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COVID-19 has become difficult to contain in our interconnected world. In this article, we
discuss some approaches that could reduce the consequences of COVID-19. We
elaborate upon the utility of camelid single-domain antibodies (sdAbs), also referred to
as nanobodies, which are naturally poised to neutralize viruses without enhancing its
infectivity. Smaller sized sdAbs can be easily selected using microbes or the subcellular
organelle display methods and can neutralize SARS-CoV2 infectivity. We also discuss
issues related to their production using scalable platforms. The favorable outcome of the
infection is evident in patients when the inflammatory response is adequately curtailed.
Therefore, we discuss approaches to mitigate hyperinflammatory reactions initiated by
SARS-CoV2 but orchestrated by immune mediators.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) caused COVID-19 pandemic has
impacted almost all countries, and it has caused a widespread shutdown in normal lifestyle
worldwide (1). Control measures are ongoing, and some countries have seemingly achieved
reasonable success in either managing the spread of the disease or reducing its severity in
patients. The efforts are underway to unravel details on COVID-19 epidemiology, pathogenesis
and more importantly to expeditiously generate modalities to reduce its consequences. The human
to human transmission of SARS-CoV2 occurs via respiratory droplets or probably through aerosols
(2). The droplets settle on surfaces and can retain some infectivity for several days (3). The
transmission of the virus through contaminated surfaces followed by a potent infection in humans is
not unequivocally established (4). Whether or not the virus remains associated with epithelial or
stromal cells, sloughed off from the mucosae of the inflamed buccal or nasal cavity, is unknown at
present but has been shown for some other respiratory tract pathogens (5). Even though the
presence of SARS-CoV2 in the exosomes has not been analyzed, the genomes of some viruses, such
as that of hepatitis C virus, have been previously found in the exosomes (6). The transmission of
SARS-CoV2 from mother to fetus in utero is also not firmly established but seems unlikely (7). This
could be because of the observed limited episodes of lower intensity viremia in infected
individuals (8).

COVID-19 has immunopathological manifestations and therefore the optimal control of
inflammatory response could result in a favorable outcome (9–11). The category of
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immunosuppressants that should be used in COVID-19 patients
is debated, as such interventions invariably have long term ill-
effects likely to be more pronounced in aged individuals because
of their hematopoietic inefficiencies (12). Most epidemics or
pandemics can be conveniently controlled if effective vaccines
are produced and be made available for the susceptible
populations. Therefore, elaborate efforts are being made to
develop vaccines against SARS-CoV2. Many such vaccine
candidates are already in their Phase II/III of clinical trials (A
complete list of COVID-19 vaccines currently under trial can be
found at https://www.who.int/publications/m/item/draft-
landscape-of-covid-19-candidate-vaccines). Curiously, by the
time vaccines against the circulating coronaviruses were produced
earlier, the epidemics were over and the vaccines were never
properly evaluated for safety, efficacy, and longevity of protection.
In this communication, we focus on approaches that are likely to be
valuable in the near future as the development of vaccines and
assessment of their safety and efficacy is a lengthy process.
Furthermore, vaccines against some animal coronaviruses, such as
the one causing feline infectious peritonitis in cats, have been less
effective (13, 14). Contrarily, some vaccines against the SARS viruses
enhanced disease severity when tested in a mouse model (14). The
underlying mechanisms for enhanced infectivity are still poorly
understood but could involve an antibody-dependent enhancement
(ADE) of the infection followed by immunopathologies (15). Poorly
neutralizing antibodies or their low abundance could fail to
efficiently neutralize the virus. Such antibodies nonetheless
interact with the exposed viral antigens to enhance the infectivity
as well as broaden the cellular tropism (16). SARS-CoV2 reactive
antibodies and T cells against epitopes on different proteins of
SARS-CoV2 have been reported in apparently healthy individuals
(17–21). Therefore, the effects of pre-existing immunity against
coronaviruses in the pathogenesis of COVID-19 needs to be
better studied.

We discuss two main lines of interventions, some of which
have already been tried or should be extensively investigated to
minimize the impact of the disease. One such intervention is to
limit the success of the virus entry by blocking interactions of the
viral proteins with the primary cellular entry receptor, i.e.,
angiotensin-converting enzyme 2 (ACE2). Several approaches
have been explored for the previously circulating SARS
coronaviruses, including SARS-CoV and Middle East
Respiratory Syndrome-coronavirus (MERS-CoV) (22–24). An
approach that we favor and elaborate upon, which has received
limited evaluation, involves the use of sdAbs (also called as
nanobodies) that can be generated from the genetic scaffolds of
rearranged heavy chain only antibodies (HCAbs), known to
occur in all camelids (25). Though sdAbs can be generated
from the genetic fragments of conventional antibody having
four chains, the term sdAbs used in the article refers to those of
camelid origin. Such sdAbs are aptly suited to neutralize
pathogens, toxins, and inflammatory mediators (26–29). With
the increasing number of studies evaluating B and T cell
responses against different epitopes in SARS-CoV2, sdAbs can
be selected against multiple viral epitopes to yield potent, multi-
specific formulations. Furthermore, sdAbs against host proteins
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such as MHC class II molecules can additionally be engineered to
deliver viral antigens or peptides to the antigen-presenting cells
(APCs) to enhance the efficiency of cross-presentation pathways
in order to generate potent anti-viral CD8+ T cell response (30).

A further approach that merits more evaluation is the optimal
management of inflammatory response to SARS-CoV2 as its
resolution favors survival over lethality (31, 32). Accumulating
evidence demonstrates that COVID-19 is predominantly an
immunopathological response resulting from dysregulated
differentiation of innate and adaptive immune cells following
SARS-CoV2 infection (10, 11, 33).We highlight some anti-
inflammatory approaches that can help mitigate inflammation
to achieve a favorable disease outcome.
FACTORS INFLUENCING THE DISEASE
SUSCEPTIBILITY AND THE OUTCOME OF
SARS-COV2 INFECTION

The immune status of host at the time of infection, exposure
history, co-morbidities, age at which infection occurs and the
dose as well as the formulation of inoculum could influence the
disease outcome (34, 35). Some of the SARS-CoV2 infected
children exhibited heightened inflammatory response, but the
overall susceptibility and severity of COVID-19 in this age group
are rare (36). This might relate to their lower ACE2 expression
levels, potent type I IFN response or the cross-protection offered
by routinely used vaccines (36–38). Aged as well as the young
individuals with one or more comorbidities, such as autoimmune
disorders, cardiovascular, pulmonary or renal insufficiencies are
more likely to develop severe COVID-19 infections. Accordingly,
lethal disease is ~100 times more prevalent in individuals above
the age of 80 years as compared to those below 50 years of age
(39, 40). The declining precursor frequencies of adaptive
immune cells or their aberrant activation are commonly
observed in aged individuals, but the functionality of innate
immune cells in the aging population is less well explored (41,
42). Such an analysis could help explain their enhanced
susceptibility to viral infections and might additionally suggest
control measures. The SARS-CoV2 entry receptor, ACE2, is
highly expressed in most of the critical organs such as lungs,
heart, kidneys, and the endothelial lining of blood vessels in the
central nervous system (CNS) (43). Therefore, these anatomical
locations could serve as the virus predilection sites. Pathogens
that replicate rapidly in the host and infect critical organs could
outrun innate immune mechanisms such as the activity of NK
cells or type I IFN pathways (44, 45). Coronaviruses are known
to disable one or the other components of type I IFN pathways
and can spread unabated within the host in early stages (46). It is
conceivable that the initial viral load could critically influence the
disease outcome by tipping the balance toward either a
predominantly immunopathological event or the one that
resolves with mild or subclinical manifestations. Therefore,
appropriate management of COVID-19 cases should aim to
control the initial viral loads by promoting the endogenous
October 2020 | Volume 11 | Article 581076
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anti-viral mechanisms such as the type I IFN pathways or the
activity of NK cells (47, 48). The exogenously supplied type I
IFNs or the viral neutralizing antibodies could also control the
viral burden (49–51). Type I IFNs have been associated with the
severe COVID-19 cases, therefore their contribution in the
pathogenesis warrants further investigation (49). The high viral
loads induce hyperinflammatory reactions commonly referred to
as cytokine storm (10, 11, 33). The enhanced levels of cytokines
and other inflammatory molecules such as IL-6, IL1b, IL-8,
IL-17, MCP1, MIP1a, C-reactive proteins were observed in
COVID-19 patients (10, 11, 33). An induction of robust CD4+
T cell response and an exhaustion of CD8+ T cells have been
suggested to occur in severe cases of COVID-19 (52). SARS-
CoV2 causes an acute infection followed by the virus control in
most individuals. Therefore, the functional consequences of the
expressed markers associated with the exhaustion phenotype in
immune cells and are commonly observed during chronic
infections can be debated upon in the pathogenesis of COVID-
19. The immunoregulatory response suppresses the initiation of
inflammation. One of the major regulatory T cells (Tregs)
express Foxp3 transcription factor. However, such cells could
acquire proinflammatory roles when home to the inflammatory
sites because of their plasticity (53). Therefore, approaches that
could promote endogenous Treg responses or stabilize their
phenotype could help dampen the inflammation (54). Such
approaches could be more valuable when the virus is
adequately controlled. We highlight some such strategies in a
subsequent section.
CORONAVIRUS ENTRY AND
REPLICATION EVENTS PROVIDE
INSIGHTS INTO POTENTIAL ANTI-VIRAL
TARGETS

Coronaviruses are positive-sense, single-stranded RNA viruses of
the Coronaviridae family, with approximately two-thirds of the
genomes encoding for the non-structural proteins (NSPs) (55).
The viral structural proteins and the host-derived lipid bilayers
make the outer surface of the virus. Coronaviruses primarily
consist of four structural and accessory proteins, i.e., Spike (S),
Envelope (E), Membrane (M) and Nucleocapsid (N) proteins.
Some b-coronaviruses also have hemagglutinin-esterase (HE)
that facilitates virus binding to the host cell displayed sialic acid
moieties (55). Binding of SARS-CoV2 to the cells requires the
interaction of its homotrimeric S protein with cellular ACE2 (43,
56, 57) (Figure S1). Such interactions are also observed for
SARS-CoV, but might occur with higher affinity for SARS-CoV2
(58). Clathrin-mediated endocytosis of coronaviruses is followed
by the cleavage of its S protein by cellular serine proteases. This
process exposes the fusion peptide (FP) which is responsible for
viral fusion with the endocytic membranes (56). Subsequently,
the viral genome is released into cytoplasm, subgenomic viral
mRNAs are produced and translated into different structural
proteins (55). Polyproteins (pp)1a and 1ab, encoded by ORFs
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rep1a and rep1b, are subsequently cleaved by the virus-encoded
papain-like proteases (PLpro) and Main proteases (Mpro) to
generate NSPs. The packaged viral genome is assembled to form
new virions that are then exocytosed to initiate further rounds of
infection. Many events and the host factors involved in the viral
entry, trafficking and viral replication still remain poorly
understood. For a detailed analysis of such events, some
excellent studies and reviews should be consulted (55, 59). The
RNA-dependent RNA polymerase lacks in the proofreading
activity and therefore generates frequent mutations in the viral
genome. Viral mutants thus generated could exhibit enhanced
tissue tropism and affinity for different host proteins. An S
protein mutant of SARS-CoV2 (D614G) was recovered from
many COVID-19 patients worldwide, but detailed analysis on its
infectivity and pathogenesis are currently lacking (60). Since the
virus entry in susceptible cells is initiated by the interaction of
viral S protein and the cellular ACE2 receptor, this step is
considered as the prime target for anti-viral maneuvers.

A large number of small molecule inhibitors and antibodies
(both monoclonal and polyclonal antibodies) have been
evaluated for the neutralization of coronaviruses but the results
are variable (23, 24, 61–63). Amiodarone is one such small
molecule that inhibits SARS infection by interfering with the
endocytic pathways (64). However, the clinical efficacy and safety
of such small molecules have not been evaluated. The polyclonal
antibodies are less well suited for large-scale use and could
transmit bound toxic contaminants from other pathogens,
allergens and chemicals. Therefore, generating monoclonal
antibodies (mAbs) of appropriate specificity against one or the
more SARS-CoV2 proteins or even against the host
proinflammatory factors is considered. Numerous anti-SARS-
CoV2 IgG antibodies against S protein or those targeting RBD
have been generated from COVID-19 patients and some have
already been characterized. (A compiled list of such antibodies
can be found at http://opig.stats.ox.ac.uk/webapps/covabdab/).
The primary mechanism of antibody mediated virus
neutralization is by blocking the interaction between ACE2
and the RBD either by direct competition or via steric
hindrance. Interestingly two mAbs, which were originally
generated against SARS-CoV S protein, neutralized SARS-
CoV2 but did not inhibit ACE2 and RBD interaction (65, 66).
The conventional IgG based convalescent therapy or specific
IgGs induced during mild infections or even upon vaccination
might enhance disease severity through ADE mechanisms (67,
68). ADE is reported for multiple viruses such as dengue viruses
(DENV) and respiratory syncytial virus (RSV) and is caused
when poorly or non-neutralizing IgGs or other isotypes engage
cellular Fc receptors (FcRs) through their fragment constant (Fc)
regions (69–71). In so doing such preparations might promote
the infectivity of the virus in additional cell types such as
monocytes, macrophages, platelets and endothelial cells that
are otherwise non-permissive to the infection because of the
absence of virus entry receptors. The viruses that mutate
frequently or have multiple circulating strains such as DENV
and RSV can display ADE phenomenon. Accordingly, the
antibodies induced against one strain might not fully neutralize
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the heterologous strains but can bind to it through fragment
antigen-binding (Fab) region, while their Fc regions interact with
the FcRs expressed by multiple cell types to facilitate infectivity.
Some feline coronaviruses have been shown to exacerbate
immunopathology by such extrinsic mechanisms (68, 72, 73)
(Figure 1). Interestingly, ADE mechanisms could also suppress
TLR signaling and reduce the production of type I IFNs by
modulating intracellular host factors (74, 75). Therefore, ADE
can increase the viral replication and hence produce more virus
particles from the infected cells through cell intrinsic mechanisms
in addition to increasing the number of infected cell types through
extrinsic mechanisms (74, 75). The shorter variants of the
conventional full-length antibodies such as the single-chain
fragment variable (scFv) and the Fab can preclude the process of
ADE but their production in soluble formats generally requires
expensive and usually less efficient mammalian expression systems
(76, 77).

A potentially interesting approach could involve the
generation and use of camelid anti-SARS-CoV2 specific sdAbs
(29, 78–81). Such sdAbs are one-tenth the size of conventional
antibodies and have superior biological properties suitable for
therapy (26, 27). Their extended CDR3 and in some clones
CDR2 as well, helps form the projecting paratopes that are
Frontiers in Immunology | www.frontiersin.org 4
suitably poised to neutralize cryptic epitopes that could occur
in the fusion peptide or the protease cleavage sites of SARS-CoV2
S protein. Additional features that facilitate the efficient
generation of such antibodies include their genetic
modifications in the natural host, such as the replacement of
hydrophobic amino acids in framework region 2 (FR2) by
smaller and hydrophilic residues (V42F, G49Q, L50R, W52G/
A) to allow for their expression as the stable and folded products
in commonly used microbial species (82). Due to a nucleotide
point mutation (G>A) at the conserved 5’ splicing site of the
intron, alternative splicing events achieve the deletion of CH1 in
the mature and processed mRNA to make the association of
heavy chains with the light chains impossible (26, 83). Therefore,
the libraries of sdAbs can be generated with ease using bacterial,
viral, yeast, or ribosomal display approaches (25–28). Moreover,
sdAbs are less immunogenic, resist harsh conditions of pH and
temperature and can be injected via the intranasal route, a
desirable attribute for managing respiratory diseases (84). Such
sdAbs could be generated for both conformational and linear
epitopes of the RBD of SARS-CoV2 S protein to provide an
effective and durable blocking as well as hampering the
subsequent viral fusion events. In a prefusion complex, RBD
undergoes conformational changes from down-conformation
A

B

FIGURE 1 | A cartoon shows the possible mechanisms of antibody dependent enhancement of SARS-CoV2 by poorly neutralizing antibodies. (A) Poorly
neutralizing IgG antibodies bind to the viral epitopes via their Fab regions and ligate Fc receptors (FcgR) expressed by multiple cell types. The recycling of receptors in
the cells promotes viral infection to increase viral load and that inturn promotes cytokine production to aggravate immunopathological response. (B) The smaller
sized virus-specific antibodies (sdAbs or scFv that lack Fc region) efficiently neutralize the virus without causing ADE.
October 2020 | Volume 11 | Article 581076
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(where RBD is in-accessible) to up-conformation (where RBD is
accessible). The up-conformation is less stable and interacts with
ACE2 (58). During the interaction of RBD and ACE2, the RBD
packs into a five-stranded b-sheet structure and acquires a concave
shape to fit into the N terminal domain of ACE2. The interaction is
stabilized predominantly by hydrophobic interactions (85). As the
RBD interacts with ACE2 in up-conformation, the efficient
neutralization could be achieved if sdAbs are selected to arrest the
RBD in the down-conformation. In the post-fusion complex, the S2
subunit of S protein displays multiple N-linked glycans at Asn1098,
Asn1134, Asn1158, Asn1173, and Asn1194. Therefore, sdAbs,
which bind to the S2 subunit also need to recognize and interact
with the carbohydrate moieties. Other potential targets for selecting
sdAbs could be the exposed E and M proteins of SARS-CoV2 as
well as the host and viral proteases, as shown for other respiratory
infection causing viruses (86–88). The administered anti-SARS-
CoV2 sdAbs are not likely to cause an ADE phenomenon as they
lack in the Fc region and have minimal to no immunogenicity
(Figure 1). We, therefore, opine that SARS-CoV2-specific sdAbs
represent a better alternative for therapy. Some studies have
reported the generation of anti-SARS-CoV2 specific single-
domain antibodies and demonstrated their ability to neutralize
the virus (A compiled list of such SARS-CoV2 antibodies can be
found at http://opig.stats.ox.ac.uk/webapps/covabdab/). The utility
of such antibodies in a clinical setting is yet to be shown. SARS-
CoV2 specific CD8+ T cell responses are primarily directed against
ORF1ab and some of the epitopes of S protein. Therefore, such
peptides could be fused with sdAbs against the host cell specific
surface markers for their efficient delivery to APCs to enhance
cross-presentation (30, 89, 90).
EVOLVING MANAGEMENTAL
PROCEDURES FOR COVID-19

Patients with severe clinical disease often need oxygen
supplementation and mechanical ventilation to prevent
hypoxemia and acute respiratory distress syndrome (ARDS) (91,
92). The patients are routinely prescribed antipyretics, supportive
fluid therapy and anti-inflammatory drugs. Effective control of the
virus is invariably required for a better prognosis, but few if any
effective anti-viral modalities are currently available.
Coronaviruses, including SARS-CoV2, block interferon response
to modulate the innate immunity (46, 47, 93). Therefore, type I IFN
therapy, if initiated early in the infection, could reduce virus loads
but the associated risks need to be carefully evaluated (49). The
sequestration of SARS-CoV2 components that impede type I IFN
responses might serve as a potential modality (93). COVID-19
patients administered with IFNa2b showed beneficial effects in
controlling their virus loads and had lesser pulmonary damage (94,
95). However, it should be noted that these are only preliminary
reports and hence a more stringent, placebo-controlled
randomized trial should be conducted before their use in treating
COVID-19 patients. (More information on undergoing Phase I
clinical trial on safety and efficacy of IFNa2b can be found at
https://clinicaltrials.gov/ct2/show/NCT04293887). If the patients
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are suspected of septicemia as a secondary complication,
antibiotics are administered. Many such regimens could induce
hyperinflammatory response triggered by bacterial toxins.
Therefore, neutralization of endotoxins or exotoxins could have
beneficial effects. Such reagents are not currently available for use
(94). Immunosuppressive corticosteroid therapy is routinely used
to dampen inflammation, but there are conflicting reports on their
utility during viral infections. The patients infected with previously
circulating SARS-CoV exhibited pulmonary tissue damage,
followed by a prolonged recovery phase due to severe lung
pathologies but COVID-19 patients, unlike those infected with
previously circulating coronaviruses, shed more virus during early
stages of infection (85, 95). Therefore, restoring lung function by
dampening inflammation was considered to improve disease
prognosis. The initial clinical trials showed some beneficial effects
of corticosteroids in managing severe cases of COVID-19 (32, 96).
The results of a recently concluded larger clinical trial showed a
massive survival advantage of ~35% in the severe cases of COVID-
19 but to a lesser extent in the milder cases (9). Corticosteroids are
potent immunosuppressants and exhibit pleiotropic effects on
almost all the organs and cell types (97). However, their effects
on anti-viral CD8+ T cells recruited during the course of viral
infections have not been fully evaluated. We recently demonstrated
in a mouse model of herpesvirus infections that dexamethasone
exposed naïve and memory CD8+ T cells exhibited enhanced
susceptibility to apoptosis as compared to their activated
counterparts (98). These observations alerted us on their
potential long-term implications. For example, the host might
become more susceptible to heterologous infections and
malignancies due to dexamethasone-induced attrition of naïve
CD8+ T cells (98). Since the average age of patients administered
with dexamethasone in the COVID-19 trial was 66.1 years, such
patients are likely to have hematopoietic insufficiencies (42). The
preformed memory cells also exhibited enhanced apoptosis upon
dexamethasone exposure (98). Therefore, dexamethasone injected
patients might lose their immunological memory of the previously
encountered pathogens or vaccines. This could further enhance
their propensity to acquire such infections. Counterintuitively, the
differentiating virus-specific effector CD8+ T cells in the presence of
dexamethasone upregulated molecules such as CD103 and CXCR3.
These molecules promote cellular migration to the infected tissues
enriched in IP10 or CXCL10, a ligand for CXCR3 (98, 99). That the
treatment of T cells with dexamethasone causes the upregulation of
IL7R, a molecule associated with memory phenotype in antigen-
stimulated cells, supports the notion that glucocorticoids could
additionally promote memory transition (100). Therefore,
differentiating virus-specific CD8+ T cells could help reduce the
virus burden at the infected tissues and additionally acquire a
differentiation program to become tissue-resident memory cells
(TRM). Such cells provide rapid anti-viral effects at tissue sites
during secondary homologous infections (Figure 2). Some of our
unpublished observations support such a hypothesis but extensive
analysis at this time is lacking. Therefore, the follow-up studies in
COVID-19 patients receiving dexamethasone therapy should aim
to investigate such issues in addition to measuring their
susceptibility to heterologous infections and cancers.
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The anti-inflammatory approaches that have not yet been
explored in managing COVID-19 include promoting the
endogenous regulatory mechanisms and inhibiting the
migration of inflammatory cells to tissue sites. Such strategies
could be valuable in the later phase of infection or when the virus
is controlled. Chemokine receptor blockade by antibodies or the
pharmacological antagonism of sphingosine 1 phosphate
receptors with drugs such as fingolimod (FTY720) might be
valuable to limit the infiltration of inflammatory cells such to
lung tissues (101–103). Furthermore, approaches that can
enhance the activity of regulatory cells could help diminish
inflammatory response (104). Many approaches have been
evaluated in preclinical studies to dampen inflammation by
promoting Tregs and these include the infusion of cytokines
(IL-2-anti-IL-2 complexes, IL-10, TGF-b), other host-derived
molecules such as galectins, neuropeptides, hormones, drugs
such as rapamycin (105). None of these approaches have been
used for managing COVID-19 cases.

Finally, while many investigators are racing to develop and
produce reagents such as antibodies that can reduce the impact
of COVID-19, one only hopes that once produced, these remain
affordable and unequivocally efficacious.
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glycoprotein interactswithoneofknownhost cell receptorACE2and isendocytosed. In
the endosome, the spike protein is cleaved by the proteases to initiate further events in
viral disassembly and the release of its RNAgenome. The copying of RNA genomeand
assembly of the virus then initiates the release of virus. The potential targets of host
immune cells or those achieved by blocking the virus entry and subsequent trafficking
events are shown. Themolecules that can block the virus entry in the cells either as the
soluble mimetics of ACE2 receptor, blocking antibodies against S glycoproteins, host
proteins able to bind sugarmoieties on the spike proteins can inhibit the viral interaction
with membrane expressed ACE2. The virus upon internalization is present in the
FIGURE 2 | A schematic showing the potential influence of dexamethasone on SARS-CoV2-specific CD8+ T cells and its possible ill-effects. SARS-CoV2 derived
PAMPs are recognized by APCs, which then process and present viral antigens to generate peptides and activate naïve CD8+ T cells. The expanded virus-specific
CD8+ T cells cytolyze virus infected cells and control virus loads. In the presence of dexamethasone, the activated CD8+ T cells (filled purple circles) upregulate
molecules such as CD103, CXCR3, and CD127 to facilitate their transport to the infected lung tissues to achieve efficient virus control. A fraction of such cell further
differentiates into tissue resident memory (TRM) cells (filled brown circles in DLN/lungs). TRM provide quick protection upon secondary homologous infection.
However, dexamethasone, by preferentially killing naïve and memory CD8+ T cells, could enhance the host susceptibility to heterologous infections and malignancies.
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endosomes. The viral proteins processed and displayed as peptides in context with
class I MHC molecules on the surface of infected cells are recognized by effector
cytotoxic T cells and such interactions help cytolyze viral infected cells.With the demise
of infected cells, the virus burden is controlled. Inhibitors of Papain like protease (PLpro)
Frontiers in Immunology | www.frontiersin.org 7
and Main protease (Mpro) are likely to interfere with the formation of non-structural
proteins to interfere with the viral replication in the infected cells. Anti-sense RNAs
against viral genome can regulate the synthesis of viral proteins responsible for viral
assembly. Question marks indicate lack of detailed information.
REFERENCES
1. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA,

et al. The species Severe acute respiratory syndrome-related coronavirus:
classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol (2020)
5:536–44. doi: 10.1038/s41564-020-0695-z

2. Phan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, Le HQ, et al.
Importation and human-to-human transmission of a novel coronavirus in
Vietnam. N Engl J Med (2020) 382:872–4. doi: 10.1056/NEJMc2001272

3. Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A,
Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as
compared with SARS-CoV-1.N Engl J Med (2020) 382:1564–7. doi: 10.1056/
NEJMc2004973

4. Döhla M, Wilbring G, Schulte B, Kümmerer BM, Diegmann C, Sib E, et al.
SARS-CoV-2 in environmental samples of quarantined households.
medRxiv (2020). 2020.05.28.20114041. doi: 10.1101/2020.05.28.20114041

5. Dasaraju PV, Liu C. Infections of the Respiratory System. In: S Baron, editor.
Medical Microbiology, Chapter 93 Galveston (TX) (1996).

6. Meckes DG, Raab-Traub N. Microvesicles and Viral Infection. J Virol (2011)
85:12844–54. doi: 10.1128/jvi.05853-11

7. Egloff C, Vauloup-Fellous C, Picone O, Mandelbrot L, Roques P. Evidence
and possible mechanisms of rare maternal-fetal transmission of SARS-CoV-
2. J Clin Virol (2020) 128:104447. doi: 10.1016/j.jcv.2020.104447

8. Cho HJ, Koo JW, Roh SK, Kim YK, Suh JS, Moon JH, et al. COVID-19
transmission and blood transfusion: A case report. J Infect Public Health
(2020). doi: 10.1016/j.jiph.2020.05.001

9. Horby P, Lim WS, Emberson J, Mafham M, Bell J, Linsell L, et al.
Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary
Report. N Engl J Med (2020). doi: 10.1056/nejmoa2021436

10. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of
patients infected with 2019 novel coronavirus in Wuhan, China. Lancet
(2020) 395:497–506. doi: 10.1016/S0140-6736(20)30183-5

11. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings
of COVID-19 associated with acute respiratory distress syndrome. Lancet
Respir Med (2020) 8:420–2. doi: 10.1016/S2213-2600(20)30076-X

12. Wong LSY, Loo EXL, Kang AYH, Lau HX, Tambyah PA, Tham EH. Age-
Related Differences in Immunological Responses to SARS-CoV-2. J Allergy
Clin Immunol Pract (2020). doi: 10.1016/j.jaip.2020.08.026

13. Saif LJ. Animal coronavirus vaccines: lessons for SARS. Dev Biol (Basel)
(2004) 119:129–40. http://europepmc.org/abstract/MED/15742624.

14. Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL,
et al. Immunization with SARS coronavirus vaccines leads to pulmonary
immunopathology on challenge with the SARS virus. PloS One (2012) 7:
e35421. doi: 10.1371/journal.pone.0035421

15. Tetro JA. Is COVID-19 receiving ADE from other coronaviruses? Microbes
Infect (2020) 22:72–3. doi: 10.1016/j.micinf.2020.02.006

16. Halstead SB. Pathogenesis of dengue: Challenges to molecular biology.
Science (1988) 239:476–81. doi: 10.1126/science.3277268

17. Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, et al. SARS-
CoV-2-reactive T cells in healthy donors and patients with COVID-19.
Nature (2020). doi: 10.1038/s41586-020-2598-9

18. Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, et al. Selective
and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans.
Science (2020) 370:89–94. doi: 10.1126/science.abd3871

19. Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, et al. Pre-
existing and de novo humoral immunity to SARS-CoV-2 in humans. bioRxiv
(2020) 2020.05.14.095414. doi: 10.1101/2020.05.14.095414

20. Oja AE, Saris A, Ghandour CA, Kragten NAM, Hogema BM, Nossent EJ,
et al. Divergent SARS-CoV-2-specific T and B cell responses in severe but
not mild COVID-19. bioRxiv (2020) 2020.06.18.159202. doi: 10.1101/
2020.06.18.159202
21. van der Heide V. SARS-CoV-2 cross-reactivity in healthy donors. Nat Rev
Immunol (2020) 20:408. doi: 10.1038/s41577-020-0362-x

22. Huentelman MJ, Zubcevic J, Hernández Prada JA, Xiao X, Dimitrov DS,
Raizada MK, et al. Sructure-based discovery of a novel angiotensin-
converting enzyme 2 inhibitor. Hypertension (2004) 44:903–6.
doi: 10.1161/01.HYP.0000146120.29648.36
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