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Most current gene coexpression databases support the analysis for linear correlation of gene pairs, but not nonlinear correlation
of them, which hinders precisely evaluating the gene-gene coexpression strengths. Here, we report a new database, MIrExpress,
which takes advantage of the information theory, as well as the Pearson linear correlationmethod, tomeasure the linear correlation,
nonlinear correlation, and their hybrid of cell-specific gene coexpressions in immune cells. For a given gene pair or probe set pair
input by web users, both mutual information (MI) and Pearson correlation coefficient (𝑟) are calculated, and several corresponding
values are reported to reflect their coexpression correlation nature, includingMI and 𝑟 values, their respective rank orderings, their
rank comparison, and their hybrid correlation value. Furthermore, for a given gene, the top 10most relevant genes to it are displayed
with the MI, 𝑟, or their hybrid perspective, respectively. Currently, the database totally includes 16 human cell groups, involving
20,283 human genes.The expression data and the calculated correlation results from the database are interactively accessible on the
web page and can be implemented for other related applications and researches.

1. Introduction

In recent years, the advance of microarray technology has
provided amounts of information for us to observe the
expression levels of genes together. Based on the increasing
availability of gene expression data, public gene expres-
sion repositories were successfully constructed, such as
the GEO [1] database and ArrayExpress [2]. These supply
more opportunities to study gene expressional correlation
(gene coexpression). Gene coexpression may reveal general
functional tasks and regulatory mechanisms; moreover, it
may identify novel genes to be involved in certain diseases.
In addition, in the related fields of biology, many studies
illustrated that the dependencies of gene expression can
reflect the normal and dysfunctional biological processes and
furthermore make us understand the underlying molecular
mechanisms [3, 4]. It is difficult, however, for biologists
without bioinformatics background to retrieve the gene

coexpression information effectively and efficiently. For such,
there in the field of plant biology are many coexpression
databases, such as PLANEX [5], ATTED-II [6], Cop [7],
TEGD [8], and PlantCART [9], the information in which
was derived from large-scale gene expression data. Besides
those, several coexpression databases peculiarly formammals
recently have been established andwidely used by researchers
and have thus accelerated the coexpression analysis process in
the field of bioinformatics. COXPRESdb [10] was constructed
with gene expression data from 63 human tissues and it
utilizes the correlation rank to compare the coexpression
strengths among multiple species. The database GeneFriends
[11] adopted the same approach as COXPRESdb to con-
struct coexpressionmaps based on transcriptome sequencing
(RNA-seq) gene data instead of microarray gene data. HGCA
[12] was constructed based on gene expression data from
about two thousand samples of various cells and tissues.
The overall correlation in gene expression was identified in
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this database across multiple tissues, or mixed tissues and
cells, without meeting the necessity of coexpression in the
same cell type. Immuco [13] is a cell-specific database in
which gene expression values in each cell type across various
conditions are provided, as well as gene coexpression and
correlation information. Though these databases have been
constructed successfully and are able to meet users’ needs
to some extent, they capture only the linear coexpression
relationships between different genes by the Pearson cor-
relation coefficient (value 𝑟). In fact, 𝑟 with small absolute
value of two genes does not necessarily mean that the two
genes are independent, since nonlinear relationship may
exist in the gene coexpression data [14]. In particular, two
variables with a vanishing correlation coefficient may be
heavily dependent, as illustrated in the later example in this
paper (see Figure 2). The mutual information (MI) is able to
measure the mutual dependence of two random variables,
particularly in terms of positive, negative, and nonlinear
correlations [15], and in comparison with Pearson correlation
coefficient, it may provide a criterion better andmore general
to investigate gene coexpression. And in recent years, the
mutual information is regarded as a common way to detect
dependencies between different genes. Steuer et al. initiated
the mutual information approach [16] for one specific gene
dataset to analyze intergene dependencies.

Bioconductor is an open source software which provides
the key function in Affymetrix array analysis in the R
software environment (http://www.r-project.org/) [17], and
Meyer et al. [18] developed a package “minet” in Biocon-
ductor, in which a powerful tool is provided to calculate
the mutual information between different gene pairs. Based
on a publicly available dataset Saccharomyces cerevisiae [19]
including 2,467 genes, Butte and Kohane applied the mutual
information to measure gene-gene interaction and obtained
the result that the mode of MI was about 0.7. Consequently,
22 relevance networks were constructed when the threshold
of information (TMI)was set to 1.3 [20].With gene expression
data from various environments, the mutual information
approach [21] was employed to reconstruct regulatory net-
works of relationships.

In spite of the many researches and applications men-
tioned above about mutual information for gene correla-
tions, few publications related to mutual information focus
on immune cells. Since the mutual information should be
calculated for each gene thoroughly connected to every other
gene for correlation [20], the amount of correlation coeffi-
cients is tremendous and grows significantly with increasing
number of genes.Thus, most publications applied the mutual
information algorithms to measure coexpression on public
sample datasets or testing datasets that includes much fewer
genes than initial datasets.

In order to investigate the expression correlation of
immune genes, we constructed a database namedMIrExpress
(http://wjx.bjfu.edu.cn/MIrExpress) including 41,477 probe
sets for 20,283 human genes with each of the 16 cell types in
immune cells to reflect the linear and nonlinear correlation
of cell-specific gene coexpression profiles across multiple
experimental conditions, aided by both Pearson correlation
coefficient (𝑟) and mutual information value (MI). Through

a web interface, the database exhibits the scatter plot of the
cooccurrence signal values of any two probe pairs to illustrate
the extent and strength of correlation. For a given gene pair,
not only is the MI given through the web interface, but its
rank expressed in percentage is also presented in all the
gene pairs, that is, about 8.6 × 108 pairs for each dataset.
Besides, it is the same case for the Pearson correlation value
𝑟. Both the values and ranks of MI and 𝑟 are displayed and
contrasted graphically. In the querying web pages, the top 10
most relevant genes of an input gene can be listed with the
perspective of Pearson correlation, mutual information, and
their hybrid, respectively.

2. Materials and Methods

2.1. Data Preparation and Preprocessing. Gene Expres-
sion Omnibus (GEO) founded by National Center for
Biotechnology Information (NCBI) in July 2000 is the
largest public database to date for gene expression data
(http://www.ncbi.nlm.nih.gov/geo/) [22]. In this paper, the
SOFT format annotation files in GEO database were down-
loaded from the platformGPL570 for human cells. According
to the SOFT files, samples related to immune cells were
screened and sorted by cell types. Based on cell-specific
sample ID, the raw gene expression data in CEL format
files were downloaded from the GEO database using the
GEOquery package [23] in R language environment, each
expression data containing a single value describing the signal
intensity for each probe set on the array.

In order to help improve the efficiency of the data ana-
lyzing process, the functions in the packages of Bioconductor
were performed on the gene expression data. Firstly, package
“simpleaffy” was used to discard the samples with extreme
values in order to control the quality of raw data including
scale factor, background level, percentage of genes which are
called present, and 3󸀠/5󸀠 ratios as the QC metrics [24]. After
quality control, 6,909 human samples for 293 GEO series
were selected as they were done in Immuco database [13].
Secondly, in the package “affy,”MAS 5.0 algorithms including
background correction, normalization, and summary were
applied to generally process qualified gene expression data
which are allowed for comparison among the gene expression
data of samples from different experiments [25, 26]. After
that, 41,477 probe sets for human organism were retained for
later gene coexpression correlation analysis while about 15%
of the samples were discarded due to quality control.

2.2. Calculation of Pearson Correlation Coefficient. Pearson
correlation coefficient (𝑟) is a measure of the linear correla-
tion between two probe sets 𝑋 and 𝑌, which can be denoted
by 𝑟
𝑋,𝑌

and calculated as follows:
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where 𝑛 is the number of samples from different experiments
and𝑋

𝑖
and 𝑌

𝑖
are the expression profiles’ values of probe sets

𝑋 and 𝑌 in the 𝑖th sample, respectively.
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Figure 1: A scatter plot shows expression data of probe sets 𝑋 and
𝑌 for dataset [(0.1, 0.3), (0.3, 0.1), (0.5, 0.5), (0.7, 0.9), (0.9, 0.7)].
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Figure 2: A scatter plot about expression data of probe sets 𝑋 and
𝑌with fixed intervals to divide the axes into discrete bins. Dataset =
[(0.1, 0.3), (0.3, 0.9), (0.5, 0.5), (0.7, 0.1), (0.9, 0.7)].

The 𝑟 values range between −1 and +1, in which 1 implies
total positive correlation, −1 total negative correlation, and
0 no correlation between the probe set pairs. The simple
example in Figure 1 is a scatter plot about expression data
of probe sets 𝑋 and 𝑌 for a dataset, and the corresponding
Pearson correlation coefficient 𝑟 computed using (1) is 0.8. It
indicates that there is strongly linear correlation between the
probe set pairs.

2.3. Statistical Analysis about Mutual Information. The con-
cept of entropy originates in physics, whichmeasures the dis-
order of a thermodynamic systems. Shannon [27] originally
devised the entropy to study the amount of information in
a transmitted message and constructed information theory.
So far, entropy has wide applications in various fields. Based
on the theory of entropy, mutual information is applied to
measure the information contained in one probe set about
the other. If the mutual information of two probe sets is
high, it means that it is easy to predict the expression value

of one probe set according to the expression value of the
other, which indicates that there may be a close relationship
between genes. On the other hand, if the mutual information
of two probe sets is zero, it implies that the two variables (two
genes) are independent and do not correlated [14]. Based on
the entropy theory, we implemented the mutual information
approach to study gene coexpression.

According to the concept of mutual information, we
regard a probe set as a discrete random variable and calculate
the mutual information of two probe sets as the following
process [21]. Suppose that𝐴 is the value range of a probe set𝑋
and 𝐴 is divided by the subinterval set {𝐴

𝑖
}, 𝑖 = 1, 2, . . . ,𝑀,

satisfying that⋃
𝑖
{𝐴
𝑖
} = 𝐴 and that 𝐴

𝑖
∩ 𝐴
𝑘
= 0 if 𝑖 ̸= 𝑘. The

entropy𝐻(𝑋) of the probe set𝑋 can be defined as
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where probabilities 𝑝(𝐴
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calculated as
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where 𝑘
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denotes the number of gene expression data in the

subsection 𝐴
𝑖
and 𝑁 is the total number of gene expression

data for the probe set 𝑋 [16]. When the probability 𝑝(𝐴
𝑖
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) with 𝑖 ̸= 𝑗 are zero, we get

the minimum of𝐻(𝑋), zero. In contrast, if 𝑝(𝐴
𝑖
) = 1/𝑀 for

each 𝐴
𝑖
, maximum of 𝐻(𝑋) can be reached as log

2
𝑀. The

joint entropy𝐻(𝑋, 𝑌) of two probe sets𝑋 and 𝑌 is defined as
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In the above equation, 𝑘
𝑖𝑗

denotes the number of gene
expression data when 𝑋 lies in 𝐴

𝑋
and 𝑌 in 𝐵

𝑌
. If the probe

sets𝑋 and𝑌 are statistically independent, we can get the joint
entropy𝐻(𝑋, 𝑌) after factorizing the joint probabilities as the
following formula [16]:

𝐻(𝑋, 𝑌) = 𝐻 (𝑋) + 𝐻 (𝑌) . (6)

Themutual information 𝐼(𝑋, 𝑌) between the probe sets𝑋 and
𝑌 is then defined as

𝐼 (𝑋, 𝑌) = 𝐻 (𝑋) + 𝐻 (𝑌) − 𝐻 (𝑋, 𝑌) ⩾ 0. (7)

When the probe sets 𝑋 and 𝑌 are statistically independent,
the mutual information 𝐼(𝑋, 𝑌) is zero according to (6) and
(7). In sum, 𝐼(𝑋, 𝑌) can be taken as measure of correlation
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no matter whether the correlation is linear or nonlinear.
According to (2) and (3), (7) can be rewritten as
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We now use the above formula of mutual information to
estimate the value about MI for dataset 𝐴 in Figure 1. The
dataset consists of 𝑁 = 5 data points divided into 𝑀

𝑋
=

𝑀
𝑌
= 5 bins with fixed intervals and the resulted value of

mutual information 𝐼(𝑋, 𝑌) computed using (8) is 2.322.
If we change the positions of the data points in Figure 1

and rearrange them to a state as shown in Figure 2, we will
find that 𝑌 is equally dependent on 𝑋 as before, because
an occurrence of 𝑋 is equally capable of predicting the
occurrence of 𝑌 as before. That is to say, the MI remains
to be 2.322 without any change. The Pearson correlation
coefficient 𝑟, however, changes dramatically from 0.8 to 0,
which implies that 𝑋 and 𝑌 are now not linearly correlated
at all. This simple example indicates that MI can generally
measure the dependency including both the linear and
nonlinear correlation between two probe sets and overcome
the drawback of Pearson correlation that takes only the linear
correlation into account.

It is a simple approach to estimate the probabilities for
gene expression data occurrence in each interval by (3), but
it leads to overestimating the mutual information for finite-
size datasets [28]. Instead of dividing the expression data
range into equal intervals, we adopted an adaptive partition-
ing strategy to calculate mutual information between two
variables (two probe sets here) [16, 29]. Itmeans that the value
range of each probe set is divided into𝑀 discrete nonover-
lapping intervals, each containing approximately 𝑁/𝑀 data
points. The width of each interval is thus various according
to the density of data points and more occupied regions are
covered with smaller intervals. For instance, let 𝑀 = 11

and the entropy 𝐻(𝑋) and 𝐻(𝑌) in (2) can be described
as 𝐻(𝑋) = 𝐻(𝑌) = −log

2
11. Consequently, the mutual

information 𝐼(𝑋, 𝑌) between probe sets 𝑋 and 𝑌 can be
calculated as

𝐼 (𝑋, 𝑌) = 2log
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11 +
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3. Calculation

For improved measuring effect, the Pearson correlation
coefficient and mutual information can be jointly applied

to evaluate the strength of gene coexpression. The Pearson
correlation coefficient 𝑟 reflects the linear correlation between
any two genes, while the mutual information MI generally
measures the dependency of one gene on another, both
linearly and nonlinearly. But the range and the distribution
of values for these two measures are different (MI ∈ [0, +∞),
𝑟 ∈ [−1, 1]); thus it is not suitable to compare these
two measures directly to quantify the linear and nonlinear
correlation between any gene pairs [16, 30], and sowe adopted
the rank ordering of MI and 𝑟 as coexpression measure in
the MIrExpress database instead. So we need to compare
ordering ranks of MI and 𝑟 instead of their values; that is, we
need to find the ranks of MI and 𝑟 in more than 8.6 × 108
values, respectively. However, it is both space-inefficient and
time-inefficient to find the rank of a given value in that large
amount of values. In fact, ranks in percentage are sufficient
because we do not need the rank ordering information more
detailed than the percentage.

In order to get the MI rank of any gene pair, all we need
now is a vector 𝑉 = {V

𝑖
}, 𝑖 = 0, 1, . . . , 100, where V

0
is

the minimum mutual information and V
100

is the maximum
one, and the mutual information of approximately 1 percent
gene pairs resides between V

𝑖−1
and V

𝑖
, 𝑖 = 1, 2, . . . , 100.

With the vector 𝑉, we can directly search the proper interval
that a given MI resides in and thus find how many mutual
information values in percentage are smaller than this MI. It
is by this way that we reduce the memory consumption from
about 𝑂(8.6 × 108) to 𝑂(101).

It is easy for us to save the vector𝑉, but difficult to obtain
it, for we have no prior knowledge about the distribution
of the mutual information values unless we scan the whole
pairs and rearrange them.That means we have to record each
information value of all the gene pairs for later use, which
would consume large amount of memory. Fortunately we
noticed that if the expression value range is divided into 11
intervals (as we did with MIrExpress database), the mutual
information of any gene pair is between 0 and 3.5, and so
we equally divided the MI value range [0, 3.5] into 35,000
subintervals and counted the number of pairs whose mutual
information resides in a given interval. After scanning all the
gene pairs, we obtained another vector with integer values
𝑈 = {𝑢

𝑗
}, 𝑗 = 1, 2, . . . , 35000, where 𝑢

𝑗
is the number of

gene pairs whose mutual information is in the interval [(𝑢
𝑗
−

1)/10000, 𝑢
𝑗
/10000). By using this compression technique,

we reduced the memory consumption from more than
𝑂(8.6 × 10

8
) to 𝑂(35,000), yet still retaining high accuracy.

Besides the above two techniques of space-saving, we
designed highly time-efficient algorithms to accelerate the
coexpression analysis. Firstly, the initial values (expression
data) were preprocessed and only the corresponding interval
information was saved. Thus, the expression of each gene
in about 1,000 samples was designated to one of the 11
intervals and the variable values needed in (9) are well-
prepared. The second technique was constructing a table
for the (𝑘

𝑖𝑗
/𝑁)log

2
(𝑘
𝑖𝑗
/𝑁) part in (9). We noticed that the

number of different values of (𝑘
𝑖𝑗
/𝑁)log

2
(𝑘
𝑖𝑗
/𝑁) is no more

than the number of samples that is less than 2,000. And so we
saved the values in a table 𝑇 indexed by the integer value 𝑘

𝑖𝑗
,
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and thuswewere able to search the table instead of computing
the complex function.

With the vectors 𝑉, 𝑈 and the table 𝑇 well-prepared, it
was relatively easy for us to calculate theMI for any given gene
pair and its rank in all the MI values. Firstly, the expression
value pair for each sample was divided into one element of
an 11-by-11 matrix. Then, we could look up all the function
values of (𝑘

𝑖𝑗
/𝑁)log

2
(𝑘
𝑖𝑗
/𝑁) in the table 𝑇 and add them up

according to (9) to get the MI. Finally we would look up the
MI value in the vectors 𝑉 and 𝑈 to get the knowledge of
how many MI values are smaller than this one and at which
percentage this value is located.

4. Results

4.1. The Rank of MI and 𝑟. TheMIrExpress database displays
a global view of cell-specific gene expression profile across
different experiment conditions through two-dimensional
scatter plots whose axes represent the signal values of two
probe sets.The scatter plot provides database users significant
intuition about the general coexpression level of two genes.
As is mentioned above, it is not suitable for us to directly
compareMI and 𝑟 to find dependency level, linear correlation
level, and linear component of the dependency relation, since
their value ranges and distributions are widely different.
However, it is much more reasonable if we compare their
value ranks, that is, where the MI and 𝑟 are located in all
sorted MI values and 𝑟 values, respectively. For example, if
the rank of an MI is 70%, then it means that 70 percent of all
the MI values are smaller than this MI value.

We denote the rank of an MI in all the sorted MI values
by RoMI and that of 𝑟 by Ror. In immune cells, there are 4
cases for two given probe sets when we have calculated their
RoMI and Ror.

(1) Both RoMI and Ror are high. For example, the MI
and 𝑟 of probe sets ID 201577 at (Gene Symbol:
NME1) and 1053 at (Gene Symbol: RFC2) in CD4+
T cells are 0.732516 and 0.821057, respectively, and
the RoMI and Ror of these two measures are both
99%.This indicates that there exists strong linear and
nonlinear correlation and coexpressed relationship
between these two probe sets (Figure 3(a)).

(2) The RoMI is high while the Ror is low. For example,
there is strongly coexpressed relationship (total coex-
pression rate = 75.86%) between probe sets 1487 at
(Gene Symbol: ESRRA) and 203176 s at (Gene Sym-
bol: TFAM) in DC cells (dendritic cells), which
cannot be reflected through 𝑟 value (−0.000118).
If we employ MI value to measure the dependent
relationship in MIrExpress database, then the MI
is 0.59463 and the corresponding RoMI is 99%, a
much higher rank than Ror (1%), which indicates
a weak linear correlation but a strong nonlinear
correlation between the probe sets (Figure 3(b)). Take
CD4+ T cell, for instance, and there is the strong
coexpressed relationship (total coexpression rate =
95.10%) between probe sets 219123 at (Gene Symbol:
ZNF232) and 1552316 a at (Gene Symbol: GIMAP1),

which cannot be reflected by 𝑟 value (−0.006148),
either. But inquiring MIrExpress database, we get
the RoMI and Ror as 99% and 1%, respectively
(Figure 3(c)). Through these two examples we can
observe that mutual information (MI) and the rank
of it (RoMI) better interpret the coexpression rela-
tionship between probe sets than Pearson correlation
coefficient (𝑟) and the rank of it (Ror). So mutual
information provides a more reliable and reasonable
explanation of gene coexpression.

(3) Both RoMI and Ror are low. For example, the MI and
𝑟 of probe sets ID 1320 at (Gene Symbol: PTPN21)
and 1554627 a at (Gene Symbol: ASCC1) in CD4+
T cells are 0.13114 and 0.00097, respectively, and the
corresponding RoMI and Ror of these two measures
are both 1%. It indicates that both linear and nonlinear
correlation are quite weak between these probe sets
(Figure 3(d)).

(4) The RoMI is low while the Ror is high. For example,
theMI and 𝑟 of probe set ID 1553169 at (Gene Symbol:
LRRN4) and 234776 at (Gene Symbol: DMBX1) in
CD4+ T cells are 0.13189 and 0.56614, respectively,
and the corresponding RoMI and Ror are 1% and
99%, respectively (Figure 3(e)). But we notice that
the absent-absent rate (AA) is 99.64% and present-
present rate (PP) is 0.00%, which makes it seems
true that the two probe sets are strongly linear-
correlated. In fact, they are not indeed highly linear-
correlated, because a high AA together with a low
PP makes the Pearson correlation coefficient quite
great. The low RoMI is consistent with the vanishing
dependency between the two probe sets who both
have low expression level in almost all samples.

4.2. Database Contents. We built the MIrExpress database
(Browser/Server architecture) adopting Apache Tomcat as
web server and MySQL as database server, and it provides
users an easy-understanding web interface. All samples for
theMIrExpress database are based on immune cells including
16 human cell groups, and the expression data of samples
are chosen for Affymetrix Human Genome U133 plus 2.0
Array from GEO database. The web interface of MIrExpress
database mainly includes three types of pages: page for
pairwise correlation analysis (see Figure 4), page for most
related genes, and page for cell-type-based overview of rank
difference.

(1) Page for pairwise correlation analysis presents the
general expression level of any two genes specified
by users among 41,477 probe sets. Users only need
to select the cell types and input two queried genes
by symbol (e.g., DDR1 and RFC2) or probe sets (e.g.,
1007 s at and 1053 at) in the querying box and click
the submitting button to acquire the two-dimensional
scatter plot for these two genes. Meanwhile, the MI
and 𝑟, together with the corresponding RoMI and Ror
and their comparison, are displayed in the responding
page.
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Figure 3: Sample applications for gene coexpression analysis. (a) NME1 and RFC2 in CD4+ T cells. (b) ESRRA and TFAM in DC cells. (c)
ZNF232 and GIMAP1 in CD4+ T cells. (d) PTPN21 and ASCC1 in CD4+ T cells. (e) LRRN4 and DMBX1 in CD4+ T cells.
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Figure 4: Page for pairwise correlation analysis.The scatter diagram
of probe set pair is omitted which appears as Figures 3(a), 3(b), 3(c),
3(d), and 3(e). The species is “human”; the dataset is “CD3+ T cell”;
for Gene A, the probe set ID is “1007 s at” and the gene symbol
is “DDR1”; for Gene B, the probe set ID is “1053 at” and the gene
symbol is “RFC2.”The Pearson’s 𝑟 value is −0.05538, the MI value is
1.04368, and the MIr value is 0.36477 for their hybrid.

(2) Page formost related genes lists information about the
10 most strongly correlated genes to the queried one
with 3 perspectives, namely, MI, 𝑟, and their hybrid,
respectively.WeuseMIr to denote the hybridmeasure
of MI and 𝑟, calculated as the follows:

MIr = 𝛽
𝑟 (𝑋
𝑖
, 𝑋
𝑗
)

max
𝑘 ̸=𝑖
(𝑟 (𝑋
𝑖
, 𝑋
𝑘
))

+ (1 − 𝛽)

MI (𝑋
𝑖
, 𝑋
𝑗
)

max
𝑘 ̸=𝑖
(MI (𝑋

𝑖
, 𝑋
𝑘
))

,

(10)

where 𝑋
𝑖
is the queried gene, 𝑋

𝑗
is any other one,

and 𝛽 is a coefficient often set to be round 0.5 for
optimum effect. For example, if a user inputs a probe
set 1007 s at of CD3+ T cell in the selected page
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Figure 5: Page for cell-type-based overview of rank difference.

and submits the selection, then 30 probe sets and
their gene information will be retrieved, in which 10
probe sets are most related to the queried probe set
according to the 𝑟, another 10 to MI, and still another
10 to MIr (Table 1).

(3) The page for cell-type-based overview of rank dif-
ference provides for each cell type an overview of
how all the RoMI-Ror values are distributed. For
instance, the RoMI-Ror value distribution overview
of haematopoietic stem cell (MDS) type is shown in
Figure 5(a), in which the horizontal axis represents
the difference between RoMI and Ror, namely, RoMI-
Ror, and the vertical axis represents the frequency of
a given difference RoMI-Ror which occurs. And the
sum of all the frequency is 860,150,026. Specifically,
MI and 𝑟 have the same rank when RoMI-Ror =
0, and we observe that the frequency of this rank
difference is the highest. As the difference RoMI-Ror
gradually increases (or decreases) from this point, the
frequency that the corresponding difference occurs
gradually decreases. The rank difference (RoMI-Ror)
distributions of all the 16 cell types are shown in
Figure 5(b).

4.3. Managing and Expanding the Database. Thewebsite and
the database are totally automatic in responding the users’
query if there is no abnormity. However, human operators
are required to be involved to expand the database. In fact,
in order to increase the visit speed of the website, we have
preprocessed all the data before they are mounted into the
database, and thus all newly acquired expression data should

be preprocessed by human operators with the preprocessing
software, individually or in batch.

5. Conclusions and Discussions

The MIrExpress database provides an effective and novel
method to observe linear and nonlinear dependencies for
pairwise gene expression data under a series of experi-
ment conditions in immune cells. To date, this cannot be
achieved in other related databases about correlation of gene
expression. Traditionally, standard methods, such as Pearson
correlation, are used to identify gene coexpression and cor-
relation relationships. However, in some cases, coexpression
relationship exists obviously but the Pearson correlation
coefficient cannot reflect the dependency, which indicates
that there is nonlinear correlation between gene pairs. In
this paper, we took into account the rank ordering of mutual
information and Pearson correlation coefficient to generally
measure the gene correlation in linear and nonlinear aspects,
which better describes the gene coexpressions.

There is much room for the MIrExpress database to be
improved. First, much more samples may also be incor-
porated to enrich the database content in order to more
precisely measure the correlation in the future. Second, the
more kinds of cells, especially those of animals, can be
incorporated into a next version of MIrExpress to more
extensively reveal coexpression relationship between gene
pairs. Third, a pressing need from a variety of applications
is to cluster the genes according to mutual information
or its variations in order to find interesting gene groups
within which the genes share common functional tasks and
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regulatory mechanisms and thus offer insights into various
transcriptional and biological processes.
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