrifuge columns.Membrane bound ATP synthase (Mbr) or purified F1 (F1)
was inhibited with inhibitory concentration of TQ shown in the figure for 60 min under conditions as described in Fig 2. (A), TrisSO4 pH 8.0 buffer was added
to bring back the TQ concentration to non-inhibitory level and activity was measured. (B) Purified F1 was incubated with inhibitory concentrations of TQ for 60
min under conditions as described in Fig 3. Then the inhibited samples were passed twice through 1 ml centrifuge columns and ATPase activity
was measured.

doi:10.1371/journal.pone.0127802.g004
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growth inhibition of null strain (pUC118/DK8) by TQ was observed as this strain lacks ATP
synthase. Limiting glucose assay contained 3mM glucose and OD595 was measured till no fur-
ther growth occurred which takes about 20 hr time. Growth on succinate plate may take up to
72 hr.

Discussion
There is growing interest in the use of natural compounds as antimicrobial and antitumor
agents individually or in combination with other such molecules [21,44,45]. Several phyto-
chemicals have been shown to have dietary benefits and are potential anti-tumor or antimicro-
bial agents [28,31,46]. For centuries TQ has been used as a natural therapeutic product [47,48].
The goal of this study was to determine if the antimicrobial or anticancer properties of TQ may
be associated with the inhibition of ATP synthase. Therefore, we examined TQ effects on
ATPase activity and on growth inhibition profiles of E. coli to examine the potential of ATP
synthase as a molecular target.

TQ fully inhibited both purified F1 and membrane bound F1Fo ATP synthase with IC50

~36.95μM (Fig 3). This is in agreement with multiple previous studies where it was shown that
the inhibitory profiles of both F1Fo membrane preparations as well as isolated purified F1 are
the same [24,49,50,51,52,53]. It is interesting to note that in a previous study simple phenolic
compounds, dihydrothymoquinone, hydroquinone, resorcinol, or catechol, structurally related
to TQ, resulted in partial or incomplete inhibition of ATP synthase [54]. Resveratrol, piceatan-
nol, and quercetin inhibited ATP synthase X-ray crystal structures show that the polyphenol
binding pocket for resveratrol, piceatannol, and quercetin is contributed by residues from α, β,
and γ-subunits [19]. Moreover, several polyphenolic compounds structurally related to TQ
(Fig 1) were previously shown to bind to the polyphenol binding pocket [24,34,54] identified
by Walker and colleagues [19]. Therefore, there is a high possibility that the-CH3 group of TQ
forms hydrophobic non-polar interactions with γGln274, γThr-277, βAla-264, βVal-265, γAla-
270, γThr-273, γGlu-278, αGly-282, or αGlu-284 residues. TQ bound X-ray structure of ATP
synthase and or mutagenic analysis of above residue should be able to confirm the involvement
of above residues in TQ binding. TQ induced inhibition was also found to be completely re-
versible. Passage through centrifuge columns dissociates TQ from the inhibited F1 and resulted
in restored enzyme function. Dilution of purified F1 or membrane lowers inhibitor concentra-
tion and allowed recovery of ATPase activity. These results indicate that the interaction be-
tween inhibitor and the enzyme is non-covalent, as has been observed in previous studies
examining the inhibition of ATP synthase by several polyphenolic molecules [24,34,54].

Table 1. Thymoquinone (TQ) induced growth inhibition of Escherichia coli cells at 150 μM concentration.

Presence/ absence of TQ aGrowth on limiting glucose (%) bGrowth on succinate (%) F1-ATPase residual activity (%)
CWild-type 100 100 100
dNull 44±8 4±3 N/A

Wild-type +TQ 55±10 52±9 0

Null + TQ 45±6 6±4 N/A

aGrowth yield on limiting glucose was measured as OD595 after ~20 hours growth at 37°C.
b Growth on succinate medium after 72 hours was determined by OD595
c,dWild-type (pBWU13.4/DK8) contains UNC+ gene encoding ATP synthase
dNull, (pUC118/DK8) is UNC-.

All experiments were done at least three times at 37°C. Individual experimental points are average of duplicate assays.

doi:10.1371/journal.pone.0127802.t001
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Black seeds (Nigella sativa) have been used for centuries in traditional medicine to treat
many disease conditions, including bronchial asthma, dysentery, infections, and hypertension
[47]. So far a number of components from black seed such as thymohydroquinone, dithymo-
quinone, thymol, and TQ have been isolated and characterized. TQ has been shown to have an-
tioxidant, anti-inflammatory, and chemopreventive properties [27,28,55]. As an anticancer
agent TQ extracted from black seed was shown to act against lung, breast, and melanoma can-
cer cells [27,28]. It was also shown that TQ potently inhibited pathogenic and nonpathogenic
bacterial growth and was suggested that TQ inhibits biofilm formation. However, the mecha-
nism by which TQ affects biofilm formation is not known [31,56]. It is quite possible that bio-
film production is affected through the inhibition of the Fo part of ATP synthase, as was the
case with Streptococcus mutans, where inhibition of ATP synthase of S.mutans inhibited bio-
film formation and acid production [23]. Also, TQ was shown to have very selective antimicro-
bial activity and showed about a four-fold enhanced synergistic effect in combination with
other antibiotic drugs against oral pathogens [30]. TQ was found to inhibit the migration of
human and mouse metastatic melanoma cells [46]. TQ was also shown to have a role in de-
creasing hepatic gluconeogenesis and in normalization of the dysregulated insulin production
observed in HAART treated patients [29,57].

TQ induced growth inhibition of E. coli cells corroborated the F1-ATPase inhibition by TQ
(Table 1). Null strain (pUC118/DK8) typically shows 40–50% growth in comparison wild-
type, (pBWU13.4/DK8). Null strain growth uses glycolysis to generate ATP, whereas the wild-
type grew using glycolysis, TCA, and oxidative phosphorylation. TQ reduced wild-type growth
between 45 to 48% in limiting glucose and succinate media respectively, but had nearly no ef-
fect on the null strain. Growth retention in both wild-type and null cells can be attributed to
ATP production through the glycolytic pathway. Moreover, loss of growth in wild-type results
from loss of oxidative phosphorylation through inhibition of ATP synthesis by TQ. Growth in-
hibition of wild-type in succinate as the sole carbon source in the presence of TQ supported
the inhibition of F1-ATPase activity. These results demonstrate that TQ induced inhibition of
microbial growth is through the inhibition of ATP synthase.

Our results suggest that dietary benefits of TQ in part may be linked to its inhibitory effects
on ATP synthase. Inhibition of bacterial cell growth in the presence of phytochemicals like bio-
flavonoids [18,24,34], and TQ from this study suggests ATP synthase as a potential drug target
for dietary bioflavonoids and TQ. TQ has been reported to be effective in multiple disease con-
ditions, suggesting TQ as a potential therapeutic molecule for those diseases. Mode of action
though is not clear in many cases. Based on abrogation of ATPase activity and growth inhibi-
tion assays we conclude that the dietary benefits of TQ may be related at least in part to its ac-
tion through the binding and inhibition of ATP synthase.
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