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Abstract Spiking activity of neurons engaged in learning and performing a task show complex

spatiotemporal dynamics. While the output of recurrent network models can learn to perform

various tasks, the possible range of recurrent dynamics that emerge after learning remains

unknown. Here we show that modifying the recurrent connectivity with a recursive least squares

algorithm provides sufficient flexibility for synaptic and spiking rate dynamics of spiking networks

to produce a wide range of spatiotemporal activity. We apply the training method to learn

arbitrary firing patterns, stabilize irregular spiking activity in a network of excitatory and inhibitory

neurons respecting Dale’s law, and reproduce the heterogeneous spiking rate patterns of cortical

neurons engaged in motor planning and movement. We identify sufficient conditions for successful

learning, characterize two types of learning errors, and assess the network capacity. Our findings

show that synaptically-coupled recurrent spiking networks possess a vast computational capability

that can support the diverse activity patterns in the brain.

DOI: https://doi.org/10.7554/eLife.37124.001

Introduction
Neuronal populations exhibit diverse patterns of recurrent activity that can be highly irregular or

well-structured when learning or performing a behavioral task (Churchland and Shenoy, 2007;

Churchland et al., 2012; Harvey et al., 2012; Pastalkova et al., 2008; Li et al., 2015). An open

questions whether learning-induced synaptic rewiring is sufficient to give rise to the wide range of

spiking dynamics that encodes and processes information throughout the brain.

It has been shown that a network of recurrently connected neuron models can be trained to per-

form complex motor and cognitive tasks. In this approach, synaptic connections to a set of outputs

are trained to generate a desired population-averaged signal, while the activity of individual neurons

within the recurrent network emerges in a self-organized way that harnesses chaotic temporally

irregular activity of a network of rate-based neurons (Sompolinsky et al., 1988) that is made repeat-

able through direct feedback from the outputs or through training of the recurrent connections

(Maass et al., 2007; Sussillo and Abbott, 2009). The resulting irregular yet stable dynamics pro-

vides a rich reservoir from which complex patterns such as motor commands can be extracted by

trained output neurons (Sussillo and Abbott, 2009; Buonomano and Maass, 2009; Jaeger and

Haas, 2004), and theoretical studies have shown that the network outputs are able to perform uni-

versal computations (Maass et al., 2007).

Here, we explore whether there is even a need for a set of output neurons. Instead, each unit in

the recurrent network could be considered to be an output and learn target patterns directly while

simultaneously serving as a reservoir. Laje and Buonomano (2013) showed that individual rate units

in a recurrent network can learn to stabilize innate chaotic trajectories that an untrained network nat-

urally generates. The trained trajectories are then utilized to accomplish timing tasks by summing

their activities with trained weights. DePasquale et al. (2018) obtained a set of target trajectories

from a target network driven externally by the desired network output. They showed that training
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individual units on such target trajectories and then adjusting the read-out weights yielded better

performance than an untrained random recurrent network with a trained feedback loop (i.e. ‘tradi-

tional’ FORCE learning). Rajan et al., 2016 trained a small fraction of synaptic connections in a ran-

domly connected rate network to produce sequential activity derived from cortical neurons engaged

in decision making tasks.

Although these studies demonstrate that units within a rate-based network can learn recurrent

dynamics defined by specific forms of target functions, the possible repertoire of the recurrent activ-

ity that a recurrent network can learn has not been extensively explored. Moreover, extending this

idea to spiking networks, where neurons communicate with time dependent spike induced synapses,

poses an additional challenge because it is difficult to coordinate the spiking dynamics of many neu-

rons, especially, if spike times are variable as in a balanced network (London et al., 2010). Some suc-

cess has been achieved by training spiking networks directly with a feedback loop (Nicola and

Clopath, 2017) or using a rate-based network as an intermediate step (DePasquale et al., 2016;

Thalmeier et al., 2016). A different top-down approach is to build networks that emit spikes opti-

mally to correct the discrepancy between the actual and desired network outputs (Boerlin et al.,

2013; Denève and Machens, 2016). This optimal coding strategy in a tightly balanced network can

be learned with a local plasticity rule (Brendel et al., 2017) and is able to generate arbitrary network

output at the spike level (Bourdoukan and Deneve, 2015; Denève et al., 2017).

We show that a network of spiking neurons is capable of supporting arbitrarily complex coarse-

grained recurrent dynamics provided the spatiotemporal patterns of the recurrent activity are

diverse, the synaptic dynamics are fast, and the number of neurons in the network is large. We give

a theoretical basis for how a network can learn and show various examples, which include stabilizing

strong chaotic rate fluctuations in a network of excitatory and inhibitory neurons that respects Dale’s

law and constructing a recurrent network that reproduces the spiking rate patterns of a large num-

ber of cortical neurons involved in motor planning and movement. Our study suggests that individual

neurons in a recurrent network have the capability to support near universal dynamics.

Results

Spiking networks can learn complex recurrent dynamics
We considered a network of N quadratic integrate-and-fire neurons that are recurrently connected

with spike-activated synapses weighted by a connectivity matrix W. We show below that our results

do not depend on the spiking mechanism. We focused on two measures of coarse-grained time-

dependent neuron activity: (1) the synaptic drive ui tð Þ to neuron i which is given by the W-weighted

sum of low-pass filtered incoming spike trains, and (2) the time-averaged spiking rate Ri tð Þ of neuron
i. The goal was to find a weight matrix W that can autonomously generate desired recurrent target

dynamics when the network of spiking neurons connected by W is stimulated briefly with an external

stimulus (Figure 1a). The target dynamics were defined by a set of functions f1 tð Þ; f2 tð Þ; :::; fN tð Þ on a

time interval 0; T½ �. Learning of the recurrent connectivity W was considered successful if ui tð Þ or Ri tð Þ
evoked by the stimulus matches the target functions fi tð Þ over the time interval 0; T½ � for all neurons
i ¼ 1; 2; :::;N.

Previous studies have shown that recurrently connected rate units can learn specific forms of

activity patterns, such as chaotic trajectories that the initial network could already generate

(Laje and Buonomano, 2013), trajectories from a target network (DePasquale et al., 2018), and

sequential activity derived from imaging data (Rajan et al., 2016). Our study expanded these results

in two ways: first, we trained the recurrent dynamics of spiking networks, and, second, we showed

that the repertoire of recurrent dynamics that can be encoded is vast. The primary goal of our paper

was to investigate the computational capability of spiking networks to generate arbitrary recurrent

dynamics, therefore we neither trained the network outputs (Sussillo and Abbott, 2009;

Sussillo et al., 2015; Nicola and Clopath, 2017) nor constrained the target signals to those

designed for performing specific computations (DePasquale et al., 2018). We focused on training

the recurrent activity as in the work of Laje and Buonomano (2013) (without the read-outs) and

Rajan et al., 2016, and considered arbitrary target functions. To train the activity of individual neu-

rons within a spiking network, we extended the Recursive Least Squares (RLS) algorithm developed

by Laje and Buonomano in rate-based networks (Laje and Buonomano, 2013). The algorithm was
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based on the FORCE algorithm (Haykin, 1996; Sussillo and Abbott, 2009), originally developed to

train the network outputs by minimizing a quadratic cost function between the activity measure and

the target together with a quadratic regularization term (see Materials and methods,

’Training recurrent dynamics’). Example code that trains a network of quadratic integrate-and-fire

neurons is available at https://github.com/chrismkkim/SpikeLearning (Kim and Chow, 2018; copy

archived at https://github.com/elifesciences-publications/SpikeLearning).

As a first example, we trained the network to produce synaptic drive patterns that matched a set

of sine functions with random frequencies and the spiking rate to match the positive part of the

same sine functions. The initial connectivity matrix had connection probability p ¼ 0:3 and the

Figure 1. Synaptic drive and spiking rate of neurons in a recurrent network can learn complex patterns. (a) Schematic of network training. Blue square

represents the external stimulus that elicits the desired response. Black curves represent target output for each neuron. Red arrows represent recurrent

connectivity that is trained to produce desired target patterns. (b) Synaptic drive of 10 sample neurons before, during and after training. Pre-training is

followed by multiple training trials. An external stimulus (blue) is applied prior to training for 100 ms. Synaptic drive (black) is trained to follow the target

(red). If the training is successful, the same external stimulus can elicit the desired response. Bottom shows the spike rater of 100 neurons. (c) Top, The

Pearson correlation between the actual synaptic drive and the target output during training trials. Bottom, The matrix (Fresenius) norm of changes in

recurrent connectivity normalized to initial connectivity during training. (d) Filtered spike train of 10 neurons before, during and after training. As in (b),

external stimulus (blue) is applied immediately before training trials. Filtered spike train (black) learns to follow the target spiking rate (red) with large

errors during the early trials. Applying the stimulus to a successfully trained network elicits the desired spiking rate patterns in every neuron. (e) Top,

Same as in (c) but measures the correlation between filtered spike trains and target outputs. Bottom, Same as in (c).

DOI: https://doi.org/10.7554/eLife.37124.002

The following figure supplements are available for figure 1:

Figure supplement 1. Learning arbitrarily complex target patterns in a network of rate-based neurons.

DOI: https://doi.org/10.7554/eLife.37124.003

Figure supplement 2. Training a network that has no initial connections.

DOI: https://doi.org/10.7554/eLife.37124.004

Kim and Chow. eLife 2018;7:e37124. DOI: https://doi.org/10.7554/eLife.37124 3 of 28

Research article Computational and Systems Biology Neuroscience

https://github.com/chrismkkim/SpikeLearning
https://github.com/elifesciences-publications/SpikeLearning
https://doi.org/10.7554/eLife.37124.002
https://doi.org/10.7554/eLife.37124.003
https://doi.org/10.7554/eLife.37124.004
https://doi.org/10.7554/eLife.37124


coupling strength was drawn from a Normal distribution with mean 0 and standard deviation s. Prior

to training, the synaptic drive fluctuated irregularly, but as soon as the RLS algorithm was instanti-

ated, the synaptic drives followed the target with small error; rapid changes in W quickly adjusted

the recurrent dynamics towards the target (Sussillo and Abbott, 2009) (Figure 1b,c). As a result,

the population spike trains exhibited reproducible patterns across training trials. A brief stimulus

preceded each training session to reset the network to a specific state. If the training was successful,

the trained response could be elicited whenever the same stimulus was applied regardless of the

network state. We were able to train a network of rate-based neurons to learn arbitrarily complex

target patterns using the same learning scheme (Figure 1—figure supplement 1).

Training the spiking rate was more challenging than training the synaptic drive because small

changes in recurrent connectivity did not immediately affect the spiking activity if the effect was

below the spike-threshold. Therefore, the spike trains may not follow the desired spiking rate pat-

tern during the early stage of training, and the population spike trains no longer appeared similar

across training trials (Figure 1d). This was also reflected in relatively small changes in recurrent con-

nectivity and the substantially larger number of training runs required to produce desired spiking

patterns (Figure 1e). However, by only applying the training when the total input to a neuron is

suprathreshold, the spiking rate could be trained to reproduce the target patterns. The correlation

between the actual filtered spike trains and the target spiking rate increased gradually as the train-

ing progressed.

Previous work that trained the network read-out had proposed that the initial recurrent network

needed to be at the ‘edge of chaos’ to learn successfully (Bertschinger and Natschläger, 2004;

Sussillo and Abbott, 2009; Abbott et al., 2016; Thalmeier et al., 2016; Nicola and Clopath,

2017). However, we found that the recurrent connectivity could learn to produce the desired recur-

rent dynamics regardless of the initial network dynamics and connectivity. Even when the initial net-

work had no synaptic connections, the brief stimulus preceding the training session was sufficient to

build a fully functioning recurrent connectivity that captured the target dynamics. The RLS algorithm

could grow new synapses or tune existing ones as long as some of the neurons became active after

the initial stimulus (Figure 1—figure supplement 2).

Learning was not limited to one set of targets; the same network was able to learn multiple sets

of targets. We trained the network to follow two independent sets of targets, where each target

function was a sine function with random frequency. Every neuron in the network learned both activ-

ity patterns after training, and, when stimulated with the appropriate cue, the network recapitulated

the specified trained pattern of recurrent dynamics, regardless of initial activity. The synaptic drive

and the spiking rate were both able to learn multiple target patterns (Figure 2).

Learning arbitrary patterns of activity
Next, we considered targets generated from various families of functions: complex periodic func-

tions, chaotic trajectories, and Ornstein-Hollenbeck (OU) noise. We randomly selected N different

Figure 2. Learning multiple target patterns. (a) The synaptic drive of neurons learns two different target outputs.

Blue stimulus evokes the first set of target outputs (red) and the green stimulus evokes the second set of target

outputs (red). (b) The spiking rate of individual neurons learns two different target outputs.

DOI: https://doi.org/10.7554/eLife.37124.005
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target patterns from one of the families to create a set of heterogeneous targets, and trained the

synaptic drive of a network consisting of N neurons to learn the target dynamics. These examples

demonstrated that recurrent activity patterns that a spiking network can generate is not limited to

specific forms of patterns considered in previous studies (Laje and Buonomano, 2013; Rajan et al.,

2016; DePasquale et al., 2018), but can be arbitrary functions. The successful learning suggested

that single neurons embedded in a spiking network have the capability to perform universal

computations.

As we will show more rigorously in the next section, we identified two sufficient conditions on the

dynamical state and spatiotemporal structure of target dynamics that ensure a wide repertoire of

recurrent dynamics can be learned. The first is a ‘quasi-static’ condition that stipulates that the

dynamical time scale of target patterns must be slow enough compared to the synaptic time scale

and average spiking rate. The second is a ‘heterogeneity’ condition that requires the spatiotemporal

structure of target patterns to be diverse enough. The target patterns considered in Figure 3 had

slow temporal dynamics in comparison to the synaptic time constant (ts ¼ 20 ms) and the patterns

were selected randomly to promote diverse structure. After training each neuron’s synaptic drive to

produce the respective target pattern, the synaptic drive of every neuron in the network followed its

target.

To verify the quasi-static condition, we compared the actual to a quasi-static approximation of

the spiking rate and synaptic drive. The spiking rates of neurons were approximated using the cur-

rent-to-rate transfer function with time-dependent synaptic input, and the synaptic drive was approx-

imated by a weighted sum of the presynaptic neurons’ spiking rates. We elicited the trained

patterns over multiple trials starting at random initial conditions to calculate the trial-averaged spik-

ing rates. The quasi-static approximations of the synaptic drive and spiking rate closely matched the

actual synaptic drive (Figure 3a) and trial-averaged spiking rates (Figure 3b).

To examine how the heterogeneity of target patterns may facilitate learning, we created sets of

target patterns where the fraction of randomly generated targets was varied systematically. For non-

random targets, we used the same target pattern repeatedly. Networks trained to learn target pat-

terns with strong heterogeneity showed that a network is able to encode target patterns with high

accuracy if there is a large fraction of random targets (Figure 3c). Networks that were trained on too

many repeated target patterns failed to learn. Beyond a certain fraction of random patterns, includ-

ing additional patterns did not improve the performance, suggesting that the set of basis functions

was over-complete. We probed the stability of over-complete networks under neuron loss by elimi-

nating all the synaptic connections from a fraction of the neurons. A network was first trained to

learn target outputs where all the patterns were selected randomly (i.e. fraction of random targets

equals 1) tonsure that the target patterns form a set of redundant basis functions. Then, we elicited

the trained patterns after removing a fraction of neurons from the network, which entails eliminating

all the synaptic connections from the lost neurons. A trained network with 5% neuron loss was able

to generate the trained patterns perfectly, 10% neuron loss resulted in a mild degradation of net-

work response, and trained patterns completely disappeared after 40% neuron loss (Figure 3d).

The target dynamics considered in Figure 3 had population spiking rates of 9.1 Hz (periodic), 7.2

Hz (chaotic) and 12.1 Hz (OU) within the training window. To examine how population activity may

influence learning, we trained networks to learn target patterns whose average amplitude was

reduced gradually across target sets. The networks were able to learn when the population spiking

rate of the target dynamics was as low as 1.5 Hz. However, the performance deteriorated as the

population spiking rate decreased further (Figure 3—figure supplement 1). To demonstrate that

learning does not depend on the spiking mechanism, we trained the synaptic drive of spiking net-

works using different neuron models. A network of leaky integrate-and-fire neurons, as well as a net-

work of Izhikevich neurons whose neuron parameters were tuned to have five different firing

patterns, successfully learned complex synaptic drive patterns (Figure 3—figure supplement 2).

Stabilizing rate fluctuations in a network respecting Dale’s law
A random network with balanced excitation and inhibition is a canonical model for a cortical circuit

that produces asynchronous single unit activity (Sompolinsky et al., 1988; van Vreeswijk et al.,

1996; Renart et al., 2010; Ostojic, 2014; Rosenbaum et al., 2017). The chaotic activity of balanced

rate models (Sompolinsky et al., 1988) has been harnessed to accomplish complex tasks by
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including a feedback loop (Sussillo and Abbott, 2009), stabilizing chaotic trajectories (Laje and

Buonomano, 2013) or introducing low-rank structure to the connectivity matrix

(Mastrogiuseppe and Ostojic, 2017). Balanced spiking networks have been shown to possess simi-

lar capabilities (Thalmeier et al., 2016; DePasquale et al., 2016; Abbott et al., 2016; Nicola and

Clopath, 2017; Denève and Machens, 2016), but it is unknown if it is possible to stabilize the het-

erogeneous fluctuations of the spiking rate in the strong coupling regime (Ostojic, 2014). Here, we

extended the work of Laje and Buonomano (2013) to spiking networks and showed that strongly

Figure 3. Quasi-static and heterogeneous patterns can be learned. Example target patterns include complex periodic functions (product of sines with

random frequencies), chaotic rate units (obtained from a random network of rate units), and OU noise (obtained by low-pass filtering white noise with

time constant 100 ms). (a) Target patterns (red) overlaid with actual synaptic drive (black) of a trained network. Quasi-static prediction (Equation 1) of

synaptic drive (blue). (b) Spike trains of trained neurons elicited multiple trials, trial-averaged spiking rate calculated by the average number of spikes in

50 ms time bins (black), and predicted spiking rate (blue). (c) Performance of trained network as a function of the fraction of randomly selected targets.

(d) Network response from a trained network after removing all the synaptic connections from 5%, 10% and 40% of randomly selected neurons in the

network.

DOI: https://doi.org/10.7554/eLife.37124.006

The following figure supplements are available for figure 3:

Figure supplement 1. Learning target patterns with low-population spiking rate.

DOI: https://doi.org/10.7554/eLife.37124.007

Figure supplement 2. Learning recurrent dynamics with leaky integrate-and-fire and Izhikevich neuron models.

DOI: https://doi.org/10.7554/eLife.37124.008

Figure supplement 3. Synaptic drive of a network of neurons is trained to learn an identical sine wave while external noise generated independently

from OU process is injected to individual neurons.

DOI: https://doi.org/10.7554/eLife.37124.009
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fluctuating single neuron activities can be turned into dynamic attractors by adjusting the recurrent

connectivity.

We considered a network of randomly connected excitatory and inhibitory neurons that

respected Dale’s Law. Prior to training, the synaptic and spiking activity of individual neurons

showed large variations across trials because small discrepancies in the initial network state led to

rapid divergence of network dynamics. When simulated with two different initial conditions, the syn-

aptic drive to neurons deviated strongly from each other (Figure 4a), and the spiking activity of sin-

gle neurons was uncorrelated across trials and the trial-averaged spiking rate had little temporal

structure (Figure 4b). The network activity was also sensitive to small perturbation; the microstate of

two identically prepared networks diverged rapidly if one spike was deleted from one of the

Figure 4. Learning innate activity in a network of excitatory and inhibitory neurons that respects Dale’s Law. (a) Synaptic drive of sample neurons

starting at random initial conditions in response to external stimulus prior to training. (b) Spike raster of sample neurons evoked by the same stimulus

over multiple trials with random initial conditions. (c) Single spike perturbation of an untrained network. (d)-(f) Synaptic drive, multi-trial spiking response

and single spike perturbation in a trained network. (g) The average phase deviation of theta neurons due to single spike perturbation. (h) Left,

distribution of eigenvalues of the recurrent connectivity before and after training as a function their absolution values. Right, Eigenvalue spectrum of the

recurrent connectivity; gray circle has unit radius. (i) The accuracy of quasi-static approximation in untrained networks and the performance of trained

networks as a function of coupling strength J and synaptic time constant ts. Color bar shows the Pearson correlation between predicted and actual

synaptic drive in untrained networks (left) and innate and actual synaptic drive in trained networks (right).

DOI: https://doi.org/10.7554/eLife.37124.010
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networks (Figure 4c). It has been previously questioned as to whether the chaotic nature of an excit-

atory-inhibitory network could be utilized to perform reliable computations (London et al., 2010;

Monteforte and Wolf, 2012).

As in Laje and Buonomano (2013), we sought to tame the chaotic trajectories of single neuron

activities when the coupling strength is strong enough to induce large and irregular spiking rate fluc-

tuations in time and across neurons (Ostojic, 2014). We initiated the untrained network with random

initial conditions to harvest innate synaptic activity, that is a set of synaptic trajectories that the net-

work already knows how to generate. Then, the recurrent connectivity was trained so that the synap-

tic drive of every neuron in the network follows the innate pattern when stimulated with an external

stimulus. To respect Dale’s Law, the RLS learning rule was modified such that it did not update syn-

aptic connections if there were changes in their signs.

After training, the synaptic drive to every neuron in the network was able to track the innate tra-

jectories in response to the external stimulus within the trained window and diverged from the tar-

get pattern outside the trained window (Figure 4d). When the trained network was stimulated to

evoke the target patterns, the trial-averaged spiking rate developed a temporal structure that was

not present in the untrained network (Figure 4e). To verify the reliability of learned spiking patterns,

we simulated the trained network twice with identical initial conditions but deleted one spike 200 ms

after evoking the trained response from one of the simulations. Within the trained window, the rela-

tive deviation of the microstate was markedly small in comparison to the deviation observed in the

untrained network. Outside the trained window, however, two networks diverged rapidly again,

which demonstrated that training the recurrent connectivity created an attracting flux tube around

what used to be chaotic spike sequences (Monteforte and Wolf, 2012) (Figure 4f,g). Analyzing the

eigenvalue spectrum of the recurrent connectivity revealed that the distribution of eigenvalues shifts

towards zero and the spectral radius decreased as a result of training, which is consistent with the

more stable network dynamics found in trained networks (Figure 4h).

To demonstrate that learning the innate trajectories works well when an excitatory-inhibitory net-

work satisfies the quasi-static condition, we scanned the coupling strength J (see Materials and

methods, ’Training recurrent dynamics’ for the definition) and synaptic time constant ts over a wide

range and evaluated the accuracy of the quasi-static approximation in untrained networks. We find

that increasing either J or ts promoted strong fluctuations in spiking rates (Ostojic, 2014;

Harish and Hansel, 2015), hence improving the quasi-static approximation (Figure 4i). Learning per-

formance was correlated with adherence to the quasi-static approximation, resulting in better per-

formance for strong coupling and long synaptic time constants.

Generating an ensemble of in vivo spiking patterns
We next investigated if the training method applied to actual spike recordings of a large number of

neurons. In a previous study, a network of rate units was trained to match sequential activity imaged

from posterior parietal cortex as a possible mechanism for short-term memory (Harvey et al., 2012;

Rajan et al., 2016). Here, we aimed to construct recurrent spiking networks that captured heteroge-

neous spiking activity of cortical neurons involved in motor planning and movement

(Churchland and Shenoy, 2007; Churchland et al., 2012; Li et al., 2015).

The in vivo spiking data was obtained from the publicly available data of Li et al. (2015), where

they recorded the spike trains of a large number of neurons from the anterior lateral motor cortex of

mice engaged in planning and executing directed licking over multiple trials. We compiled the trial-

average spiking rate of Ncor ¼ 227 cortical neurons from their data set (Li et al., 2014), and trained a

recurrent network model to reproduce the spiking rate patterns of all the Ncor neurons autonomously

in response to a brief external stimulus. We only trained the recurrent connectivity and did not alter

single neuron dynamics or external inputs.

First, we tested if a recurrent network of size Ncor was able to generate the spiking rate patterns

of the same number of cortical neurons. This network model assumed that the spiking patterns of

Ncor cortical neurons could be self-generated within a recurrent network. After training, the spiking

rate of neuron models captured the overall trend of the spiking rate, but not the rapid changes that

may be pertinent to the short term memory and motor response (Figure 5b). We hypothesized that

the discrepancy may be attributed to other sources of input to the neurons not included in the

model, such as recurrent input from other neurons in the local population or input from other areas
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of the brain, or the neuron dynamics that cannot be captured by our neuron model. We thus sought

to improve the performance by adding Naux auxiliary neurons to the recurrent network to mimic the

spiking activity of unobserved neurons in the local population, and trained the recurrent connectivity

of a network of size Ncor ¼ Naux ¼ 2 (Figure 5a). The auxiliary neurons were trained to follow spiking

rate patterns obtained from an OU process and provided heterogeneity to the overall population

activity patterns. When Naux=Ncor � 2, the spiking patterns of neuron models accurately fit that of

cortical neurons (Figure 5c), and the population activity of all Ncor cortical neurons was well captured

Figure 5. Generating in vivo spiking activity in a subnetwork of a recurrent network. (a) Network schematic showing cortical (black) and auxiliary (white)

neuron models trained to follow the spiking rate patterns of cortical neurons and target patterns derived from OU noise, respectively. Multi-trial spike

sequences of sample cortical and auxiliary neurons in a successfully trained network. (b) Trial-averaged spiking rate of cortical neurons (red) and neuron

models (black) when no auxiliary neurons are included. (c) Trial-averaged spiking rate of cortical and auxiliary neuron models when Naux ¼ Naux ¼ 2. (c)

Spiking rate of all the cortical neurons from the data (left) and the recurrent network model (right) trained with Naux ¼ Ncor ¼ 2. (e) The fit to cortical

dynamics improves as the number of auxiliary neurons increases. (f) Random shuffling of synaptic connections between cortical neuron models

degrades the fit to cortical data. Error bars show the standard deviation of results from 10 trials.

DOI: https://doi.org/10.7554/eLife.37124.011
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by the network model (Figure 5d). The fit to cortical activity improved gradually as a function of the

fraction of auxiliary neurons in the network due to increased heterogeneity in the target patterns

(Figure 5e)

To verify that the cortical neurons in the network model were not simply driven by the feed for-

ward inputs from the auxiliary neurons, we randomly shuffled a fraction of recurrent connections

between cortical neurons after a successful training. The fit to cortical data deteriorated as the frac-

tion of shuffled synaptic connections between cortical neurons was increased, which confirmed that

the recurrent connections between the cortical neurons played a role in generating the spiking pat-

terns (Figure 5f).

Sufficient conditions for learning
We can quantify the sufficient conditions the target patterns need to satisfy in order to be success-

fully encoded in a network. The first condition is that the dynamical time scale of both neurons and

synapses must be sufficiently fast compared to the target patterns such that targets can be consid-

ered constant (quasi-static) on a short time interval. In terms of network dynamics, the quasi-static

condition implies that the synaptic and neuron dynamics operate as if in a stationary state even

though the stationary values change as the network activity evolves in time. In this quasi-static state,

we can use a mean field description of the spiking dynamics to derive a self-consistent equation that

captures the time-dependent synaptic and spiking activity of neurons (Buice and Chow, 2013;

Ostojic, 2014; Brunel, 2000) (see Materials and methods, ’Mean field description of the quasi-static

dynamics’). Under the quasi-static approximation, the synaptic drive satisfies

Ui tð Þ ¼
X

N

j¼1

Wijf Uj tð Þþ Ij
� �

; (1)

and the spiking rate Ri ¼f Uiþ Iið Þ satisfies

Ri tð Þ ¼f
X

N

j¼1

WijRj tð Þ
 !

; (2)

where f is the current-to-rate transfer (i.e. gain) function and Ii is a constant external input.

The advantage of operating in a quasi-static state is that both measures of network activity

become conducive to learning new patterns. First, Equation 1 is closed in terms of U, which implies

that training the synaptic drive is equivalent to training a rate-based network. Second, the RLS algo-

rithm can efficiently optimize the recurrent connectivity W, thanks to the linearity of Equation 1 in

W, while the synaptic drive closely follows the target patterns as shown in Figure 1b. The spiking

rate also provides a closed description of the network activity, as described in Equation 2. However,

due to nonlinearity in W, it learns only when the total input to a neuron is supra-threshold, that is the

gradient of f must be positive. For this reason, the learning error cannot be controlled as tightly as

the synaptic drive and requires additional trials for successful learning as shown in Figure 1d.

The second condition requires the target patterns to be sufficiently heterogeneous in time and

across neurons. Such complexity allows the ensemble of spiking activity to have a rich spatiotempo-

ral structure to generate the desired activity patterns of every neuron within the network. In the per-

spective of ‘reservoir computing’ (Maass et al., 2002; Jaeger and Haas, 2004; Sussillo and

Abbott, 2009), every neuron in a recurrent network is considered to be a read-out, and, at the same

time, it is part of the reservoir that is collectively used to produce desired patterns in single neurons.

The heterogeneity condition is equivalent to having a set of complete (or over-complete) basis func-

tions, that is f Uj þ Ij
� �

; j ¼ 1; :::;N in Equation 1 and Rj; j ¼ 1; :::;N in Equation 2, to generate the

target patterns, that is the left hand side of Equations 1 and 2. The two conditions are not necessar-

ily independent. Heterogeneous targets also foster asynchronous spiking activity that support quasi-

static dynamics.

We can illustrate the necessity of heterogeneous target functions with a simple argument. Suc-

cessful learning is achieved for the synaptic drive when Equation 1 is satisfied. If we discretize time

into P‘quasi-static’ bins then we can consider the target Ui tð Þ as a N � P matrix that satisfies the sys-

tem of equations expressed in matrix form as U ¼ WV , where V � f U þ Ið Þ is an N � P matrix. Since

the elements of W are the unknowns, it is convenient to consider the transpose of the matrix
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equation, UT ¼ VTWT . Solving for WT is equivalent to finding wi in ui ¼ VT
wi for i ¼ 1; :::;N, where

ui is a vector in P-dimensional Euclidean space RP denoting the ith column of UT (the synaptic drive

of neuron i) and wi is an N-dimensional vector denoting the ith column of WT (the incoming synaptic

connections to neuron i). We also denote the column vectors of VT in RP by v1; :::;vN (the firing rate

patterns of neurons induced by the target functions). For each i, the system of equations consists of

P equations and N unknowns.

In general, the system of equations is solvable if all target functions ui; i ¼ 1; :::;N lie in the sub-

space spanned by v1; :::;vN . This is equivalent to stating that the target functions can be self-consis-

tently generated by the firing rate patterns induced by the target functions. We define target

functions to be sufficiently heterogeneous if rank Vð Þ is maximal and show that this is a sufficient con-

dition for solutions to exist. Since the span of v1; :::;vN encompasses the largest possible subspace

in RP if rank Vð Þ is maximal, it is justified as a mathematical definition of sufficiently heterogeneous.

In particular, if N � P and rank Vð Þ is maximal, we have dim span v1; :::;vNf g ¼ P, which implies that

the set of firing rate vectors v1; :::;vN fully span RP, of which the target vectors ui are elements; in

other words, v1; :::;vN forms an (over-)complete set of basis functions of RP. On the other hand, if

N<P and rank Vð Þ is maximal, we have dim span v1; :::;vNf g ¼ N, which implies linearly independent

v1; :::;vN can only span an N-dimensional subspace of RP, but such subspace still attains the largest

possible dimension.

Now we consider the solvability of ui ¼ VT
wi when rank Vð Þ is maximal. For N � P, the set of vec-

tors v1; :::;vN fully span RP, or equivalently we can state that there are more unknowns (N) than inde-

pendent equations (P), in which case the equation can always be satisfied and learning the pattern is

possible. If N is strictly larger than P then a regularization term is required for the algorithm to con-

verge to a specific solution out of the many possible solutions, the number of which decreases as P

approaches N. For N<P, on the other hand, v1; :::;vN spans an N-dimensional subspace of RP, or

equivalently there will be more equations than unknowns and perfect learning is not possible. How-

ever, since rank Vð Þ is maximal, there is an approximate regression solution of the form

W ¼ UVT VVTð Þ�1
, where the inverse of VVT exists since the set of vectors v1; :::;vN is linearly

independent.

When rank Vð Þ is not maximal, successful learning is still possible as long as all ui; i ¼ 1; :::;N lie

close to the subspace spanned by v1; :::;vN . However, the success depends on the specific choice of

target functions, because the dimension of the subspace spanned by v1; :::;vN is strictly less than P,

so whether the rows of U are contained in or close to this subspace is determined by the geometry

of the subspace. This shows why increasing pattern heterogeneity, which makes the columns of VT

more independent and the rank higher, is beneficial for learning. Conversely, as a larger number of

neurons is trained on the same target, as considered in Figure 3c, it becomes increasingly difficult

to develop the target pattern ui with the limited set of basis functions v1; :::;vN .

This argument also shows why learning capability declines as P increases, with a steep decline for

P>N. If we ascribe a quasi-static bin to some fraction of the pattern correlation time then P will scale

with the length of the pattern temporal length. In this way, we can intuitively visualize the temporal

storage capacity demonstrated below in Figure 7 through simulations.

We note that although Equations 1 and 2 describe the dynamical state in which learning works

well, merely finding W that satisfies one of the equations does not guarantee that a spiking network

with recurrent connectivity W will produce the target dynamics in a stable manner. The recurrent

connectivity W needs to be trained iteratively as the network dynamics unfold in time to ensure that

the target dynamics is generated in a stable manner (Sussillo and Abbott, 2009). There are three

aspects of the training scheme that promote stable dynamics around the target trajectories. First,

the stimulus at the onset of the learning window is applied at random times so it only sets the initial

network states close to each other but with some random deviations. Training with initial conditions

sampled from a small region in the state space forces the trained network to be robust to the choice

of initial condition, and the target dynamics can be evoked reliably. Second, various network states

around the target trajectories are explored while W is learning the desired dynamics. In-between the

time points when W is updated, the network states evolve freely with no constraints and can thus

diverge from the desired trajectory. This allows the network to visit different network states in the

neighborhood of the target trajectories during training, and the trained network becomes resistant

to relatively small perturbations from the target trajectories. Third, the synaptic update rule is
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designed to reduce the error between the target and the ongoing network activity each time W is

updated. Thus, the sequential nature of the training procedure automatically induces stable dynam-

ics by contracting trajectories toward the target throughout the entire path. In sum, robustness to

initial conditions and network states around the target trajectories, together with the contractive

property of the learning scheme, allow the trained network to generate the target dynamics in a sta-

ble manner.

Characterizing learning error
Learning errors can be classified into two categories. There are tracking errors, which arise because

the target is not a solution of the true spiking network dynamics and sampling errors, which arise

from encoding a continuous function with a finite number of spikes. We note that for a rate network,

there would only be a tracking error. We quantified these learning errors as a function of the net-

work and target time scales. The intrinsic time scale of spiking network dynamics was the synaptic

decay constant ts, and the time scale of target dynamics was the decay constant tc of OU noise. We

used target patterns generated from OU noise since the trajectories have a predetermined time

scale and their spatio-temporal patterns are sufficiently heterogeneous.

We systematically varied ts and tc from fast AMPA-like (~ 1 ms) to slow NMDA-like synaptic trans-

mission (~ 100 ms) and trained the synaptic drive of networks with synaptic time scale ts to learn a

set of OU trajectories with timescale tc. The parameter scan revealed a learning regime, where the

networks successfully encoded the target patterns, and two error-dominant regimes. The tracking

error was prevalent when synapses were slow in comparison to target patterns, and the sampling

error dominated when the synapses were fast (Figure 6a).

A network with a synaptic decay time ts ¼ 200 ms failed to follow rapid changes in the target pat-

terns, but still captured the overall shape, when the target patterns had a faster time scale tc ¼ 100

ms (Figure 6b, Tracking error). This prototypical example showed that the synaptic dynamics were

not fast enough to encode the target dynamics in the tracking error regime. With a faster synapse

ts ¼ 30 ms, the synaptic drive was able to learn the identical target trajectories with high accuracy

(Figure 6b, Learning). Note that although the target time scale (tc ¼ 100 ms) was significantly slower

than the synaptic time scale (ts ¼ 30 ms), tuning the recurrent synaptic connections was sufficient for

the network to generate slow network dynamics using fast synapses. This phenomenon was shown

robustly in the learning regime in Figure 4a where learning occurred successfully for the parameters

lying above the diagonal line (tc>ts). When the synapse was too fast ts ¼ 5 ms, however, the synaptic

drive fluctuated around the target trajectories with high frequency (Figure 6b, Sampling error). This

was a typical network response in the sampling error regime where discrete spikes with narrow width

and large amplitude were summed to ‘sample’ the target synaptic activity.

To better understand how network parameters determined the learning errors, we mathemati-

cally analyzed the errors assuming that (1) target dynamics can be encoded if the quasi-static condi-

tion holds, and (2) the mean field description of the target dynamics is accurate (see Materials and

methods, ’Analysis of learning error’). The learning errors were characterized as a deviation of these

assumptions from the actual spiking network dynamics. We found that the tracking errors �track were

substantial if the quasi-static condition was not valid, that is synapses were not fast enough for spik-

ing networks to encode targets, and the sampling errors �sample occurred if the mean field description

became inaccurate, that is discrete representation of targets in terms of spikes deviated from their

continuous representation in terms of spiking rates. The errors were estimated to scale with

�track ~ts=tc; �sample ~1=
ffiffiffiffiffiffiffiffi

tsN
p

; (3)

which implied that tracking error can be controlled as long as synapses are relatively faster than tar-

get patterns, and the sampling error can be controlled by either increasing ts to stretch the width of

individual spikes or increasing N to encode the targets with more input spikes. The error estimates

revealed the versatility of recurrent spiking networks to encode arbitrary patterns since �track can be

reduced by tuning ts to be small enough and �sample can be reduced by increasing N to be large

enough. In particular, target signals substantially slower than the synaptic dynamics (i.e. ts=tc � 1)

can be encoded reliably as long as the network size is large enough to represent the slow signals

with filtered spikes that have narrow widths. Such slow dynamics were also investigated in randomly
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connected recurrent networks when coupling is strong (Sompolinsky et al., 1988; Ostojic, 2014)

and reciprocal connections are over-represented (Martı́ et al., 2018).

We examined the performance of trained networks to verify if the theoretical results can explain

the learning errors. The learning curve, as a function of ts, had an inverted U-shape when both types

of errors were present (Figure 6c, d). Successful learning occurred in an optimal range of ts, and,

consistent with the error analysis, the performance decreased monotonically with ts on the right

branch due to increase in the tracking error while the performance increased monotonically with ts

on the left branch due to decrease in the sampling error. The tracking error was reduced if target

patterns were slowed down from tc ¼ 50 ms to tc ¼ 200 ms, hence decreased the ratio ts=tc. Then,

the learning curve became sigmoidal, and the performance remained high even when ts was in the

slow NMDA regime (Figure 6c). On the other hand, the sampling error was reduced if the network

size was increased from N ¼ 500 to 1500, which lifted the left branch of the learning curve

(Figure 6d). Note that when two error regimes were well separated, changes in target time scale tc

did not affect �sample, and changes in network size N did not affect �sample, as predicted.

Finally, we condensed the training results over a wide range of target time scales in the tracking

error regime (Figure 6e), and similarly condensed the training results over different network sizes in

the sampling error regime (Figure 6f) to demonstrate that ts=tc and Nts explained the overall perfor-

mance in the tracking and sampling error regimes, respectively.

Figure 6. Sampling and tracking errors. Synaptic drive was trained to learn 1 s long trajectories generated from OU noise with decay time tc. (a)

Performance of networks of size N ¼ 500 as a function of synaptic decay time ts and target decay time tc. (b) Examples of trained networks whose

responses show sampling error, tracking error, and successful learning. The target trajectories are identical and tc ¼ 100 ms. (c) Inverted ‘U’-shaped

curve as a function of synaptic decay time. Error bars show the s.d. of five trained networks of size N ¼ 500. (d) Inverted ‘U’-shaped curve for networks

of sizes N ¼ 500 and 1000 for tc ¼ 100 ms. (e) Network performance shown as a function of ts=tc where the range of ts is from 30 ms to 500 ms and the

range of tc is from 1ms to 500ms and N ¼ 1000. (f) Network performance shown as a function of 1=
ffiffiffiffiffiffiffiffi

Nts
p

where the range of ts is from 1 ms to 30 ms,

the range of N is from 500 to 1000 and tc ¼ 100 ms.

DOI: https://doi.org/10.7554/eLife.37124.012
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Learning capacity increases with network size
It has been shown that a recurrent rate network’s capability to encode target patterns deteriorates

as a function of the length of time (Laje and Buonomano, 2013), but increase in network size can

enhance its storage capacity (Jaeger, 2001; White et al., 2004; Rajan et al., 2016). Consistent with

these results, we found that the performance of recurrent spiking networks to learn complex trajec-

tories decreased with target length and improved with network size (Figure 7a).

To assess the storage capacity of spiking networks, we evaluated the maximal target length that

can be encoded in a network as a function of network size. It was necessary to define the target

length in terms of its ‘effective length’ to account for the fact that target patterns with the same

length may have different effective length due to their temporal structures; for instance, OU noise

with short temporal correlation times has more structure to be learned than a constant function. For

target trajectories generated from an OU process with decay time tc, we rescaled the target length

T with respect to tc and defined the effective length ~T ¼ T=tc. The capacity of a network was the

maximal ~T that can be successfully encoded in a network.

To estimate the maximal ~T, we trained networks of fixed size to learn OU trajectories while vary-

ing T and tc (each panel in Figure 7b). Then, for each tc, we found the maximal target length Tmax

that can be learned successfully, and estimated the maximal ~T by finding a constant ~Tmax that best

fits the line Tmax ¼ ~Tmaxtc to training results (black lines in Figure 7b). Figure 7c shows that the learn-

ing capacity ~Tmax increases monotonically with the network size.

Discussion
Our findings show that individual neurons embedded in a recurrent network can learn to produce

complex activity by adjusting the recurrent synaptic connections. Most previous research on learning

in recurrent neural networks focused on training the network outputs to perform useful computa-

tions and subsequently analyzed the recurrent activity in comparison with measured neuron activity

(Sussillo and Abbott, 2009; Sussillo et al., 2015; Sussillo and Barak, 2013; Wang et al., 2018;

Chaisangmongkon et al., 2017; Remington et al., 2018). In contrast to such output-centric

approaches, our study takes a network-centric perspective and directly trains the activity of neurons

within a network individually. Several studies have trained a rate-based network model to learn spe-

cific forms of target recurrent activity, such as innate chaotic dynamics (Laje and Buonomano,

2013), sequential activity (Rajan et al., 2016), and trajectories from a target network

(DePasquale et al., 2018). In this study, we showed that the synaptic drive and spiking rate of a syn-

aptically-coupled spiking network can be trained to follow arbitrary spatiotemporal patterns. The

necessary ingredients for learning are that the spike train inputs to a neuron are weakly correlated

Figure 7. Capacity as a function of network size. (a) Performance of trained networks as a function of target length T for networks of size N ¼ 500 and

1000. Target patterns were generated from OU noise with decay time tc ¼ 100 ms. (b) Networks of fixed sizes trained on a range of target length and

correlations. Color bar shows the Pearson correlation between target and actual synaptic drive. The black lines show the function Tmax ¼ ~Tmaxtc where

~Tmax was fitted to minimize the least square error between the linear function and maximal target length Tmax that can be successfully learned at each tc.

(c) Learning capacity ~Tmax shown as a function of network size.

DOI: https://doi.org/10.7554/eLife.37124.013
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(i.e. heterogeneous target patterns), the synapses are fast enough (i.e. small tracking error), and the

network is large enough (i.e. small sampling error and large capacity). We demonstrated that (1) a

network consisting of excitatory and inhibitory neurons can learn to track its strongly fluctuating

innate synaptic trajectories, and (2) are current spiking network can learn to reproduce the spiking

rate patterns of an ensemble of cortical neurons involved in motor planning and movement.

Our scheme works because the network quickly enters a quasi-static state where the instanta-

neous firing rate of a neuron is a fixed function of the inputs (Figure 3a, b; Equations 1, 2). Learning

fails if the synaptic time scale is slow compared to the time scale of the target, in which case the

quasi-static condition is violated and the tracking error becomes large. There is a trade-off between

tracking error and sampling noise; fast synapse can decrease the tracking error, but it also increases

the sampling noise. Increasing the network size can decrease sampling noise without affecting the

tracking error (Figure 6e, f; Equation 3). Therefore, analysis of learning error and simulations sug-

gest that it is possible to learn arbitrarily complex recurrent dynamics by adjusting the synaptic time

scale and network size.

An important structural property of our network model is that the synaptic inputs are summed lin-

early, which allows the synaptic activity to be trained using a recursive form of linear regression

(Sussillo and Abbott, 2009; Equation 6). Linear summation of synaptic inputs is a standard assump-

tion for many spiking network models (van Vreeswijk et al., 1996; Renart et al., 2010; Bru-

nel, 2000; Wang and Buzsáki, 1996; Rosenbaum et al., 2017) and there is physiological evidence

that linear summation is prevalent (Cash and Yuste, 1998; Cash and Yuste, 1999). Training the spik-

ing rate, on the other hand, cannot take full advantage of the linear synapse due to the nonlinear

current-to-transfer function (Figure 1d, e; Equation 2). The network is capable of following a wide

repertoire of patterns because even though the network dynamics are highly nonlinear, the system

effectively reduces to a linear system for learning. Moreover, learning capacity can be estimated

using a simple solvability condition for a linear system. However, nonlinear dendritic processing has

been widely observed (Gasparini and Magee, 2006; Nevian et al., 2007) and may have computa-

tional consequences (Memmesheimer, 2010; Memmesheimer and Timme, 2012; Thalmeier et al.,

2016). It requires further investigation to find out whether a recurrent network with nonlinear synap-

ses can be trained to learn arbitrary recurrent dynamics.

We note that our learning scheme does not train precise spike times; it either trains the spiking

rate or the synaptic drive. The stimulus at the onset of the learning window attempts to set the net-

work to a specific state, but due to the variability of the initial conditions the network states can only

be set approximately close to each other across trials. Because of this discrepancy in network states

at the onset, the spike times are not aligned precisely across trials. Hence, our learning scheme sup-

ports rate coding as opposed to spike coding. However, spike trains that have temporally irregular

structure across neurons actually enhance the rate coding scheme by providing sufficient computa-

tional complexity to encode the target dynamics (Results, ’Sufficient conditions for learning’). In fact,

all neurons in the network can be trained to follow the same target patterns as long as there is suffi-

cient heterogeneity, for example noisy external input, and the neuron time constant is fast enough

(Figure 3—figure supplement 3). We also note that the same learning scheme can also be used to

train the recurrent dynamics of rate-based networks (Figure 1—figure supplement 1). In fact, the

learning is more efficient in a rate network since there is no sampling error to avoid.

The RLS algorithm, as demonstrated in this and other studies (Sussillo and Abbott, 2009;

Sussillo et al., 2015; Laje and Buonomano, 2013; Rajan et al., 2016; DePasquale et al., 2018;

Wang et al., 2018), successfully generates desired outputs in a stable manner because the synaptic

update rule contracts the network activity towards the target output, and the synaptic connections

are adjusted while the network explores various states around the target trajectories. It would be

interesting to examine more rigorously how such an iterative learning scheme turns a set of arbitrary

functions into dynamic attractors to which the network dynamics converge transiently. Recent stud-

ies investigated how stable dynamics emerge when the read-outs of a rate-based network are

trained to learn fixed points or continuous values (Rivkind and Barak, 2017; Beer and Barak, 2018).

In addition, previous studies have investigated the mathematical relationship between the patterns

of stored fixed points and the recurrent connectivity in simple network models (Curto et al., 2013;

Brunel, 2016).

Although our results demonstrated that recurrent spiking networks have the capability to gener-

ate a wide range of repertoire of recurrent dynamics, it is unlikely that a biological network is using
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this particular learning scheme. The learning rule derived from recursive least squares algorithm is

very effective but is nonlocal in time, that is it uses the activity of all presynaptic neurons within the

train time window to update synaptic weights. Moreover, each neuron in the network is assigned

with a target signal and the synaptic connections are updated at a fast time scale as the error func-

tion is computed in a supervised manner. It would be of interest to find out whether more biologi-

cally plausible learning schemes, such as reward-based learning (Fiete and Seung, 2006;

Hoerzer et al., 2014; Miconi, 2017) can lead to similar performance.

Materials and methods

Network of spiking neurons
We considered a network of N randomly and sparsely connected quadratic integrate-and-fire neu-

rons given by

t _vi ¼ Ii tð Þþ ui tð Þþ v2i (4)

where vi is a dimensionless variable representing membrane potential, Ii tð Þ is an applied input, ui tð Þ
is the total synaptic drive the neuron receives from other neurons in the recurrent network, and t¼
10 ms is a neuron time constant. The threshold to spiking is zero input. For negative total input, the

neuron is at rest and for positive input, vi will go to infinity or ‘blow up’ in finite time from any initial

condition. The neuron is considered to spike at vi ¼¥ whereupon it is reset to �¥ (Ermentr-

out, 1996; Latham et al., 2000).

To simulate the dynamics of quadratic integrate-and-fire neurons, we used its phase representa-

tion, that is theta neuron model, that can be derived by a simple change of variables, vi ¼ tan �i=2ð Þ;
its dynamics are governed by

t

_�i ¼ 1� cos�iþ Ii tð Þþ ui tð Þð Þ 1þ cos�ið Þ; (5)

where a spike is emitted when � tð Þ ¼p. The synaptic drive to a neuron obeys

ts _ui tð Þ ¼�ui tð Þþ
X

N

j¼1

Wijsj tð Þ; (6)

where sj tð Þ ¼
P

tk
j
<td t� tkj

� �

is the spike train neuron j generates up to time t, and ts is a synaptic time

constant.

The recurrent connectivity Wij describes the synaptic coupling from neuron j to neuron i. It can be

any real matrix but in many of the simulations we use a random matrix with connection probability p,

and the coupling strength of non-zero elements is modeled differently for different figures.

Training recurrent dynamics
To train the synaptic and spiking rate dynamics of individual neurons, it is more convenient to divide

the synaptic drive Equation 6 into two parts; one that isolates the spike train of single neuron and

computes its synaptic filtering

ts _ri tð Þ ¼�ri tð Þþ si tð Þ; (7)

and the other that combines all the presynaptic neurons’ spiking activity and computes the synaptic

drive

ui tð Þ ¼
X

N

j¼1

Wijrj tð Þ: (8)

The synaptic drive ui and the filtered spike train ri are two measures of spiking activity that have

been trained in this study. Note that Equations 7 and 8 generate synaptic dynamics that are equiva-

lent to Equation 6.
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Training procedure
We select N target trajectories f1 tð Þ; :::; fN tð Þ of length T ms for a recurrent network consisting of N

neurons. We train either the synaptic drive or spiking rate of individual neuron i to follow the target

fi tð Þ over time interval 0; T½ � for all i ¼ 1; :::;N. External stimulus Ii with amplitude sampled uniformly

from �1; 1½ � is applied to neuron i for all i ¼ 1; 2; :::;N for 100 ms immediately preceding the training

to situate the network at a specific state. During training, the recurrent connectivity W is updated

every Dt ms using a learning rule described below in order to steer the network dynamics toward the

target dynamics. The training is repeated multiple times until changes in the recurrent connectivity

stabilize.

Training synaptic drive
Recent studies extended the RLS learning (also known as FORCE methods) developed in rate net-

works (Sussillo and Abbott, 2009) either directly (Nicola and Clopath, 2017) or indirectly using rate

networks as an intermediate step (DePasquale et al., 2016; Abbott et al., 2016; Thalmeier et al.,

2016) to train the output of spiking networks. Our learning rule uses the RLS learning but is different

from previous studies in that (a) it trains the activity of individual neurons within a spiking network

and (b) neurons are trained directly by adjusting the recurrent synaptic connections without using

any intermediate networks. We modified the learning rule developed by Laje and Buonomano in a

network of rate units (Laje and Buonomano, 2013) and also provided mathematical derivation of

the learning rules for both the synaptic drive and spiking rates (see Materials and methods, ’Deriva-

tion of synaptic learning rules’ for details).

When learning the synaptic drive patterns, the objective is to find recurrent connectivity W that

minimizes the cost function

C W½ � ¼
Z T

0

1

2
jjf tð Þ�u tð Þjj2L2dtþ

l

2
jjW jj2L2 ; (9)

which measures the mean-square error between the targets and the synaptic drive over the time

interval 0;T½ � plus a quadratic regularization term. To derive the learning rule, we use Equation 8 to

express u as a function of W, view the synaptic connections Wi1; :::;WiN to neuron i to be the read-out

weights that determine the synaptic drive ui, and apply the learning rule to the row vectors of W . To

keep the recurrent connectivity sparse, learning occurs only on synaptic connections that are non-

zero prior to training.

Let wi tð Þ be the reduced row vector of W tð Þ consisting of elements that have non-zero connec-

tions to neuron i prior to training. Similarly, let ri tð Þ be a (column) vector of filtered spikes of presyn-

aptic neurons that have non-zero connections to neuron i. The synaptic update to neuron i is

wi tð ÞT¼wi t�Dtð ÞTþei tð ÞP tð Þri tð Þ; (10)

where the error term is

ei tð Þ ¼ fi tð Þ�wi t�Dtð Þri tð Þ (11)

and the inverse of the correlation matrix of filtered spike trains is

P tð Þ ¼ P t�Dtð Þ�P t�Dtð Þri tð Þri tð ÞTP t�Dtð Þ
1þ ri tð ÞTP t�Dtð Þri tð Þ

;P 0ð Þ ¼ l�1I: (12)

Finally, W tð Þ is obtained by concatenating the row vectors wi tð Þ; i¼ 1; :::;N.

Training spiking rate
To train the spiking rate of neurons, we approximate the spike train si tð Þ of neuron i with its spiking

rate f ui tð Þ þ Iið Þ where f is the current-to-rate transfer function of theta neuron model. For constant

input,
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f1 xð Þ ¼p�1

ffiffiffiffiffiffiffiffi

x½ �þ
q

where x½ �þ¼max x;0ð Þ; (13)

and for noisy input

f2 xð Þ ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c log 1þ ex=cð Þ
q

: (14)

Since f2 is a good approximation of f1 and has a smooth transition around x¼ 0, we used f�f2

with c¼ 0:1 (Brunel and Latham, 2003). The objective is to find recurrent connectivity W that mini-

mizes the cost function

C W½ � ¼
Z T

0

1

2
jjf tð Þ�f Wr tð Þþ Ið Þjj2L2dtþ

l

2
jjW jj2L2 : (15)

If we define wi and ri as before, we can derive the following synaptic update to neuron i

wT
i tð Þ ¼wT

i t�Dtð Þþ ei tð ÞP tð Þ~ri tð Þ; (16)

where the error term is

ei tð Þ ¼ fi tð Þ�f wi t�Dtð Þri tð Þþ Iið Þ (17)

and

P tð Þ ¼ P t�Dtð Þ�P t�Dtð Þ~ri tð Þ~ri tð ÞTP t�Dtð Þ
1þ~ri tð ÞTP t�Dtð Þ~ri tð Þ

;P0 ¼ l�1I: (18)

(see Materials and methods, ’Derivation of synaptic learning rules’ for details). Note that the non-

linear effects of the transfer function is included in

~ri tð Þ ¼f0 ui tð Þþ Iið Þri tð Þ; (19)

which scales the spiking activity of neuron i by its gain function f0.

As before, W tð Þ is obtained by concatenating the row vectors ri tð Þ; i ¼ 1; :::;N.

Simulation parameters
Figure 1
A network of N ¼ 200 neurons was connected randomly with probability p ¼ 0:3 and the coupling

strength was drawn from a Normal distribution with mean 0 and standard deviation s=
ffiffiffiffiffiffi

Np
p

with

s ¼ 4. In addition, the average of all non-zero synaptic connections to a neuron was subtracted from

the connections to the neuron such that the summed coupling strength was precisely zero. Networks

with balanced excitatory and inhibitory connections produced highly fluctuating synaptic and spiking

activity in all neurons. The synaptic decay time was ts ¼ 20 ms.

The target functions for the synaptic drive (Figure 1b) were sine waves f tð Þ ¼ A sin 2p t � T0ð Þ=T1ð Þ
where the amplitude A, initial phase T0, and period T1 were sampled uniformly from ½0:5; 1:5�,
½0; 1000ms� and ½300ms; 1000ms�, respectively. We generated N distinct target functions of length T ¼
1000 ms. The target functions for the spiking rate (Figure 1d) were p�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f tð Þ½ �þ
p

where f tð Þ were the

same synaptic drive patterns that have been generated.

Immediately before each training loop, every neuron was stimulated for 50 ms with constant

external stimulus that had random amplitude sampled from �1; 1½ �. The same external stimulus was

used across training loops. The recurrent connectivity was updated every Dt ¼ 2 ms during training

using the learning rule derived from RLS algorithm and the learning rate was l ¼ 1. After training,

the network was stimulated with the external stimulus to evoke the trained patterns. The perfor-

mance was measured by calculating the average Pearson correlation between target functions and

the evoked network response.

Kim and Chow. eLife 2018;7:e37124. DOI: https://doi.org/10.7554/eLife.37124 18 of 28

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.37124


Figure 2
The initial network and target functions were generated as in Figure 1 using the same parameters,

but now the target functions consisted of two sets of N sine waves. To learn two sets of target pat-

terns, the training loops alternated between two patterns, and immediately before each training

loop, every neuron was stimulated for 50 ms with constant external stimuli that had random ampli-

tudes, using a different stimulus for each pattern. Each target pattern was trained for 100 loops (i.e.

total 200 training loops), synaptic update was every Dt ¼ 2 ms, and the learning rate was l ¼ 10. To

evoke one of the target patterns after training, the network was stimulated with the external stimulus

that was used to train that target pattern.

The network consisted of N ¼ 500 neurons. The initial connectivity was sparsely connected with

connection probability p ¼ 0:3 and coupling strength was sampled from a Normal distribution with

mean 0 and standard deviation s=
ffiffiffiffiffiffi

Np
p

with s ¼ 1. The synaptic decay time was ts ¼ 20 ms.

We considered three families of target functions with length T ¼ 1000 ms. The complex periodic

functions were defined as a product of two sine waves f tð Þ ¼ A sin 2p t � T0ð Þ=T1ð Þ sin 2p t � T0ð Þ=T2ð Þ
where A, T0, T1 and T2 were sampled randomly from intervals 0:5; 1:5½ �, 0; 1000ms½ �, 500ms; 1000ms½ �,
and 100ms; 500ms½ �, respectively. The chaotic rate activity was generated from a network of N ran-

domly connected rate units, t _xi ¼ �xi þ
PN

j¼1
Mijh xj

� �

where t ¼ 40 ms, h xð Þ ¼ p�1
ffiffiffiffiffiffiffiffi

x½ �þ
p

and Mij is

non-zero with probability p ¼ 0:3 and is drawn from Gaussian distribution with mean zero and stan-

dard deviation g=
ffiffiffiffiffiffi

Np
p

with g ¼ 5. The Ornstein-Ulenbeck process was obtained by simulating,

tc _x ¼ �xþ s� tð Þ, N times with random initial conditions and different realizations of the white noise

� tð Þ satisfying �h i ¼ 0 and � tð Þ� t0ð Þh i ¼ d t � t0ð Þ. The decay time constant was tc ¼ 200 ms, and the

amplitude of target function was determined by s ¼ 0:3.

The recurrent connectivity was updated every Dt ¼ 2 ms during training, the learning rate was

l ¼ 1, and the training loop was repeated 30 times.

Figure 4
A balanced network had two populations where the excitatory population consisted of 1� fð ÞN neu-

rons and the inhibitory population consisted of f N neurons with ratio f ¼ 0:2 and network size

N ¼ 1000. Each neuron received p 1� fð ÞN excitatory connections with strength J and p f N inhibitory

connections with strength �gJ from randomly selected excitatory and inhibitory neurons. The con-

nection probability was set to p ¼ 0:1 to have sparse connectivity. The relative strength of inhibition

to excitation g was set to 5 so that the network was inhibition dominant (Brunel, 2000). In

Figure 4a–h, the initial coupling strength J ¼ 6 and synaptic decay time ts ¼ 60 ms were adjusted to

be large enough, so that the synaptic drive and spiking rate of individual neurons fluctuated strongly

and slowly prior to training.

After running the initial network that started at random initial conditions for 3 s, we recorded the

synaptic drive of all neurons for 2 s to harvest target trajectories that are innate to the balanced net-

work. Then, the synaptic drive was trained to learn the innate trajectories, where synaptic update

occurred every 10 ms, learning rate was l ¼ 10 and training loop was repeated 40 times. To respect

Dale’s Law while training the network, we did not modify the synaptic connections if the synaptic

update reversed the sign of original connections, either from excitatory to inhibitory or from inhibi-

tory to excitatory. Moreover, the synaptic connections that attempted to change their signs were

excluded in subsequent trainings. In bf Figure 4h, the initial and trained connectivity matrices were

normalized by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� fð ÞJ2 þ f gJð Þ2
h i

1� pð Þ
r

so that the spectral radius of the initial connectiv-

ity matrix is approximately 1, then we plotted the eigenvalue spectrum of the normalized matrices.

In Figure 4i, the coupling strength J was scanned from 1 to 6 in increments of 0.25, and the syn-

aptic decay time ts was scanned from 5 ms to 100 ms in increments of 5 ms. To measure the accu-

racy of quasi-static approximation in untrained networks, we simulated the network dynamics for

each pair of J and ts, then calculated the average Person correlation between the predicted synaptic

drive (Equation 1) and the actual synaptic drive. To measure the performance of trained networks,

we repeated the training 10 times using different initial network configurations and innate trajecto-

ries, and calculated the Pearson correlation between the innate trajectories and the evoked network

response for all 10 trainings. The heat map shows the best performance out of 10 trainings for each

pair, J and ts.
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Figure 5
The initial connectivity was sparsely connected with connection probability p ¼ 0:3 and the coupling

strength was sampled from a Normal distribution with mean 0 and standard deviation s=
ffiffiffiffiffiffi

Np
p

with

s ¼ 1. The synaptic decay time was ts ¼ 50 ms. There were in total N neurons in the network model,

of which Ncor neurons, called cortical neurons, were trained to learn the spiking rate patterns of corti-

cal neurons, and Naux neurons, called auxiliary neurons, were trained to learn trajectories generated

from OU process.

We used the trial-averaged spiking rates of neurons recorded in the anterior lateral motor cortex

of mice engaged in motor planning and movement that lasted 4600 ms (Li et al., 2015). The data

was available from the website CRCNS.ORG (Li et al., 2014). We selected Ncor ¼ 227 neurons from

the data set, whose average spiking rate during the behavioral task was greater than 5 Hz. Each cor-

tical neuron in the network model was trained to learn the spiking rate pattern of one of the real cor-

tical neurons.

To generate target rate functions for the auxiliary neurons, we simulated an OU process,

tc _x tð Þ ¼ �x tð Þ þ s� tð Þ, with tc ¼ 800 ms and s ¼ 0:1, then converted into spiking rate f x tð Þ½ �þ
� �

and

low-pass filtered with decay time ts to make it smooth. Each auxiliary neuron was trained on 4600

ms-long target rate function that was generated with a random initial condition.

Figure 6 and 7
Networks consisting of N ¼ 500 neurons with no initial connections and synaptic decay time ts were

trained to learn OU process with decay time tc and length T. In Figure 6, target length was fixed to

T ¼ 1000 ms while the time constants ts and tc were varied systematically from 10
0 ms to 5 � 102 ms in

log-scale. The trainings were repeated five times for each pair of ts and tc to find the average perfor-

mance. In Figure 7, the synaptic decay time was fixed to ts ¼ 20 ms and T was scanned from 250 ms

to 5000 ms in increments of 250 ms, tc was scanned from 25 ms to 500 ms in increments of 25 ms,

and N was scanned from 500 to 1000 in increments of 50.

To ensure that the network connectivity after training is sparse, synaptic learning occurred only

on connections that were randomly selected with probability p ¼ 0:3 prior to training. Recurrent con-

nectivity was updated every Dt ¼ 2 ms during training, learning rate was l ¼ 1, and training loop was

repeated 30 times. The average Pearson correlation between the target functions and the evoked

synaptic activity was calculated to measure the network performance after training.

Derivation of synaptic learning rules
Here, we derive the synaptic update rules for the synaptic drive and spiking rate trainings, Equa-

tions 10 and 16. We use RLS algorithm (Haykin, 1996) to learn target functions fi tð Þ; i ¼ 1; 2; :::;N

defined on a time interval 0; T½ �, and the synaptic update occurs at evenly spaced time points,

0 ¼ t0 � t1::: � tK ¼ T.

In the following derivation, super-script k on a variable Xk
i implies that X is evaluated at tk, and

the sub-script i implies that X pertains to neuron i.

Training synaptic drive
The cost function measures the discrepancy between the target functions fi tð Þ and the synaptic drive

ui tð Þ for all i ¼ 1; :::;N at discrete time points t0; :::; tK ,

C W½ � ¼ 1

2

X

K

k¼0

f k �uk








2

L2
þl

2
Wk k2L2 : (20)

The Recursive Least Squares (RLS) algorithm solves the problem iteratively by finding a solution

Wn to Equation 20 at tn and updating the solution at next time step tnþ1. We do not directly find the

entire matrix Wn, but find each row of Wn, that is synaptic connections to each neuron i that minimize

the discrepancy between ui and fi, then simply combine them to obtain Wn.

To find the ith row of Wn, we denote it by wn
i and rewrite the cost function for neuron i that evalu-

ates the discrepancy between fi tð Þ and ui tð Þ on a time interval 0; tn½ �,
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C wn
i

� �

¼ 1

2

X

n

k¼0

f ki �wn
i � rk

� �2þl

2
wn
i









2

L2
: (21)

Calculating the gradient and setting it to 0, we obtain

0¼rwn
i
C¼�

X

n

k¼1

ûki �wn
i � rk

� �

rk þlwn
i

We express the equation concisely as follows.

Rn þlI½ �wn
i ¼ qn

Rn ¼
X

n

k¼1

rk rk
� �T

; qn ¼
X

n

k¼1

ûki r
k: (22)

To find wn
i iteratively, we rewrite Equation 22 up to tn�1,

Rn�1þlI
� �

wn�1

i ¼ qn�1; (23)

and subtract Equations 23 and 24 to obtain

Rn þlI½ � wn
i �wn�1

i

� �

þ rn rnð ÞTwn�1

i ¼ ûni r
n: (24)

The update rule for wn
i is then given by

wn
i ¼wn�1

i þ eni R
nþlI½ ��1

rn; (25)

where the error term is

eni ¼ f ni � rn �wn�1

i : (26)

The matrix inverse Pn ¼ Rn þlI½ ��1 can be computed iteratively

Pn ¼ Pn�1 �Pn�1rn rnð ÞTPn�1

1þ rnð ÞTPn�1rn
;P0 ¼ l�1I;

using the matrix identity

Aþ rrT
� ��1¼ A�1 �A�1rrTA�1

1þ rTA�1r
:

Training spiking rate
To train the spiking rate of neurons, we approximate the spike train si tð Þ of neuron i with its spiking

rate f ui tð Þ þ Iið Þ where f is the current-to-rate transfer function of theta neuron model. For constant

input,

f1 xð Þ ¼p�1

ffiffiffiffiffiffiffiffi

x½ �þ
q

where x½ �þ¼max x;0ð Þ; (27)

and for noisy input

f2 xð Þ ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

clog 1þ ex=cð Þ
q

: (28)

Since f2 is a good approximation of f1 and has a smooth transition around x¼ 0, we used f�f2

with c¼ 0:1 (Brunel and Latham, 2003).

If the synaptic update occurs at discrete time points, t0; :::; tK , the objective is to find recurrent

connectivity W that minimizes the cost function

C W½ � ¼ 1

2

P

K

k¼0

f k tð Þ�f Wrk tð Þþ I
� �









2

L2
þl

2
Wk k2L2 : (29)
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As in training the synaptic drive, we optimize the following cost function to train each row of Wn

that evaluates the discrepancy between the spiking rate of neuron i and the target spiking rate fi

over a time interval 0; tn½ �,

C wn
i

� �

¼ 1

2

X

n

k¼1

f ki �f wn
i � rk þ Iki

� �� �2þl

2
jwn

i j
2: (30)

Calculating the gradient and setting it to zero, we obtain

0¼rwn
i
C¼�

X

n

k¼1

f ki �f wn
i � rk þ Iki

� �� �

~rki þlwn
i : (31)

where

~rki ¼f0 uki þ Iki
� �

rk (32)

is the vector of filtered spike trains scaled by the gain of neuron i. Note that when evaluating f0 in

Equation 32, we use the approximation uki »w
n
i � rk to avoid introducing nonlinear functions of wn

i .

To find an update rule for wn
i , we rewrite Equation 31 up to tn�1,

0¼�
X

n�1

k¼1

f ki �f wn�1

i � rk þ Iki
� �� �

~rki þlwn�1

i ; (33)

and subtract Equations 31 and 33 and obtain

0¼
X

n

k¼1

f wn
i � rk þ Iki

� �

�f wn�1

i � rk þ Iki
� �� �

~rki (34)

� f ni �f wn�1

i � rn þ Ini
� �� �

~rki þl wn
i �wn�1

i

� �

:

Since wn�1

i is updated by small increment, we can approximate the first line in Equation 34,

f wn
i � rk þ Iki

� �

�f wn�1

i � rk þ Iki
� �

» wn
i �wn�1

i

� �

�~rki (35)

where we use the approximation uki »w
n
i � rk as before to evaluate the derivative f0. Substituting

Equation 35 to Equation 34, we obtain the update rule

wn
i ¼wn�1

i þ eni R
nþlI½ ��1~rni ; (36)

where the error is

eni ¼ f ni �f wn�1

i � rn þ Ini
� �

; (37)

and the correlation matrix of the normalized spiking activity is

Rn ¼
X

n

k¼1

~rki ~rki
� �T

: (38)

As shown above, the matrix inverse Pn ¼ Rn þlI½ ��1 can be computed iteratively,

Pn ¼ Pn�1 �Pn�1~rni ~rni
� �T

Pn�1

1þ ~rni
� �T

Pn�1~rni

;P0 ¼ l�1I:

Mean field description of the quasi-static dynamics
We say that a network is in a quasi-static state if the synaptic drive to a neuron changes sufficiently

slower than the dynamical time scale of neurons and synapses. Here, we use a formalism developed

by Buice and Chow (2013) and derive Equations 1 and 2, which provide a mean field description of

the synaptic and spiking rate dynamics of neurons in the quasi-static state.
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First, we recast single neuron dynamic Equation 5 in terms of the empirical distribution of neu-

ron’s phase hi �; tð Þ ¼ d �i tð Þ � �ð Þ. Since the number of neurons in the network is conserved, we can

write the Klimontovich equation for the phase distribution

qthi �; tð Þþ q� F �;uiþ Iið Þhi �; tð Þ½ � ¼ 0 (39)

where F �; Ið Þ ¼ 1� cos�þ I 1þ cos�ð Þ. The synaptic drive Equation 6 can be written in the form

ts _ui tð Þ ¼�ui tð Þþ 2

X

N

j¼1

Wijhj p; tð Þ (40)

since sj tð Þ ¼ hj p; tð Þ _�j�j¼p and _�jj�j¼p ¼ 2 for a theta neuron model. Equation 39, together with Equa-

tion 40, fully describes the network dynamics.

Next, to obtain a mean field description of the spiking dynamics, we take the ensemble average

prepared with different initial conditions and ignore the contribution of higher order moments

resulting from nonlinear terms uihih i. Then we obtain the mean field equation

qt� �; tð Þþ q� F �;Uiþ Iið Þ�i �; tð Þ½ � ¼ 0 (41)

ts
_Ui ¼�Uiþ 2

X

N

j¼1

Wij�j p; tð Þ: (42)

where uih i ¼Ui and hih i ¼ �i. We note that the mean field Equations 41 and 42 provide a good

description of the trained network dynamics because W learns over repeatedly training trials and

starting at random initial conditions, to minimize the error between target trajectories and actual

neuron activity.

Now, we assume that the temporal dynamics of synaptic drive and neuron phase can be sup-

pressed in the quasi-static state,

ts
_Ui »0;qt�»0: (43)

Substituting Equation 43 to Equation 41, but allowing U tð Þ to be time-dependent, we obtain the

quasi-static solution of phase density

�i �; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ui tð Þþ Ii½ �þ
p

p 1� cos�þ Ui tð Þþ Iið Þ 1þ cos�ð Þ½ � ; (44)

Z p

�p

�i �ð Þd�¼ 1

f Ui tð Þþ Iið Þ ¼ 2�i p; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ui tð Þþ Ii½ �þ
q

=p; (45)

the current-to-rate transfer function of a theta neuron model. Substituting Equation 43 and Equa-

tion 45 to Equation 42, we obtain a quasi-static solution of the synaptic drive

Ui tð Þ ¼
X

N

j¼1

Wijf Uj tð Þþ Ij
� �

: (46)

If we define the spiking rate of a neuron as Ri tð Þ ¼f Uiþ Iið Þ, we immediately obtain

Ri tð Þ ¼f
X

N

j¼1

WijRjþ Ii

 !

: (47)

Analysis of learning error
In this section, we identify and analyze two types of learning errors, assuming that for sufficiently het-

erogeneous targets, (1) the learning rule finds a recurrent connectivity W that can generate target
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patterns if the quasi-static condition holds, and (2) the mean field description of the spiking network

dynamics is accurate due to the error function and repeated training trials. These assumptions imply

that Equations 46 and 47 hold for the target patterns Ui tð Þ and the trained W . We show that learn-

ing errors arise when our assumptions become inaccurate, hence the network dynamics described

by Equations 46 and 47 deviate from the actual spiking network dynamics. As we will see, tracking

error is prevalent if the target is not an exact solution of the mean field dynamics (i.e. quasi-static

approximation fails), and the sampling error dominates if the discrete spikes do not accurately repre-

sent continuous targets (i.e. mean field approximation fails).

Suppose we are trying to learn a target ûi which obeys an Ornstein-Ulenbeck process

tc

d

dt
þ 1

� �

ûi ¼ �i tð Þ (48)

on a time interval 0<t<T where �i tð Þ are independent white noise with zero mean and variance s2.

The time constant tc determines the temporal correlation of a target trajectory. In order for perfect

training, the target dynamics (Equation 48) needs to be compatible with the network dynamics

(Equation 6); in other words, there must exist a recurrent connectivity W such that the following

equation

ts

d

dt
þ 1

� �

ûi tð Þ ¼
X

N

j¼1

Wijs ûj tð Þ
� �

(49)

obtained by substituting the solution of Equation 48 into Equation 6 must hold for 0<t<T . Here,

s ûj tð Þ
� �

maps the synaptic drive ûj tð Þ to the entire spike train sj tð Þ.
It is very difficult to find W that may solve Equation 49 exactly since it requires fully understand-

ing the solution space of a high-dimensional system of nonlinear ordinary differential equations.

Instead, we assume that the target patterns are quasi-static and the learning rule finds a recurrent

connectivity W that satisfies

ûi tð Þ ¼
X

N

j¼1

Wijf ûj tð Þ
� �

: (50)

We then substitute Equation 50 to Equation 49 to estimate how the quasi-static mean field

dynamics deviate from the actual spiking network dynamics. A straightforward calculation shows

that

ûi tð Þ�
X

N

j¼1

Wijf ûj tð Þ
� �

þ �track þ �sample ¼ 0 (51)

where we define the tracking and sampling errors as

�track ¼ ts

dûi

dt
(52)

and

�sample ¼
X

N

j¼1

Wij f ûj tð Þ
� �

� s ûj tð Þ
� �� �

(53)

on the time interval 0<t<T .

Tracking error
From its definition, �track captures the deviation of the quasi-static solution (Equation 50) from the

exact solution of the mean field description obtained when �sample ¼ 0. �track becomes large if the

quasi-static condition (Equation 43) fails and, in such network state, the synaptic dynamic is not able

to ‘track’ the target patterns, thus learning is obstructed. In the following, we estimate �track in terms

of two time scales ts and tc.

First, we take the Fourier transform of Equation 52 and obtain
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F �track½ � !ð Þ ¼ its! �F û½ � !ð Þ: (54)

Next, normalize F �track½ � with respect to F û½ � to estimate the tracking error for target patterns with

different amplitudes, then compute the power of normalized tracking error.

1




Z 


0

F �track½ �
F û½ �

















d!¼ 1

2
ts
j
¼
c

¼ 1

4p

ts

tc

(55)

where 
c ¼ 1= 2ptcð Þ is the cut-off frequency of the power spectrum of a Gaussian process,

SGP !ð Þ ¼ s2
t

2

c= 1þ 4p2
t

2

c!
� �

. Thus, the tracking error scales with ts=tc.

Sampling error
�sample captures how the actual representation of target patterns in terms of spikes deviates from

their continuous representation in terms of rate functions. In the following, we estimate �extsample in

terms of ts and N under the assumption that the continuous representation provides an accurate

description of the target patterns.

We low-pass filtered �sample to estimate the sampling error since the synaptic drive (i.e. the target

variable in this estimate) is a W weighted sum of filtered spikes with width that scales with ts. If the

spike trains of neurons are uncorrelated (i.e. cross product terms are negligible),

Var �filteredsample

h i

¼
X

N

j¼1

W2

ij �rj� rj tð Þ
� �2
D E

(56)

where rj tð Þ is the filtered spike train and �rj ¼ rj tð Þ

 �

¼ 1

Dt

R tkþ1

tk
rj sð Þds is the empirical estimate of mean

spiking rate on a short time interval.

First, we calculate the fluctuation of filtered spike trains under the assumption that a neuron gen-

erates spikes sparsely, hence the filtered spikes are non-overlapping. Let sj tð Þ ¼
P

k d t � tkj

� �

be a

spike train of neuron j and the filtered spike train rj tð Þ ¼ 1

ts

P

k exp � t � tkj

� �

=ts

� �

H t � tkj

� �

. Then, the

rate fluctuation of neuron j is

rj tð Þ��rj
� �2
D E

¼ r2j tð Þ
D E

��r2 (57)

¼ 1

t

2
s k

X

exp �2 t� tkj

� �

=ts

� �

H t� tkj

� �D E

��r2 (58)

¼ �rj
1

2ts
��rj

� �

(59)

where k is summed over the average number of spikes, �rjDt, generated in the time interval of length

Dt.

Next, to estimate the effect of network size on the sampling error, we examined Equation 50

and observed that O Wð Þ~ 1=N. This follows from that, for pre-determined target patterns,

O Uð Þ;O f Uð Þð Þ~ 1 regardless of the network size, hence O Wð Þ must scale with 1=N in order for both

sides of the equation to be compatible. If the network is dense, that is the number of synaptic con-

nections to a neuron is pN on average, then the sampling error scales as follows.

O Var �filteredsample

h i� �

~

X

N

j¼1

O W2

ij

� �

O �rj � rj tð Þ
� �2
D E� �

~

1

tsN
(60)

Acknowledgements
This research was supported [in part] by the Intramural Research Program of the NIH, The National

Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

Kim and Chow. eLife 2018;7:e37124. DOI: https://doi.org/10.7554/eLife.37124 25 of 28

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.37124


Additional information

Funding

Funder Grant reference number Author

National Institute of Diabetes
and Digestive and Kidney Dis-
eases

Intramural Research
Program

Christopher M Kim
Carson C Chow

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Christopher M Kim, Data curation, Software, Formal analysis, Investigation, Visualization, Methodol-

ogy, Writing—original draft, Writing—review and editing; Carson C Chow, Conceptualization, Super-

vision, Funding acquisition, Investigation, Methodology, Writing—review and editing

Author ORCIDs

Christopher M Kim http://orcid.org/0000-0002-1322-6207

Carson C Chow http://orcid.org/0000-0003-1463-9553

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.37124.016

Author response https://doi.org/10.7554/eLife.37124.017

Additional files
Supplementary files
. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.37124.014

Example computer code that trains recurrent spiking networks is available at https://github.com/

chrismkkim/SpikeLearning (copy archived at https://github.com/elifesciences-publications/

SpikeLearning)

References
Abbott LF, DePasquale B, Memmesheimer RM. 2016. Building functional networks of spiking model neurons.
Nature Neuroscience 19:350–355. DOI: https://doi.org/10.1038/nn.4241, PMID: 26906501

Beer C, Barak O. 2018. Dynamics of dynamics: following the formation of a line attractor. arXiv. https://arxiv.org/
abs/1805.09603.
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