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The standard therapy administered to patients with advanced esophageal cancer remains
uniform, despite its two main histological subtypes, namely esophageal squamous cell
carcinoma (SCC) and esophageal adenocarcinoma (AC), are being increasingly
considered to be different. The identification of potential drug target genes between
SCC and AC is crucial for more effective treatment of these diseases, given the high toxicity
of chemotherapy and resistance to administered medications. Herein we attempted to
identify and rank differentially expressed genes (DEGs) in SCC vs. AC using ensemble
feature selection methods. RNA-seq data from The Cancer Genome Atlas and the Fudan-
Taizhou Institute of Health Sciences (China). Six feature filters algorithms were used to
identify DEGs. We built robust predictive models for histological subtypes with the random
forest (RF) classification algorithm. Pathway analysis also be performed to investigate the
functional role of genes. 294 informative DEGs (87 of them are newly discovered) have
been identified. The areas under receiver operator curve (AUC) were higher than 99.5% for
all feature selection (FS) methods. Nine genes (i.e., ERBB3, ATP7B, ABCC3, GALNT14,
CLDN18, GUCY2C, FGFR4, KCNQ5, and CACNA1B) may play a key role in the
development of more directed anticancer therapy for SCC and AC patients. The first
four of them are drug targets for chemotherapy and immunotherapy of esophageal cancer
and involved in pharmacokinetics and pharmacodynamics pathways. Research identified
novel DEGs in SCC and AC, and detected four potential drug targeted genes (ERBB3,
ATP7B, ABCC3, and GALNT14) and five drug-related genes.
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INTRODUCTION

Esophageal cancer (SCA) is a very aggressive condition. In 2018,
there were an estimated 17,290 new cases of esophageal cancer
and 15,850 deaths in the United States alone (Noone et al., 2018).
Although its prognosis has gradually improved due to advances
in treatment and surgical techniques, the overall survival remains
poor, with only 10–22% patients showing survival of >5 years
after diagnosis in Europe, the United States, and China (Dubecz
et al., 2012). Such a low survival outcome is mainly attributable to
late diagnosis and lack of effective treatment methods.

Esophageal cancer represents a heterogeneous group of
cancers and consists of two main histological subtypes:
squamous cell carcinoma and esophageal adenocarcinoma.
Generally, SCC is associated with worse prognosis than AC
(Enzinger and Mayer, 2003), but it is dependent on cancer
progression (Shimada et al., 2013). SCC and AC are
increasingly being considered as separate conditions with
different etiologies, epidemiology, histopathology, and other
biological behavior (Tustumi et al., 2016; Lagergren et al.,
2017). Furthermore, recent studies have reported distinct
differences in their genomic profiles (Wang et al., 2015; Salem
et al., 2016; Network, 2017), and the number of different
biomarkers between SCC and AC is in the order of thousands
(Greenawalt et al., 2007; Lin et al., 2017). Analyses involving The
Cancer Genome Atlas (TCGA) Research Network have shown
that with respect to the overall genomic landscape, SCC and AC
are more similar to non-esophageal cancers than to each other
(Network, 2017; Salem et al., 2018).

Despite profound biological and clinical differences between
SCC and AC, the standard therapy and drugs used in
chemotherapy remain largely similar (Lordick et al., 2016). A
combination of platinums, taxanes, anthracyclines, or pyrimidine
analogs is usually prescribed to patients with esophageal cancer,
regardless of the pathological subtypes (Abdo et al., 2017;
Davidson et al., 2017). Bang et al. (2010) reported that
therapies targeting HER2 (trastuzumab) and vascular
endothelial growth factor receptor 2 (ramucirumab) are highly
effective for gastroesophageal junction cancer. Davidson et al.
(Davidson et al., 2017)found that patients with AC showed a
significantly higher response rate to first-line fluoropyrimidine-
based chemotherapy than those with SCC. Earlier identification
of drug-related genes with a high difference in their expression
levels between SCC and AC can be helpful for understanding the
differences in the clinical response of patients with esophageal
cancer to different anticancer drugs, given the high toxicity of
chemotherapy and resistance to administered medications. For
instance, (Abdo et al., 2017) suggested that information
pertaining to the overexpression of genes encoding drug
molecular targets could help oncologists in decision making;
the screening of nine genes (HER2, EGFR, PD-L1, ERCC1,
TUBB3, TS, RCF, TOPOI, and TOPO2A) was recommended to
ensure more effective immunotherapy and chemotherapy
outcomes in patients with SCA.

Herein we aimed to identify novel biomarkers with the
intention of improving diagnosis, as well as potential drug
target genes and molecular candidate drugs to achieve effective

treatment of SCC and AC. We used the heterogeneous ensemble
feature selection method to identify the most informative
biomarkers for the classification of the subtypes of esophageal
cancer and the random forest machine learning algorithm
(Breiman, 2001) to evaluate the quality of the set of the
selected features. The ensemble filter method is based on six
diverse filtering FS methods for reducing the risk of omitting
biological relevant biomarkers. Such advanced machine learning
methods have not been previously used for the classification of
SCC and AC. Furthermore, we primarily focused on specific
targets of drug action, such as membrane proteins, which are
pivotal for drug development, because most therapeutics target
membrane proteins are responsible for altering cellular signaling.
We specifically studied membrane proteins affected by
differentially expressed genes (DEGs) between SCC and AC
and characterized relevant genes, which should enable
individualized drug development. Additionally, we analyzed
gene-gene interactions using the GeneMANIA software
(Warde-Farley et al., 2010).

MATERIALS AND METHODS

Preprocessing and Integration of Datasets
Gene-level RNA-seq analyses of esophageal carcinoma were
performed (two experiments): RNA-sequencing data from
TCGA esophageal cancer project (TCGA-SCA, https://portal.
gdc.cancer.gov/projects/TCGA-ESCA) and NODE-SCC data
deposited in the National Omics Data Encyclopedia of China
(accession no.: OEP000138, http://www.biosino.org/node/
project/detail/OEP000138). TCGA-SCA mRNA data have been
previously investigated (Zeng et al., 2017), but the main analysis
was focused on the identification of molecular targets for
prognostic analysis and diagnosis with reference to normal
esophageal tissues (Zhan et al., 2016), not for the classification
of SCA subtypes. TCGA-SCA dataset contains data of White and
Asian patients; patients with SCC (n = 87, 87% male) had a
median age of 57 years (range, 36–90) and those with AC (n = 71,
83% male) had a median age of 71 years (range, 27–86). The
second dataset was generated by the Fudan University, containing
data of 43 tumor tissue samples obtained from Asian patients
with SCC (75% male) with a median age of 69 years (range,
50–82).

Data pre-processing and all analyses were conducted using the
open-source statistical software R v3.4.3 (R Core Team, 2017a).
Data preparation includes four main subprocesses: cleaning,
transformation, merging, and reduction. TCGA-SCA dataset
contains gene level RNA-seq data of 158 tumor tissue samples
and 20,501 biomarkers, whereas the NODE-SCC dataset contains
data of 43 tumor tissue samples obtained from patients with SCC
and 21,309 biomarkers.

After cleaning up and Log2 transformation of the data, both
datasets were subjected to unsupervised biomarker set selection.
For this purpose, the following criteria were applied using the R
package genefilter (Gentleman et al., 2020): (1) robust coefficient
of variation of RNA-seq expression level (GE) > 0.05 and (2) at
least 10% samples having GE > 0.45 (the number of biomarkers
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rapidly decreases below this GE threshold) for TCGA-SCA
dataset and −4.35 for the NODE-SCC dataset. The software
package BRB-ArrayTools (Simon, 2020) includes a detailed
description of this reduction procedure. These standard
preprocessing procedures are particularly important when
using statistical methods because RNA-tags with low
expression measurement range are not normally distributed.
TCGA-SCA and NODE-SCC datasets were merged (COM-
SCA dataset); i.e., the pairs of biomarkers belonging to the
same gene were integrated. The COM-SCA dataset contains
201 samples (130 patients with SCC and 71 with AC) and
16,596 overlapping biomarkers. The ComBat function in
“SVA” R package (Leek et al., 2018) was used for removing
batch effects between the two experiments and races.

Statistical Analysis
To quantify feature distribution in COM-SCA dataset, the
statistical analysis was performed. The 67% DEGs in SCC
group and 61% DEGs in AC group have a fairly symmetrical
distribution of data and the value of skewness ranges from -0.5 to
0.5. The Levene’s test showed that 74% DEGs have variances
equal in these groups, the Bartlett test showed 60%. The
Kolmogorov-Smirnov test confirmed the normality
distribution in 86% DEGs in both groups of patients.
Considering the above, the normal distribution of biomarkers
in both groups was assumed. The Welch t-test was used for the
differential expression analysis of RNA-seq data, as one of six
used feature selection methods (Supplementary Table S1).

Feature Selection and Prediction Model
Building
To validate the FS process, machine learning models for
discerning SCC from AC were built using selected markers as
explanatory variables. To this end, we applied the random forest
algorithm (Breiman, 2001) as implemented in the randomForest

package (Liaw and Weiner 2002) in R (R Core Team, 2017b).
Random forest is considered to be one of the best off-the-shelf
classifier algorithms that can be applied to nearly all classes of
problems. The conclusion of a very thorough study devoted to
testing multiple algorithms on numerous publicly available
datasets (Fernandez-Delgado and Cernadas., 2014) was that
random forest is the best overall classification algorithm, that
generally gives good results, very rarely gives bad results, and in
many cases gives best ones. These conclusions were based on
analysis of results of the application of 179 algorithms belonging
to 17 broad families of algorithms on 121 diverse datasets.

Considering the problem of an unbalanced dataset (Luque
et al., 2019), the area under the receiver operator characteristic
curve and Matthews correlation coefficient (MCC) were used as
measures of classification performance.

Figure 1 shows the methods used for the identification of the
most informative biomarkers and building prediction RF models.
Individual RF models from RNA-seq data were constructed in 50
loops with the following procedure:

(1) The dataset was randomly split into five equal partitions;
(2) Insignificant genes between SCC and AC were ranked/

filtered out using Ttest, MDFS1D, MDFS2D, FCBF,
MRMR, and ReliefF on four partitions (training set);

(3) Highly correlated features (Spearman’s rank correlation
coefficient >0.7) were rejected from the ranked list;

(4) Random forest classifier was built on the training set using
the top-N features;

(5) Model quality was evaluated on the remaining partition
(test set);

(6) Steps 2–5 were repeated for all k-partitions and each FS
method.

The final number of top features used for model building was
experimentally established. In addition, the quality of predictive
RF models and stability of feature selection as a function of the

FIGURE 1 | Procedures involved in selecting the most informative biomarkers.
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number of top features were measured for all FS methods. The
stability of feature selection was gauged by the similarity of
different sets of relevant variables in cross-validations with the
Lustgarten stability measure (ASM) (Lustgarten et al., 2009). All
FS methods used the same cross-validation splits.

Identification of Key Genes
The complete list of key genes was derived using the following
procedure:

(1) Top-N DEGs were selected from each of the 250 ranked lists
for each FS method independently;

(2) A set of N genes with the highest frequency of occurrence
among the 250 lists was identified for each FS method
independently;

(3) From the six gene sets corresponding to the FS methods, key
genes were selected;

(4) Log2 fold change (FC) of normalized RNA-seq gene
expression between SCC and AC was calculated using the
formula Log2FC = Log2 (GESCC/GEAC), wherein GESCC and
GEAC represent the mean value of normalized RNA-seq gene
expression level for SCC and AC, respectively, for each gene.
The key gene list was then sorted according to absolute
Log2FC values;

(5) Membrane protein-encoding genes and their association
with well-known drugs were subsequently identified.

The Human Protein Atlas database (Uhlen et al., 2015) was used
for selecting membrane protein-encoding genes. Data pertaining to
drugs and drug–gene interactions were collected from several
databases, namely, DGIdb (Cotto et al., 2018), DrugBank
(Wishart et al., 2006), and Therapeutic Target DB (Wang et al.,
2020), and additional information was obtained from ApexBio, FDA
Approved Drugs, ClinicalTrials.gov, PharmGKB, and GeneCards.

RESULTS

Informative Biomarkers
We investigated the molecular markers that could distinguish
between the two main histological subtypes of esophageal cancer.
To identify DEGs from the full combined RNA-seq datasets (COM-
SCA), we used six feature filters, namelyWelch t-test (Ttest) (Welch,
1947), one- and two-dimensional FS filters based on information
theory (MDFS1D and MDFS2D, respectively) (Piliszek et al., 2019),
fast correlation-based filter (FCBF) (Yu and Liu, 2003), the ReliefF
algorithm (Kononenko, 1994), and minimum redundancy and
maximum relevance (MRMR) (Ding and Peng, 2005).

Using the methods Ttest, MDFS1D, and MDFS2D, which could
identify relevant predictor features but did not remove redundant
ones, 7142 unique relevant genes were identified (refer to the Venn
diagram in Supplementary Figure S1) in the entire data set.

The other three FS methods, namely ReliefF, MRMR, and
FCBF, either returned just a ranking of features (ReliefF, MRMR)
or a set of top non-redundant informative ones (MRMR and
FCBF). In particular, FCBF identified only 59 relevant variables,
all of which were found by all other algorithms as well.

MDFS1D identified the highest number of relevant features
(5437), and this number was used as the limit of relevant variables
returned by MRMR and ReliefF. The final number of unique
DEGs identified by at least one method was 8246. Although this
number is bound to include false positive data, it shows how
distinct SCC and AC are at the molecular level.

A much smaller number of features is sufficient to build a
machine learning model that can distinguish between SCC and
ACwith high precision levels (Supplementary Figures S2, S3). In
the current study, a high average predictive power of random
forest model (AUC = 0.994) was already achieved for 20 features
for all filters. However, small sets of most relevant features
showed instability in 5-fold cross-validation repeated 50 times
(Supplementary Figure S4). For all algorithms, except FCBF, the
maximal stability value of the Lustgarten measure for sets of top
N features as N approaching 100 (Table 1). In contrast, the FCBF
method attempts to minimize redundancy in the set of features.
This optimization increases instability, because it amplifies small
random differences in relevance observed in the different repeats
of cross-validation. ASM values, indicating stability, were <0.6 in
the entire studied range of top-N uncorrelated features. These
instabilities could be attributed to a high number of highly
relevant variables with very similar levels of relevance.
Random fluctuations due to differences in the composition of
samples in cross-validation lead to large changes in the relative
rankings of features in different samples. To minimize the
influence of these fluctuations, top 100 features from each
algorithm were used for further analysis, ensuring that most
relevant genes were a part of them. The good predictive power for
all methods (Table 1) and the small overlap between the six sets of
top 100 genes from the six algorithms suggested that each
algorithm identified different aspects of relevance.

The final list of relevant genes ultimately included six lists of
100 genes identified by six independent FS methods. Overall, 294
genes represented the key set of biomarkers that could be used to
distinguish between AC and SCC. The complete list of genes is
shown in Supplementary Table S1. More than 46% genes in this
set showed a high difference in expression levels between AC and
SCC, with abs (Log2FC) ≥ 3.0 (FC = fold change between SCC
and AC). Under-expressed genes were the most prevalent (59%).

Potential Therapeutic Targets
Herein we focused on membrane protein-encoding genes that are
one of the most important macromolecules for drug
development. In total, 84 genes from the list of the most

TABLE 1 | Comparison of feature selection methods.

Metric Ttest MDFS1D MDFS2D FCBF ReliefF MRMR

AUC 0.996 0.998 0.997 0.994 0.996 0.999
MCC 0.994 0.997 0.996 0.991 0.993 0.998
ASM 0.52 0.43 0.40 0.05 0.34 0.53

Note: The first two rows display AUC and MCC obtained for RF classifier on 100 most
relevant genes selected with each feature selection method. The last row displays the
stability of these, which wasmeasured using ASM. Fifty repeats of 5-fold cross-validation
were performed. Standard deviation of mean AUC andMCCwas <0.001. See notation in
the main text.
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important biomarkers were labeled as “membrane proteins” or
“predicted membrane proteins” in the Human Protein Atlas
database. Of these 84 genes, 44 were related to drugs
(Supplementary Table S2).

The most common drugs used for anticancer therapy in the
case of patients with SCA include carboplatin, paclitaxel, platinol,
epirubicin, docetaxel, fluorouracil, oxaliplatin, irinotecan,
cetuximab, lapatinib, trastuzumab, doxorubicin, cisplatin,
leucovorin, capecitabine, gefitinib, ramucirumab, mitomycin,
bleomycin, and amethopterin (Abdo et al., 2017; Huang and
Yu, 2018). We found that four of the 84 membrane protein-
encoding genes were drug targets for chemotherapy and
immunotherapy of esophageal cancer and involved in
pharmacokinetics and pharmacodynamics pathways. Three
genes were under-expressed Erb-B2 receptor tyrosine kinase 3
(ERBB3), ATPase copper-transporting beta (ATP7B), and ATP-
binding cassette subfamily c member 3 (ABCC3) and one was
overexpressed polypeptide N-acetylgalactosaminyltransferase 14
(GALNT14) in SCC vs. AC. Among these four genes, GALNT14
showed the highest difference in expression levels between SCC
and AC (Log2FC = 4.62, Figure 2). A network of anticancer drugs
related to the four genes is shown in Figure 3.

To identify new potential therapeutic targets that may affect
the choice of SCA therapy, we identified genes with the highest
difference in expression levels between SCC and AC, and
arranged them according to the absolute value of Log2FC for
the 84 genes predicted to encode membrane proteins. Biological
functions of each of these genes are listed in Supplementary
Table S2. Top 10 over/under-expressed genes in SCC vs. AC and
examples of drugs associated with them are shown in Table 2.
Although these drugs are not necessarily chemotherapy drugs,
they provide new insights into targeted therapy for SCC and AC.

FIGURE 2 | Boxplot of Log2 normalized RNA-Seq gene expression of 4 membrane encoding genes related with SCA anti-cancer drugs. Boxplot contains the
p-value of mean differential expression between AC and SCC patients groups with a two-sample t-test.

FIGURE 3 | Network of drugs important for chemotherapy in patients
with esophageal cancer, and genes identified from the set of the most
informative biomarkers predictive of the two main histological subtypes of
esophageal cancer.
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Gene-Gene Interaction Network
To conduct the gene-gene (G-G) functional interaction analysis of
key biomarkers, we used the GeneMANIA online software. All
membrane protein-encoding genes (Supplementary Table S2) were
used as input data for G-G network. To find the hub genes, we
ranked genes by the number of edges they shared with other genes
and the difference in expression levels between SCC and AC.

The functional associations between 57 of 84 genes were
observed (Figure 4). Three genes, namely the mucin 1
(MUC1), the gap junction protein alpha 1 (GJA1), and

KCNQ5 with a high number of gene-gene interactions (more
than 11 edges) and a high difference in expression levels between
SCC and AC (abs (Log2FC) > 2.8) were considered as hub genes.
Within the 57-gene network, we identified two sub-networks. In
the first sub-network, the MUC1 gene is a primary hub gene
linked with 21 significant genes, such as GALNT14, ABCC3, and
ERBB3. In the second sub-network, there are KCNQ1 and GJA1
hub genes linked with 12 significant genes, such as GUCY2C, and
ERBB3. Seven genes are shared by both sub-networks (GALNT14,
TMEM144, KALRN, IGSF11, GP2, and ERBB3).

TABLE 2 | Top 10 membrane protein-encoding genes that were under- or overexpressed in SCC vs. AC

Top down-expressed membrane protein encoding genes in SCC vs. AC

No Gene Log2FC Drugs

1 CLDN18 7.57 CLAUDIXIMAB
2 TM4SF5 7.27
3 SLC6A20 6.03
4 TM4SF4 5.87
5 SI 5.86 ACARBOSE, SCOPOLAMINE, DEXAMETHASONE, MIFEPRISTONE, STREPTOZOTOCIN, FURAN, SODIUM BETA-

NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE, HEXAMETHYLENEBISACETAMIDE
6 GPR128 5.77
7 GUCY2C 5.49 LINACLOTIDE, PLECANATIDE, PANITUMUMAB, PIRIBEDIL (CHEMBL1371770), PHOSPHORIC ACID, LINACLOTIDE

ACETATE, GUANOSINE MONOPHOSPHATE, CYCLIC GMP
8 CLDN2 5.29 CALCIUM
9 GPR35 5.16 PROSCILLARIDIN, BUMETANIDE, FUROSEMIDE, TRANSTORINE, PAMOIC ACID, ZAPRINAST, PYRANTEL,

KYNURENIC ACID
10 MIA2 5.06

Top up-expressed membrane protein encoding genes in SCC vs. AC

No Gene Log2FC Drugs

1 DSC1 4.64 CALCIUM
2 GALNT14 4.62 FLUOROURACIL, CARBOQUONE, MITOXANTRONE, CISPLATIN, CALCIUM, MANGANESE
3 DMRT2 4.61
4 SLC35F3 4.26
5 KCNQ5 4.24 CELECOXIB, IRINOTECAN, EZOGABINE, TEDISAMIL, FLINDOKALNER, CHEMBL317935, LINOPIRDINE,

CHEMBL342375, DALFAMPRIDINE, GUANIDINE HYDROCHLORIDE, NERISPIRDINE, POTASSIUM,
TETRAETHYLAMMONIUM

6 RYR1 3.91 DANTROLENE SODIUM, SURAMIN, MAGNESIUM, cA2, ADENOSINE TRIPHOSPHATE, CAFFEINE, PROCAINE,
RYANODINE, DANTROLENE, SURAMIN, RUTHENIUM RED, CAFFEINE, DANTROLENE, TETRACAINE

7 SLC6A2 (SLC6A5) 3.75 AMPHETAMINE, GUANADREL, GUANETHIDINE, REBOXETINE, MIRTAZAPINE, LOXAPINE, DOXEPIN, AMOXAPINE,
MAZINDOL, ERGOTAMINE, COCAINE, PHENMETRAZINE, SIBUTRAMINE, NOMIFENSINE, CHLORPHENIRAMINE
POLISTIREX, GINKGO, CRX-119, AMINEPTINE, DEBRISOQUIN, BICIFADINE, MMDA, MIANSERIN, TAPENTADOL,
TRAMADOL, BUPROPION, LEVOMILNACIPRAN, ATOMOXETINE, CITALOPRAM, CLOMIPRAMINE, DESIPRAMINE,
DESVENLAFAXINE, DEXTROAMPHETAMINE, DOTHIEPIN, DULOXETINE, IMIPRAMINE, LOFEPRAMINE,
METHYLPHENIDATE, MAPROTILINE, MILNACIPRAN, DIETHYLPROPION, NEFAZODONE, NISOXETINE,
AMITRIPTYLINE, NORTRIPTYLINE, VENLAFAXINE, PHENELZINE, PROTRIPTYLINE, QUETIAPINE,
PSEUDOEPHEDRINE, PHENTERMINEGUANADREL SULFATE, ZOTEPINE, AMITIFADINE, EDIVOXETINE, BETHANIDINE,
TRAZODONE, DEXMETHYLPHENIDATE, PETHIDINE, PAROXETINE, TEDATIOXETINE, TESOFENSINE, PHENTERMINE,
PROTRIPTYLINE MIRTAZAPINE, DEXTROMETHORPHAN, METHAMPHETAMINE, NORTRIPTYLINE, AMOXAPINE,
TRIMIPRAMINE, DOPAMINE, SIBUTRAMINE, CHLORPHENAMINE, ORPHENADRINE, ESCITALOPRAM, KETAMINE,
EPHEDRA, EPHEDRINE, GINKGO BILOBA, XEN2174, 3,4-METHYLENEDIOXYMETHAMPHETAMINE,
PHENDIMETRAZINE, LEVONORDEFRIN, REBOXETINE GLYCINE, BITOPERTIN, CHEMBL88588, CILNIDIPINE

8 IGSF11 3.71
9 CACNA1B 3.71 VERAPAMIL, GABAPENTIN, LEVETIRACETAM, Z160, AGMATINE, CELECOXIB, CNV2197944, VERAPAMIL,

GABAPENTIN ENACARBIL, AMLODIPINE, AGMATINE, SAFINAMIDE, RALFINAMIDE, ZICONOTIDE, BEPRIDIL
HYDROCHLORIDE, CLEVIDIPINE, ELPETRIGINE, ATAGABALIN, ZICONOTIDE ACETATE, IMAGABALIN, PREGABALIN,
AMLODIPINE, GABAPENTIN, LEVETIRACETAM, CILNIDIPINE, NITRENDIPINE

10 DLK2 3.49

Note: Where applicable, each gene is accompanied by a list of drugs that were associated with it in at least one of the following databases: DrugBank, PharmGKB, ClinicalTrials.gov,
DGIdb, and FDA Approved Drugs. Standard deviation of the expression values at the Log2FC level was <0.002.
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DISCUSSION

In this study, we aimed to identify the most informative
molecular markers to distinguish between SCC and AC and to
characterize pertinent genes in terms of their potential utility in
individualized cancer treatment. We used a robust two-step
protocol for identifying the most informative RNA-seq
biomarkers important for cancer diagnosis and potentially
druggable genes crucial for SCA treatment.

Informative Biomarkers
SCC and AC significantly differ at the molecular level (Lin et al.,
2017; Network, 2017). Previous studies have confirmed these
results, and owing to the use of a more sensitive approach based
on ensemble FS, even stronger differences have become known.
We herein identified 8246 DEGs, of which, 5434 (65.9%) have not
been mentioned in previous studies (Greenawalt et al., 2007; Lin
et al., 2017). Further, 81.7% of the 3443 genes identified by Lin
et al. (Lin et al., 2017) and 64.7% of the 546 genes identified by
Greenawalt et al. (Greenawalt et al., 2007) were identified in this
study. These differences could be attributed to (1) the absence of
some genes in our dataset and (2) using a more stringent method
for multiple testing correction (for Ttest, MDFS-1D, and
MDFS-2D).

We observed that for different FS methods, the overlap
between the sets of selected biomarkers was low
(Supplementary Figures S1, S5). This is a manifestation of
the well-known problem that different selection methods tend
to produce different biological signatures (Abusamra, 2013). Such
differences can also be due to different approaches for FS

implemented in different algorithms (Bommert et al., 2020).
Furthermore, application of methods that reduce redundancy
in the feature set result in decreased stability of the set of
biomarkers (Polewko-Klim and Rudnicki, 2020). Nevertheless,
as per ontological analyses, biological functions captured by
different gene subsets are rather similar (Dessi et al., 2013). In
this study, we constructed highly effective predictive models
(AUC >0.994) using only top 20 features returned by any of
the applied FS methods. Overlooking genes that are important for
biological and functional interpretation of differences between
datasets is possible when only one FS method is used for
identifying relevant features. Thus, the application of diverse
FS methods is highly recommended.

Among the 294 genes that facilitated differentiation between
AC and SCC, 87 have not been previously reported as relevant
(Greenawalt et al., 2007; Lin et al., 2017). These newly discovered
relevant genes can potentially be used as drug targets.

Further, although subtypes can be easily determined by
pathologists, these genes can facilitate automatic pathological
identification in clinical settings with extremely high
sensitivity and specificity. The set of genes presented in
Supplementary Table S1 can be used for SCC and AC
diagnosis.

Specific Therapeutic Agents for SCC
and AC
We focused on membrane protein-encoding genes that were drug
targets for chemotherapy and immunotherapy and involved in
pharmacokinetics and pharmacodynamics pathways. ERBB3,

FIGURE 4 | The gene-gene interaction network of membrane protein-encoding genes obtained with GeneMANIA. Green edges correspond to the functional
associations between genes (nodes), while pink edges represent the predicted gene-gene interaction. The black edges correspond to genes functionally associated with
the MUC1 hub gene (sub-network 1). The solid blue edges correspond to genes functionally associated with the KCNQ5 and GJA1 hub genes (sub-network 2), while the
blue dashed edges correspond to genes functionally associated with the KCNQ5, GJA1, and MUC1.
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ATP7B, ABCC3, and GALNT14 were particularly interesting, as
genes encoding them are already related to 11 common anti-SCA
drugs (Figure 3). Both, overexpression (GALNT14) or under-
expression (ERBB3, ATP7B, ABCC3) of these genes in SCC
relative to AC may contribute to a different response to these
common anticancer drugs. Interestingly, according to
GeneCards, GALNT14 is overexpressed by > 5-fold in the
esophagus–mucosa in normal tissues.

Considering the upregulated expression of GALNT14 in
SCC vs. AC, GALNT14 appears to be a promising potential
therapeutic target for SCC. GALNT14 is an antitumor agent
and therapeutic response predictor for concurrent
chemoradiotherapy wherein the platinum-based drugs
fluorouracil and cisplatin are used for advanced SCC
(Honing et al., 2014; Tsou et al., 2017). Gebski et al. (2007)
reported that neoadjuvant chemotherapy with cisplatin and 5-
fluorouracil led to relatively better survival of patients with
AC. GALNT14 genotype is also a potential predictor of the
response to the first course of 5-fluorouracil, mitoxantrone,
and cisplatin chemotherapy in patients with advanced
hepatocellular carcinoma (Liang et al., 2011). The
overexpression of GALNT14 is a strong biomarker
correlated to the sensitivity of Apo2L/TRAIL-based
anticancer therapy. GALNT14 alters cell migration and
cellular morphology, and its overexpression causes
malignancies, such as those of the breast, ovarium, lungs,
and skin (Erdal et al., 2017), so it is a good predictor of
therapeutic outcomes, particularly of chemotherapy, in
multiple cancers (Lin and Yeh, 2020).

ERBB3, ATP7B, and ABCC3 are also reportedly promising drug
targets. ERBB3 (HER3) is a member of the epidermal growth factor
receptor family of receptor tyrosine kinases. A comprehensive
analysis of EGFR, HER2, and HER3 coexpression and
dimerization that were observed in the two histopathological
subtypes of SCA has been previously performed (Fichter et al.,
2014). Fichter et al. (Fichter et al., 2014) suggested that preclinical
investigations of antibody-dependent cellular cytotoxicity elicited by
trastuzumab and pertuzumab can be very important in AC, namely,
these drugs indicate an effect in AC cancer cells with high HER2
expression and HER2 homodimers. ATP7B is a key mediator of
cellular cisplatin, carboplatin, and oxaliplatin accumulation, these
platinum-based drugs are widely used in modern cancer therapeutics
(Li et al., 2016). Li et al. reported that ATP7B overexpression plays a
key role in platinum resistance in SCC (Li et al., 2016). ABCC3 is a
transporter and inducer of cisplatin and an inhibitor of doxorubicin.
It is involved in cellular resistance to chemotherapy with fluorouracil
in patients with SCC (Zhou et al., 2008) and is also a putative
biomarker of resistance to antimitotic agents, such as paclitaxel, used
in breast cancer treatment (O’Brien et al., 2008).

Novel Drug-Related Genes
We also detected several new drug-related genes with a high
Log2FC value, which were associated with cancer promotion,
transformation, and progression (Supplementary Table S2)
and thus relevant for targeted treatment of SCA. Three genes
were under-expressed in SCC vs. AC, namely claudin 18
(CLDN18), guanylyl cyclase C (GUCY2C), and fibroblast

growth factor receptor 4 (FGFR4), and two genes were
overexpressed, namely potassium voltage-gated channel
subfamily Q member 5 (KCNQ5) and calcium voltage-gated
channel subunit alpha1 B (CACNA1B). These genes showed a
high difference in their expression levels between SCC and AC
and are already associated with certain drugs. For example, the
tight junction molecule claudin-18 isoform 2 (CLDN18.2) is a
target for claudiximab, which is a first-in-class chimeric
monoclonal antibody used for the treatment of gastric
cancer (Singh et al., 2017). Aka et al. (Aka et al., 2017)
reported that GUCY2C is a potentially ideal target antigen
for colorectal cancer immunotherapy and that
supplementation with linaclotide (GUCY2C ligand) is a
novel and promising strategy for tumor prevention.
Zhongwei et al. (Xin et al., 2018) suggested that blocking
FGFR4 significantly suppressed the malignant behaviors of
SCC, indicating that FGFR4 is a potential target for SCC
treatment. KCNQ5 interacts with celecoxib and is a
promising drug for prevention/treatment of several cancers,
such as colon, breast, prostate, and head and neck cancers
(Toloczko-Iwaniuk et al., 2019). CACNA1B is useful for
evaluating the efficacy of chemoradiotherapy against SCC
(Sasaki et al., 2017).

Considering the significant differences in gene expression
levels of ERBB3, ATP7B, ABCC3, GALNT14, CLDN18,
GUCY2C, FGFR4, KCNQ5, and CACNA1B between patients
with SCC and AC, we recommend conducting further
preclinical research on them. Future studies are warranted to
investigate how these genes can be used to develop more effective
chemotherapy and immunotherapy treatment methods for
patients with SCA, as well as options for novel drug use
associated with those genes with large fold change in SCC
and AC.

Gene-Gene Interaction
The G-G interaction analysis via GeneMANIA indicated three
pivotal hub genes, namely MUC1, GJA1, and KCNQ5. The
most linked of them, the MUC1, is an oncogene that exhibits
extensive glycosylation in vivo. The aberrant glycosylation and
overexpression of MUC1 gene in cancer cells may lead to
cancer invasion, metastasis, angiogenesis, and apoptosis by
virtue of its participation in intracellular signaling processes
and the regulation of related biomolecules (Chen et al., 2021).
Moreover, mucin 1 protein coded by MUC1 is an important
barrier to the penetration of drugs and takes part in the
inhibition of apoptosis in tumor cells. It has been widely
recognized as one of the most promising molecular targets
in cancer therapy (Lee et al., 2021). For example, the
overexpression of this membrane-bound glycoprotein limits
the effectiveness of 5-fluorouracil treatment in patients with
pancreatic cancer (Kalra and Campbell 2009), and decreases
sensitivity of cisplatin in SCC (Zhao et al., 2021). Mucin 1 plays
a key role in trastuzumab resistance in breast cancer
(Hosseinzadeh et al., 2022). The high-expression of MUC1
is associated with a poor prognosis for esophageal cancer
patients (Song et al., 2003), contributes to SCC metastasis
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(Ye et al., 2011), and plays a pivotal role in the progression to
AC (Adil Butt et al., 2017).

GJA1 and KCNQ5 are hub genes of one gene module and both
are significantly up-regulated in SCC vs. AC. GJA1 (encoding Cx43)
is a member of the connexin family that possesses both tumor-
suppressive, and oncogenic functions (Aasen et al., 2019). The
misregulation of connexins affects a process of cell differentiation,
inflammation, and cell death (Katturajan and Evan Prince, 2021).
GJA1 is a highly attractive target for delivering drugs directly into the
cytoplasm of cancer cells, due to the permeability of gap junction
channels to small molecules and macromolecules (Bonacquisti and
Nguyen, 2019). The silencing ofGJA1 genemay cause a reduction of
paclitaxel efficiency in gastric cancer (Zhao et al., 2019), and
cisplatin-resistance in lung cancer (Luo et al., 2021). The high
GJA1 expression in SCC cancer cells is associated with poor
survival of patients (Tanaka et al., 2016). The exact role of
KCNQ5 in SCA cancer tumor genesis and progression is not
known. But recent studies have shown that this oncogene is a
potential prognostic biomarker for gastrointestinal cancer
(Shorthouse et al., 2020) and a promising biomarker for early
colorectal cancer detection (Cao et al., 2021). Considering the
over-expression of GJA1 and KCNQ5 in SCC vs. AC, they can be
promising molecular targets for SCC.
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