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Background: Appropriate reference genes are critical to accurately quantifying relative
gene expression in research and clinical applications. Numerous efforts have been made
to select the most stable reference gene(s), but a consensus has yet to be achieved. In
this report, we propose an in silico reference gene validation method, iRGvalid, that can
be used as a universal tool to validate the reference genes recommended from different
resources so as to identify the best ones without a need for any wet lab validation tests.

Methods: iRGvalid takes advantage of high throughput gene expression data and is
built on a double-normalization strategy. First, the expression level of each individual
gene is normalized against the total gene expression level of each sample, followed
by a target gene normalization to the candidate reference gene(s). Linear regression
analysis is then performed between the pre- and post- normalized target gene across
the whole sample set to evaluate the stability of the reference gene(s), which is positively
associated with the Pearson correlation coefficient, Rt. The higher the Rt value, the
more stable the reference gene. We applied iRGvalid to 14 candidate reference genes
to validate and identify the most stable reference genes in four cancer types: lung
adenocarcinoma, breast cancer, colon adenocarcinoma, and nasopharyngeal cancer.
The stability of the reference gene is evaluated both individually and in groups of all
possible combinations.

Results: Highly stable reference genes resulted in high Rt values regardless of the target
gene used. The highest stability was achieved with a specific combination of 3 to 6
reference genes. A few genes were among the best reference genes across the cancer
types studied here.

Conclusion: iRGvalid provides an easy and robust method to validate and identify the
most stable reference gene or genes from a pool of candidate reference genes. The
inclusivity of large expression data sets as well as the direct comparison of candidate
reference genes makes it possible to identify reference genes with universal quality.
This method can be used in any other gene expression studies when large cohorts of
expression data are available.

Keywords: reference gene, gene expression, cancer, reference gene selection, reference gene validation, in silico
reference gene selection, in silico reference gene validation

Abbreviations: BRCA, breast invasive carcinoma; COAD, colon adenocarcinoma; iRGselect, in Silico reference gene
validation and selection; LUAD, lung adenocarcinoma; NPC, nasopharyngeal carcinoma; TCGA, the Cancer Genome Atlas;
TPM, Transcripts Per Million.

Frontiers in Genetics | www.frontiersin.org 1 August 2021 | Volume 12 | Article 716653

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.716653
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.716653
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.716653&domain=pdf&date_stamp=2021-08-04
https://www.frontiersin.org/articles/10.3389/fgene.2021.716653/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-716653 July 29, 2021 Time: 16:50 # 2

Zhu et al. In silico Reference Gene Validation

INTRODUCTION

As an important biomarker source, gene expression has been
one of the major focuses of cancer genome studies. Appropriate
reference genes are critical to accurately quantifying relative
expression levels. Numerous studies have been performed to
identify the most stable reference genes in different tissues or cells
(Vandesompele et al., 2002; Andersen et al., 2004; Pfaffl et al.,
2004), but a consensus has yet to be achieved (Wang et al., 2012;
Jacob et al., 2013). The problem becomes even more prominent
in cancer studies due to intrinsically unstable gene expression and
the heterogeneity of cancer tissues.

Aggregated and publicly available data generated from whole
genome expression studies have been used as a resource to search
for more widely and stably expressed reference genes. However,
there is still no consensus among researchers. Popovici et al.
(2009) used microarray data from 10 cohorts of breast cancer
studies and identified the 50 most stably expressed genes. Tilli
et al. (2016) later obtained 10 novel reference genes from 6
breast cancer cell lines using both transcriptome and microarray
data from several databases. The two sets of reference genes
were not agreeable. In 2019, two groups independently published
their work on the selection of pan-cancer reference genes using
RNA-Seq data from hundreds of cancerous and matched normal
tissue samples across all cancer types, primarily in the Cancer
Genome Atlas (TCGA) database (Jo et al., 2019; Krasnov et al.,
2019). One group (Jo et al., 2019) found 32 novel genes that had
the best stabilities, among which HNRNPL, PCBP1, and RER1
were claimed as the most suitable reference genes for all cancer
types, whereas another group (Krasnov et al., 2019) analyzed
12 cancer types, ranked the most stably expressed genes, and
recommended SF3A1, CIAO1, and SFRS4 as the best reference
genes for cancer studies.

The lack of consistency in reference gene recommendations
puts the burden on researchers to pick the right reference
gene(s) for their studies and makes it difficult to compare
the results of different studies. Thus, researchers often have to
perform wet lab validation tests to identify the best reference
genes among recommended ones, which is time-consuming
and labor-intensive. Moreover, the limited number of samples
and lack of absolute quantification can cause some biases. By
taking advantage of RNA-Seq data from the TCGA database, we
developed an easy and robust in silico reference gene validation
method, iRGvalid, and used this method to validate the reference
genes recommended by two studies mentioned above (Jo et al.,
2019; Krasnov et al., 2019) as well as those selected in-house from
the TCGA database. The results presented here demonstrate that
this method could be a useful tool for researchers to evaluate
candidate reference genes and identify the most suitable ones for
their studies without a wet lab validation.

MATERIALS AND EQUIPMENT

TCGA Data Collection
Gene expression datasets of 33 TCGA projects were
downloaded using the TCGABiolinks (2.14.1) package

(Colaprico et al., 2016). The workflow type parameter was
set to “HTSeq – FPKM” in “TCGABiolinks” “GDCquery”
function. For the sample selection, the TCGA barcodes were
parsed. The tumor samples without matched normal samples
were filtered out, and the paired normal and tumor tissue
samples were selected. Additionally, 110 nasopharyngeal
carcinoma (NPC) samples with raw RNA-Seq data (NCBI
SRA study accession number, SRP115011) were used as
an independent validation cohort (Leinonen et al., 2011;
Zhang et al., 2017).

Nasopharyngeal Carcinoma (NPC) Data
Collection
A cohort of NPC RNA-Seq data was obtained from Zhang
et al. (2017) (SRP11501). The sequencing adapters and low-
quality reads were first filtered out from raw sequencing
reads using FastP software (Chen et al., 2018). Clean reads
were aligned to the reference genome (hg38, Ensembl gene
annotation, Version 99) with STAR aligner (Dobin et al., 2013).
Only unique reads were kept. Gene expression levels were
quantified with SALMON software (Patro et al., 2017) based on
alignment results.

Methods
The iRGvalid workflow is shown in Figure 1. A candidate
reference gene pool selected from literatures and in-house
studies is established first. A set of expression data that represents
a study population is then chosen from a database. The
measurement of expression level is converted from FPKM
(Fragments Per Kilobase of transcript per Million) to TPM
(Transcripts Per Million), followed by log2 transformation.
Next, the target gene is normalized against a single or various
combinations of candidate reference genes using the formula
Log2(TPM + 1)target-Log2(TPM + 1)ref for a single reference
gene and the arithmetic mean of Log2(TPM + 1)ref for
a combinations of reference genes. Finally, the Pearson
correlation coefficient Rt is calculated via regression analysis
of the pre- and post- normalized target gene by R package
“stats,” where “t” stands for target gene. The higher the Rt,
the more stable and better the reference gene or combined
reference genes in regards to the target gene. For a perfect
reference gene(s), Rt should be close to 1 and target
insensitive. In the following section, we provide examples
that apply iRGvalid to validate candidate reference genes for
lung adenocarcinoma (LUAD), breast invasive carcinoma
(BRCA), colon adenocarcinoma (COAD), and nasopharyngeal
carcinoma (NPC).

Interactive Online Application
An online application was created using the Rstudio’s Shiny
framework. It can be found at https://wlake.shinyapps.io/
iRGvalid/ where users can retrieve the analysis results reported
in this manuscript, and perform iRGvalid analysis by providing a
specific target gene and reference gene(s). Further instruction is
provided in the Supplementary Document.
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FIGURE 1 | iRGvalid workflow.

RESULTS

Select Candidate Reference Genes
The candidate reference genes used in this study include genes
recommended by two published studies (Jo et al., 2019; Krasnov
et al., 2019; Table 1), and ones selected in-house. The in-
house reference gene selection was based on a gene expression
variation analysis of 22 cancer types with 679 paired cancerous
and normal sample sets from 33 TCGA projects. The final
ranking of the 10 best candidate reference genes (Table 1, right
column) were selected based on the following criteria: (1) The
coefficient variance (CV) was less than 8% in both normal
and cancerous tissues of all cancer types; (2) The expression
level was high, i.e., Log2(TPM) > 7; (3) The difference in
expression levels between normal and cancerous tissues was
minimal, i.e., |Log2(TPMcancer)-Log2(TPMnormal)| < 0.1; and
(4) The correlation coefficient between any pair of candidate
reference genes was less than 0.5. As shown in Table 1, there
was no consensus among the reference genes identified in any
of the studies, even though they were all obtained primarily
using the TCGA databases. To perform the reference gene
validation with iRGvalid, we selected a candidate reference gene
pool consisting of six highly recommended reference genes
from the aforementioned studies: HNRNPL, PCBP1, RER1,
SF3A1, CIAO1, and SFRS4, and six genes from this study:
CNBP, MYL12B, UBC, TMBIMG, RPS27, and EIF1 (Table 1
in bold). We also added a commonly used reference gene
in cancer studies, GAPDH, and a randomly selected non-
reference gene, HEY1, for a total of 14 pan-cancer candidate
reference genes.

Validate Single Candidate Reference
Genes
We first validated the candidate reference genes individually in
LUAD using HLA-A as a target gene. HLA-A is known to play
an important role in cancer development and immune response
(Garrido, 2019). A total of 57 pairs of LUAD and corresponding
normal tissue RNA-Seq data were obtained from TCGA. The
TPM of the HLA-A gene and 14 reference genes were calculated
for each of the 57 pairs of samples. By definition, the reference
gene cannot have any correlation with the target gene. As shown
in Figure 2A, none of the candidate reference genes had any
significant correlation with HLA-A. HLA-A was normalized for
each of the candidate reference genes, and Rt between the
pre- and post- normalization Log (TPMHLA−A + 1) values
was obtained for each candidate reference gene (Figure 2B).
TMBIM6 and CIAO1 had the highest Rt values (0.911 and
0.903, respectively). We then repeated the validation analysis with
other two target genes, HIF1A and ERBB3, both of which have
expressions associated with lung cancer progress and prognosis
(Chen et al., 2007; Yang et al., 2016). The Rt of the three target
genes normalized with each of the candidate reference genes is
given in Table 2. TMBIM6, CIAO1, and CNBP had the top 3
Rt values for all three target genes. We also averaged the Rt
values of the three target genes for each individual candidate
reference gene. TMBIM6, CIAO1, and CNBP had the highest
Rt values and thus can be considered as the three best single
reference genes in LUAD.

We next validated the 14 candidate reference genes in
121 pairs of BRCA samples and 41 pairs of COAD samples,
respectively. Three clinically significant and highly studied genes
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TABLE 1 | Candidate reference genes from different studies.

Rank Krasnov et al. Jo et al. This study

1 MBTPS1 HNRNPL CNBP

2 HNRNPA0 PCBP1 RPL36AL

3 SF3A1 PFDN1 EIF1

4 SF3B2 RER1 MYL12B

5 GGNBP2 RNF10 UBC

6 HNRNPUL2 SNX17 RPS12

7 SFRS3 EMC4 TMBIM6

8 RTF1 FAM32A RPS27

9 CIAO1 HNRNPC RPL11

10 TM9SF3 IST1 RNF167

11 PRPF8 MRPL43

12 GTF2F1

13 SFRS4

14 SARS

15 ARIH1

16 TEX261

17 VCP

18 XRCC5

19 VPS4A

20 KPNA6

iRGvalid were performed for the bolded ones.

were selected as target genes for each cancer type: HERE2,
MYBL2, and MMP11 for BRCA (Paik et al., 2004) and NOTCH2,
BRCA1, and PDC for COAD (Abdul Aziz et al., 2016). None of
the target genes had significant correlations with the candidate

reference genes (data not shown). As shown in Table 2, all three
target genes in breast cancer had a high correlation between pre-
and post-normalization, indicating that all of the reference genes
examined here had good stability across breast cancerous tissues
and their paired normal tissues. The top average Rt values for the
three target genes in both BRCA and COAD are also TMBIM6,
CIAO1, and CNBP (Table 2).

To illustrate the robustness of the iRGvalid method, we further
tested the candidate reference genes on an independent cohort
of NPC RNA-Seq data. This set of data was not part of the
TCGA data used to obtain the candidate reference genes. We
again selected three target genes that play important roles in
NPC progress and prognosis:ANXA1, FNDC3B, andHLA-A. The
best single reference genes for the NPC set were CIAO1, EIF1,
and CNBP.

GADPH and HEY1 had the worst Rt values in all target genes
and cancer types examined.

Validate the Combined Reference Genes
The 12 target genes in their corresponding cancer types described
above were normalized with all possible combinations of 2 to
14 reference genes. Rt was calculated for each normalization
and ranked for each target gene. The average Rt value of each
number of combined reference genes was calculated and plotted
for each target gene. As shown in Figure 3, by increasing
the number of reference genes, the average Rt became higher,
indicating an improved overall reference gene stability. However,
average Rt could undermine some highly stable reference gene
combinations. To test this idea, the best Rt for each number
of combined reference genes was evaluated. The results clearly

FIGURE 2 | (A) Correlation between HLA-A and reference gene expression. (B) Correlation between pre- and post-normalized HLA-A gene expression.
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TABLE 2 | Target gene Rt and average Rt of each single reference gene in four types of cancers.

Cancer types Candidate Reference Gene

HNRNPL PCBP1 RER1 SF3A1 CIAO1 SRSF4 CNBP MYL12B UBC TMBIM6 RPS27 EIF1 GAPDH HEY1

LUAD HLA-A 0.886 0.738 0.879 0.822 0.903 0.846 0.889 0.775 0.809 0.911 0.757 0.767 0.436 0.473

ERBB3 0.894 0.828 0.906 0.833 0.924 0.87 0.929 0.879 0.86 0.931 0.815 0.859 0.557 0.650

HIF1A 0.904 0.849 0.911 0.876 0.931 0.898 0.928 0.912 0.868 0.955 0.84 0.885 0.19 0.798

Average 0.895 0.805 0.899 0.844 0.919 0.871 0.915 0.855 0.846 0.932 0.804 0.837 0.394 0.640

BRCA HER2 0.887 0.800 0.895 0.820 0.920 0.864 0.937 0.871 0.841 0.930 0.806 0.842 0.473 0.654

MYBL2 0.991 0.974 0.989 0.979 0.992 0.982 0.987 0.983 0.979 0.992 0.964 0.979 0.908 0.940

MMP11 0.992 0.983 0.993 0.986 0.994 0.988 0.992 0.987 0.986 0.995 0.976 0.986 0.935 0.947

Average 0.957 0.919 0.959 0.928 0.969 0.945 0.972 0.947 0.935 0.972 0.915 0.936 0.772 0.847

COAD NOTCH2 0.850 0.794 0.886 0.752 0.885 0.783 0.904 0.892 0.774 0.913 0.868 0.840 0.465 0.586

BRCA1 0.925 0.860 0.916 0.865 0.942 0.884 0.934 0.931 0.877 0.954 0.858 0.900 0.276 0.768

PDC 0.811 0.896 0.785 0.795 0.834 0.705 0.860 0.810 0.803 0.882 0.770 0.816 0.520 0.481

Average 0.862 0.850 0.862 0.804 0.887 0.791 0.899 0.878 0.818 0.916 0.832 0.852 0.420 0.612

NPC HLA-A 0.881 0.789 0.845 0.688 0.903 0.871 0.893 0.852 0.83 0.814 0.870 0.887 0.780 0.604

ANXA1 0.968 0.945 0.963 0.910 0.972 0.964 0.966 0.964 0.958 0.943 0.960 0.969 0.888 0.836

FNDC3B 0.869 0.800 0.869 0.585 0.897 0.878 0.877 0.878 0.849 0.816 0.887 0.889 0.575 0.515

Average 0.906 0.845 0.892 0.728 0.924 0.904 0.912 0.898 0.879 0.858 0.906 0.915 0.748 0.652

FIGURE 3 | The average correlation coefficient (Rt) for each number of combined reference genes. The target gene was normalized to the corresponding number of
combined reference genes, and the average Rt was calculated and plotted.

demonstrated that more was not necessarily better (Figure 4).
The best Rt was obtained with 3 to 6 combined reference genes.
Once the Rt reached its peak, adding more reference genes made
the combined reference genes less stable. This was true for all four
cancer types examined.

The Best Combination of Reference
Genes
The best combined reference genes for each target gene in each
cancer type are listed in Table 3. In the BRCA and NPC data

sets, all three target genes had the same best reference gene
combination: CIAO1, CNBP, HNRNPL, RER1, and SRSF4 in
BRCA, and EIF1, MYL12B, RER1, RPS27, and SRSF4 in NPC.
In LUAD, two target genes had the same set of best reference
gene combination: CIAO1, CNBP, RER1, SRSF4, and TMBIM6.
More variations were seen in COAD. Three reference genes,
RER1, RPS27, and SRSF4, were present in almost all of the
best combinations.

While Table 3 lists one best combination of reference genes
for each target gene, some target genes had more than one set
of best combined reference genes. Notably, MMP11 had a total
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FIGURE 4 | The best correlation coefficient (Rt) for each number of combined reference genes. The target gene was normalized to the corresponding number of
combined reference genes, and the best Rt was identified from the various combinations and plotted.

TABLE 3 | Rt of the best combined reference genes for each target gene in each cancer type.

Cancer Type Target Gene Rt Number of combined reference genes Panel

BRCA HER2 0.989 5 CIAO1, CNBP, HNRNPL, RER1, SRSF4

MMP11 0.997 3 to 5 CIAO1, CNBP, HNRNPL, RER1, SRSF4

MYBL2 0.995 5 CIAO1, CNBP, HNRNPL, RER1, SRSF4

COAD BRCA1 0.967 3 CIAO1, HNRNPL, RER1

PDC 0.958 4 PCBP1, RER1, RPS27, UBC

NOTCH2 0.959 6 CIAO1, CNBP, HNRNPL, MYL12B, RER1, UBC

LUAD ERBB3 0.973 5 CIAO1, CNBP, RER1, SRSF4, TMBIM6

HIF1A 0.977 5 MYL12B, RER1, RPS27, SRSF4, TMBIM6

HLA-A 0.963 5 CIAO1, CNBP, RER1, SRSF4, TMBIM6

NPC ANXA1 0.991 5 EIF1, MYL12B, RER1, RPS27, SRSF4

FNDC3B 0.967 5 EIF1, MYL12B, RER1, RPS27, SRSF4

HLA-A 0.961 5 EIF1, MYL12B, RER1, RPS27, SRSF4

of 56 best sets of reference genes with 3 to 5 genes in each (data
not shown). Interestingly, the best set of reference genes for each
target gene was not necessarily a combination of the top single
reference genes.

DISCUSSION

In this study, we presented an in silico method, iRGvalid, that
takes advantage of massive RNA-Seq data to validate candidate
reference genes for their stability so as to identify the best ones
without needing a wet lab validation. A reference gene is solely
used for normalization in gene expression studies (Bustin et al.,
2009), and the normalization should not change the relative
relations of a gene among all of the individual samples if the
reference gene is good. The iRGvalid method is built upon

this fundamental principle. The method is straightforward and
intuitive. The Pearson correlation coefficient between the pre-
and post- normalized target gene is used to measure the stability
of a reference gene or a combination of reference genes. In this
report, we only selected three target genes in each of the cancer
types to validate the candidate reference genes. However, the
number of target genes is not limited in the iRGvalid validation
procedure. A stable reference gene generates a high correlation
coefficient and should be target insensitive. As far as we are aware,
this is the first in silico reference gene validation method that
involves the active normalization of target gene(s) in evaluating
the stability of reference gene(s). We tested the TCGA RNA-Seq
data here, but the method can be applied to any other formats of
expression data sets.

The validation results of the single versus group reference
genes demonstrated that an appropriately selected combination
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of reference genes works better than a single reference gene.
The best combination can be achieved with 3–6 genes and need
not be unique for a particular target gene. We expect that the
best combination of reference genes may not be unique for a
particular study either. Nevertheless, an ideal set of reference
genes should be stable across all samples in a cohort regardless
of the target gene selected. Our data demonstrated this principle
well in BRCA, LUAD, and NPC, but not so much in COAD. One
explanation could be that COAD had the smallest sample size in
this study: 82 compared to 111, 114, and 224 for NPC, LUAD,
and BRCA, respectively. The larger the sample size, the truer
the Pearson correlation coefficient, and the better the chance of
finding a true set of stable reference genes. The analysis can be
performed again when more COAD data becomes available. It
is also likely that the candidate reference gene pool used in this
study was not optimal for COAD.

Of the 14 candidate reference genes used in this study, 12
were selected from pan-cancer data sets and claimed to be the
best reference genes across all types of cancers in each specific
study. However, our validation using iRGvalid showed that the
best universal reference genes are RER1, RPS27, and SRSF4. Each
of these three genes came from a different candidate reference
gene source, demonstrating the importance and necessity of
uniting the candidate reference gene pools and validating them
under the same condition, i.e., using iRGvalid. The current
claim of pan-cancer reference genes may be preemptive, though.
While more data will better validate the stability of the reference
genes, it is also entirely likely that the best reference genes
are cancer-type specific due to different cancer etiologies across
organs and tissues.

The HEY1 gene encodes a helix-loop-helix transcription
factor. It interacts with other transcription factors and regulates a
variety of cellular activities (Weber et al., 2014). Deregulation and
aberrant expression of HEY1 have been documented in diverse
malignancies, including colorectal cancer. It by no means should
be a reference gene. In this study, it performed poorly when
judged by the Rt values of target genes. Unsurprisingly, GAPDH
is also not a good reference gene. Although it has been one of the
most frequently used reference genes, GAPDH has shown to be
less stably expressed than many other commonly used reference
genes in cancers (Jacob et al., 2013; Jo et al., 2019; Krasnov et al.,
2019). The presence of GAPDH pseudogenes could potentially
complicate any quantifications (Sun et al., 2012).

iRGvalid allows one to systematically evaluate and select the
best reference genes when there are large cohorts of expression
data. We have provided several examples of using the method.
By no means was our intention to choose reference genes for
any particular cancer studied in this report. Instead, we have
illustrated an effective method for doing so. iRGvalid can also
help to check whether the reference gene(s) used are stable against
newly identified, differentially expressed genes. The effectiveness
of the method depends on the quality of candidate reference
genes and the validation sample size. It is less effective when the
validation sample size is small, which is a major limitation of
the method. With the increasing size of the RNA-Seq database,
the stable and optimal number of reference genes can be more
reliably determined in any type of cancer or tissue using iRGvalid.
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