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Parkinson’s disease (PD) is a relentlessly progressive neurodegenerative disorder associated with hallmark motor and nonmotor
symptoms (NMS) such as sleep disturbances and cognitive dysfunction. While dopaminergic treatments have improved the
motor aspects of PD, progression remains inevitable. Research has recently increasingly focused on strategies to modify disease
progression and on nonmotor manifestations of PD, given their impact on patients’ quality of life. Obstructive sleep apnea (OSA)
is a treatable sleep disorder, common in the general population, associated with excessive daytime sleepiness and neurocognitive
deficits. Neuroimaging has demonstrated structural and functional changes in OSA patients; in animal models, OSA causes brain
inflammation and oxidative injury, including in key areas involved in PD pathophysiology such as locus coeruleus. The prevalence
of OSA in PD has been variable in studies to date, and potential consequences and interrelationship between the two disorders
have not been well studied. There is however emerging evidence that OSA is associated with increased NMS in PD, particularly
cognitive dysfunction. This review focuses on the possible interrelationship between OSA and PD. Mechanisms promoting OSA
in PD will be reviewed, as well as mechanisms whereby OSA can affect the neurodegenerative process in PD.

1. Introduction

Parkinson’s disease (PD) is the second most frequent neu-
rodegenerative disorder, and its prevalence is expected to
increase as the population ages [1]. Obstructive sleep apnea
(OSA) is a treatable sleep disorder that is common in the
general population and is associated with adverse outcomes
including cognitive dysfunction [2]. OSA results in sleep
fragmentation and intermittent hypoxemia that can have
significant detrimental consequences on the brain. However,
OSA prevalence in PD has been variable in studies to date
in part due to methodological variability, such that until
recently, OSA has not been perceived to be a significant
issue in PD. Thus, to date, the potential consequences and
interrelationship between OSA and PD have not been well
studied. However, when already affected by a degenerative

process like PD, one could speculate that the brain may be
more vulnerable to the effects of OSA due to reduced ability
to compensate and alsomore responsive toOSA treatment. In
this paper, we explore the possible bidirectional relationship
between OSA and PD (Figure 1). We review the possible
pathophysiologic factors predisposing to OSA in the context
of PD. We then review the known consequences of OSA on
the brain. These data suggest that OSA may play a significant
role in the neurodegenerative process of PD, particularly as it
relates to cognitive dysfunction.

2. OSA Overview

OSA is characterized by recurrent complete (apnea) or partial
(hypopnea) upper airway obstruction resulting in intermit-
tent hypoxemia and arousals from sleep. Pathophysiologic

Hindawi Publishing Corporation
Parkinson’s Disease
Volume 2015, Article ID 849472, 11 pages
http://dx.doi.org/10.1155/2015/849472

http://dx.doi.org/10.1155/2015/849472


2 Parkinson’s Disease

PD

OSA

Upper airway muscle 
dysfunction

Autonomic dysfunction
Control of breathing 

abnormalities
Sleep fragmentation

Intermittent 
hypoxemia

Glymphatics
disruption

Neuroinflammation
and neurotoxicity

Locus ceruleus 

Multiple brain areas

Cognitive 
dysfunction

Figure 1: Hypothetical mechanistic relationship between PD and
OSA. Legend. PD: Parkinson’s disease;OSA: obstructive sleep apnea.

factors include reduced airway dimensions, altered central
control of breathing, sleep-wake instability, altered arousal
responsiveness, and upper airway dilatormuscle dysfunction.
The latter maintain upper airway patency and are modulated
by neuronal inputs related to sleep-wake state, mechanore-
ceptor input, blood gases, autonomic activity, and other
factors [3]. The prevalence of OSA depends on the definition
of respiratory events used [4, 5] and significantly increases
with age. In the general population, OSA prevalence has been
estimated at 9–47% of women and 17–52% of men aged 50–
70 years [6, 7]. Indeed, hypopneas in the original Wisconsin
cohort study were scored as such only in the presence
of a drop in hemoglobin oxygen saturation [6]. Currently
recommended criteria include hypopneas associated with
arousal only [8], which would lead to higher prevalence
estimates [9].OSAhas been associatedwith a range of adverse
outcomes including cognitive impairment, increased risk of
hypertension, diabetes, fatal and nonfatal coronary events,
arrhythmias such as atrial fibrillation and nonsustained
ventricular tachycardia, congestive heart failure, stroke, and
mortality (reviewed in [10]).

3. OSA in Other Neurological Disorders

OSA risk is increased with male sex, older age, and higher
body mass index (BMI), but also in conditions such as
neuromuscular disorders [11], epilepsy [12], multiple sclerosis
[13], and stroke [14]. Moreover, in CNS disorders, OSA
appears tomodify themanifestations or disease course, which
suggests a bidirectional relationship. For example, OSA is
associated with an increased incidence of stroke [15, 16]. In
turn, OSA appears to be associated with poorer outcome at
discharge and up to 12 months and increased mortality at 12
months after stroke [17]. Furthermore, despite the difficulty in
applying continuous positive airway pressure (CPAP) therapy
in patients soon after a stroke, functional outcomes were
improved in patients treated for theirOSA in two randomized
controlled trials (RCT) [18, 19]. In MS, we reported that OSA
was associated with increased fatigue [20], which is one of

the most frequent, pervasive, and incapacitating symptoms
of MS. Treatment of OSA led to improved fatigue [21]. OSA
has also been associated with poor seizure control in epilepsy
[12]. Patients with OSA who were compliant with CPAP had
reduced seizure frequency [22].

4. OSA and Cognitive Function

In addition to sleepiness, OSA in the general population and
in the elderly has been associated with impaired cognition
and psychomotor performance [2, 23–26]. In women, this
relationship ismore pronounced among carriers of the APOE
4 genotype [26]. Most commonly reported deficits in OSA
are reduced executive function and attention capacity deficits
such as reduced information processing speed and short-
term memory span, as well as deficient verbal fluency and
impaired vigilance [27, 28]. Data from prospective studies
have also demonstrated that individuals with OSA at baseline
were more likely to develop cognitive impairment [29, 30]
and frank dementia [31] at follow-up.

The response of neurocognitive dysfunction to CPAP
therapy in the general population has been variable and
incomplete [32–35]. This has been suggested to stem from
near-normal cognitive function before CPAP, lack of statis-
tical power [32, 35], poor compliance with treatment [36], or
irreversible brain damage from long-standing OSA [37].

A recent meta-analysis evaluating the effect of CPAP on
various subtypes of executive function found a significant
beneficial effect [38]. However, the APPLES trial [35], a large
multicenter RCT of CPAP versus sham CPAP which evalu-
ated three domains of cognitive function in OSA (attention
and psychomotor function, learning and memory, executive,
and frontal lobe function), failed to show the expected
benefits. In this study, individuals with a Mini-Mental State
Examination score≤ 26 (normal cutoff in healthy adults)were
excluded. Hence, only those with scores within the normal
range were included, and there was little room for further
improvement. The authors advanced the “cognitive reserve
theory” to explain lack of positive results. That is, some
individuals may have greater preexisting flexibility in neural
function and capacity to cope with disruption, or better
compensatorymechanisms [39]. Possibly, then, a detrimental
effect of OSA on cognition may only become apparent in
individuals with reduced cognitive reserve, or with another
predisposing condition to cognitive dysfunction.

In Alzheimer’s disease (AD), data is relatively scant and
inconclusive regarding a relationship with OSA. There is
a suggestion that OSA is more prevalent in AD patients
than in controls [40], and severity of dementia correlates
with severity of OSA [41], but not all studies have found
this and the magnitude of the effect does not appear to be
very large [42]. Moreover, directionality of the relationship
is unclear from these cross-sectional studies. A small trial
of OSA treatment with CPAP in AD found that cognition
improved with CPAP use in the treated group [43] and
that there appeared to be slowed deterioration of cognition
with sustained use of CPAP in the observational follow-up
[44].
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5. OSA Prevalence in PD and
Possible Pathogenic Mechanisms

Sleep disturbances are frequent in PD and include insomnia,
hypersomnia, sleep architecture and circadian abnormalities,
restless legs syndrome, and REM Sleep Behavior Disorder
(RBD) [45]. OSA is reported to occur in 20–60% of PD
subjects [46–51]. This wide range likely reflects differences in
patient populations, small sample sizes with selection bias,
and most importantly differences in scoring of respiratory
events between laboratories [5]. In particular, studies suggest-
ing a low prevalence of OSA in PDhave included only hypop-
neas with desaturations [48], overlooking entirely respiratory
events causing sleep fragmentationwithout hypoxemia. It has
also been suggested that OSA prevalence in more advanced
PD might be reduced compared with the general population
due to lower body mass index of PD patients [52]. However,
this may depend on the criteria used to define OSA, as
hypoxemia is more likely to be associated with a higher
BMI. OSA in PD may not follow the same pattern as in
the general population. Trotti and Bliwise did not find BMI
to be correlated with OSA severity in PD [51]. Correlation
between OSA severity and PD severity has been found in
two studies [47, 50] and in our own work [53], though
causality cannot be inferred from these cross-sectional stud-
ies. While OSA does not appear to be more common in
PD than the general population, it is clear that the two
conditions do not uncommonly coexist, either because OSA
is frequent in the general population and thus coincides with
PD, or due to PD-related changes predisposing to OSA, or
both.

Biologic plausibility exists for PD itself being involved
in OSA pathogenesis. The upper airway musculature may
be affected by involuntary movements resulting in abnormal
spirometry consistent with upper airway obstruction [54],
which improves with levodopa [55]. These disturbances may
be exacerbated in sleep, resulting in OSA. Our group has
found that PD patients on night-time long-acting levodopa
had less sleep-disordered breathing than those not on such
medication [56]. This further supports the notion that the
upper airway is responsive to levodopa and may thus be
affected as part of the movement disorder, predisposing to
OSA. Levodopa may also produce disordered breathing as a
form of dyskinesia [57, 58].

PD is also associated with autonomic dysfunction, which
may impair control of breathing, particularly during non-
REM sleep where respiration is predominantly dependent
on chemical drive. Such a mechanism has been suggested
as a partial explanation of the high prevalence of sleep-
disordered breathing in the Shy-Drager syndrome [59, 60].
Abnormal afferent chemosensitive feedback control to the
central respiratory generator has been implicated [59]. This
is consistent with reports of sleep-disordered breathing,
occasionally fatal, occurring in patients undergoing cervical
cordotomy for pain relief, which is associated with other
manifestations of autonomic dysfunction [61]. OSA itself
can alter autonomic function with consequences beyond the
sleep period, particularly increased sympathetic tone that is
associated with baroreflex and chemoreflex changes [62, 63].

Control of breathing is affected, potentially further promot-
ing OSA. In PD, chemosensitivity to hypoxia was found to
be reduced, despite normal pulmonary function, and this
was associated with reduced dyspnea in hypoxic conditions
[64]. Respiratory drive in response to hypercapnia was also
found to be reduced [65], possibly as a result of involvement
by the PD neurodegenerative process of the brainstem [66],
where the central chemoreceptor and respiratory centers are
located. An abnormal hypercapnic response can predispose
to hypoventilation, especially in sleep. Moreover, activity
of upper airway dilator muscles, a key element in OSA
pathophysiology, is modulated by respiratory drive and CO

2

levels [67, 68].How thesemechanisms affect the upper airway
and respiration during sleep in patients with PD has not been
directly studied.

Sleep fragmentation may itself induce respiratory dis-
turbances. A change in sleep state such as the transition
from wakefulness to sleep is associated with a change in
respiration manifesting as periodic breathing, usually tran-
sient. However, in individuals with a low arousal threshold,
a modest fluctuation in breathing may trigger an arousal.
Arousals from sleep following a respiratory event lead to
hyperpnea and hypocapnia, which in turn may trigger
another respiratory pause upon return to sleep, triggering
a cycle of respiratory instability, further promulgating OSA
[69]. In mice, sleep fragmentation resulted in impaired
arousal responses to hypercapnia [70], which could prolong
apneas and hypopneas. In humans, sleep fragmentation
led to increased upper airway collapsibility in sleep [71],
increasing propensity for OSA. In PD, sleep fragmentation
and dysfunction occur as part of the disease. This is thought
to bemultifactorial, due in part to dysfunctional sleep circuits
but also to medications and comorbidities [72]. Hence the
intrinsic sleep fragmentation in PD may be a factor in
progression of OSA in this condition.

6. Mechanisms of Deleterious
OSA Effects on the Brain

6.1. Intermittent Hypoxemia. The mechanisms involved in
the effects of OSA on the brain in general and on cognitive
function in particular have not been clearly elucidated, but
several factors could play a role. OSA is increasingly being
incriminated as causing neural injury. Intermittent hypox-
emia in particular has been implicated, possibly through
mechanisms of ischemia/reperfusion [73], and oxidative
injury [74]. OSA with hypoxemia is also associated with
delayed peripheral nerve conduction [75] and treatment of
OSA partially reverses the dysfunction [76]. In animal mod-
els, exposure of rodents to intermittent hypoxemia resulted
in impaired learning and memory that did not normalize
after a recovery period. Increased astrocytes and neuronal
apoptosis were found in frontal cortex areas (including
cingulate gyrus) and certain hippocampal regions, implying
differential neuronal susceptibility [77]. Reduction in striatal
norepinephrine concentration was also shown as a result of
intermittent hypoxemia [78], as well as injury in specific
catecholaminergic neuron groups, notably the dopaminer-
gic periaqueductal gray and locus coeruleus [79]. NADPH
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oxidase [80] and iNOS [73] were found to mediate this
injury and the associated proinflammatory response. The
proinflammatory transcription factor NF-𝜅B is also induced
by intermittent hypoxemia in OSA [81, 82] causing systemic
inflammation. Evidence of systemic inflammation in OSA
was found with elevated plasma levels of C reactive protein
[83], TNF-𝛼, interleukin- (IL-) 6 [84, 85], and IL-8 [86].
IL-6 and TNF-𝛼 levels correlated with OSA severity [87].
This likely contributes to neuroinflammation [88] which
promotes neurodegeneration [89, 90]. Although these OSA-
related mechanisms might theoretically exacerbate PD neu-
ropathology, they have not been studied to date in PD.

Intermittent hypoxemia in mice has also been found to
be associated with reduced expression of brain-derived neu-
rotrophic factor (BDNF) in the hippocampus and reduced
long-term potentiation [91]. This could explain some cogni-
tive deficits, as reduced BDNF levels have been associated
with impaired cognition [92, 93]. However, in humans, serum
BDNF levels were no different in OSA versus control subjects
[94].

It should be noted that while OSA-related hypoxemia in
humans has been associated with cognitive deficits in some
studies [95, 96], others have found a paradoxical apparently
protective effect [97]. Recent data suggest that theremay be an
ischemic preconditioning effect in some OSA patients [98].
Hence the exact role of hypoxemia as a cause of cognitive
deficit in humans remains to be clarified, though severity
of the intermittent hypoxia likely plays a role [88]. In PD
hypoxemia associated with OSA is less marked as compared
with non-PD individuals [48]. This is due to the lower BMI
of PD patients with OSA. However, individuals earlier in
the course of their PD may have a higher BMI, including
before diagnosis, and hypoxemia might be a more important
factor in that setting. Moreover, it is unknown what level of
hypoxemia might be considered “safe” in PD. It is possible
that what is inconsequential or protective in an otherwise
healthy brain may be deleterious in PD. More research will
be needed to clarify these relationships.

6.2. Sleep Fragmentation. In addition to hypoxemia, OSA
is associated with sleep fragmentation, which appears to be
a key factor in brain dysfunction and cognitive outcomes.
Some deficits in OSA are similar to those occurring in
sleep deprivation [99]. In a longitudinal study of elderly
individuals, sleep fragmentation related to OSA, but not
hypoxemia, was associated with cognitive decline [30]. Sleep
fragmentation due to OSA was also found to be the best
predictor of episodic memory deficits [100]. In mice, sleep
fragmentation results in learning deficits. This was found to
be associated with increased gene expression and activity of
NADPH oxidase in the hippocampus and cortex of wild type
mice [101]. However, mutant mice lacking NADPH oxidase
activity were protected from the learning deficits. Chronic
sleep fragmentation was also found to selectively increase
cortical expression of TNF-𝛼 [102]. Moreover sleepiness and
learning deficits associated with sleep fragmentation were
absent in TNF-𝛼 double receptor knockout mice and in mice
treated with a TNF-𝛼 neutralizing antibody [102]. Hence,
sleep fragmentation appears to induce oxidative stress and

inflammation just as intermittent hypoxia does. Interestingly,
in a sleep fragmentation animal model of OSA, there was
reduced neuronal excitability in the locus coeruleus [70],
an area implicated in PD pathophysiology (compare with
below).

6.3. Glymphatics. Recently a novel waste clearance system
operating in the brain has been characterized, termed the
glymphatic system [103]. It involves transport of CSF along
periarterial spaces, via convective flow through the brain
parenchyma and perivenous spaces into the cervical lym-
phatic system, eliminating soluble proteins and metabolites.
Its function declines with age and this has been suggested
to contribute to the accumulation of abnormal proteins in
the extracellular space, such as 𝛽-amyloid or 𝛼-synuclein,
rendering the brain more vulnerable to neurodegenerative
pathologies. The particularity of this system is that it is
activated only during sleep. Therefore, any process leading
to sleep fragmentation can disrupt this system, resulting
in potentially adverse consequences on brain homeostasis.
It is known that dementia in PD often results from an
“admixture of pathologies” [104–106], including Lewy body
but also Alzheimer-related pathologies, with a smaller com-
ponent of cerebrovascular pathology. One could therefore
speculate that glymphatic abnormalities may be a nonspe-
cific mechanism predisposing to cognitive dysfunction in
PD. Glymphatics could be affected by sleep fragmentation
or hemodynamic changes occurring in OSA. Intermittent
hypoxia has also been implicated in potential blood-brain
barrier dysfunction and alteration in brain water and solute
fluxes, through a number of mechanisms stemming from a
chronic maladaptive response [88].

6.4. Role of the LocusCoeruleus. The locus coeruleus has been
implicated in cognitive decline in the general population. A
recent autopsy study from a longitudinal clinical-pathologic
cohort study on aging found that lower locus coeruleus
neuronal density was associated with lower baseline level
of cognition and faster cognitive decline [107]. An imaging
study showed that locus coeruleus connectivity was corre-
lated with memory scores and was reduced in patients with
mild cognitive impairment [108].With regards to PD, a recent
case series and review by Del Tredici and Braak [104] focused
on the role of noradrenergic defects in the locus coeruleus in
development of dementia in PD.

The effects of intermittent hypoxemia and sleep frag-
mentation on the locus coeruleus and other specific brain
regions, as described above,may have significant implications
in PD. While the key abnormality in PD pathophysiology
is loss of dopaminergic neurons of the substantia nigra,
resulting in depletion of dopamine from the basal ganglia,
other regions of neurodegeneration have been identified,
which may better correlate with the nonmotor symptoms
of PD [109, 110]. Locus coeruleus neurons specifically have
been implicated in pathophysiology of PD: loss of their
trophic influences may increase sensitivity of dopaminer-
gic neurons to neurotoxic insults [111, 112]. The currently
emerging concept of PD pathogenesis revolves around a
combination of genetic, cellular, and environmental factors



Parkinson’s Disease 5

that independently or concomitantly result in cell death, pos-
sibly by triggering mitochondrial dysfunction and oxidative
stress, abnormal protein degradation, and other forms of
subcellular dysfunction [113]. After disease onset, regardless
of the initial insult, the progression of cell lossmay result from
common pathways that include oxidative and nitrosative
stress and neuroinflammation [113–115]. Neuroinflammation
appears to play a key part in pathogenesis of PD. Nons-
teroidal anti-inflammatory drugs decrease the risk of PD
[116], and inflammatory cytokines are increased in the serum
and/or cerebrospinal fluid of PD patients [IL-2, TNF𝛼, IL-
6, RANTES, osteopontin, and IL-1𝛽]. In PD animal models,
intranigral infusion of TNF𝛼 blockers attenuated dopamin-
ergic neurodegeneration, while mice lacking TNF receptors 1
and 2 had attenuated striatal damage after injection of MPTP
[115]. In the process of neuroinflammation,microglia became
activated and capable of antimicrobial and toxic functions:
damage to dopaminergic neurons can occur through reactive
oxygen and nitrogen species, produced, respectively, by
NADPH oxidase and inducible NO synthase (iNOS) [90].
As described above, activation of oxidative and nitrosative
processes has been described in OSA. OSA, therefore, could
be an additional insult on an already vulnerable brain,
promoting the inflammatory neurodegenerativemechanisms
and accelerating functional decline.

While no human studies exist looking at the locus
coeruleus in OSA, animal data suggest OSA may reduce
the noradrenergic locus coeruleus neuronal population and
impair its function [70, 79, 117] (compare with sections on
Intermittent hypoxemia and Sleep Fragmentation).While the
focus of this review is on cognitive function, it can be inferred
from the above that OSA, through its effects on the locus
coeruleus, could affect the pathogenesis of PD. The implica-
tion is that OSA may not only promote decline in cognitive
function, but also accelerate the overall disease process. This
could include worsening of motor dysfunction in those with
established PD and promoting development of overt PD in
those with subclinical disease or with another predisposing
factor (e.g., genetic). Indeed, recent epidemiological evidence
suggests that OSA increases the risk of PD [118, 119].

7. Sleep and Cognitive Function in PD

Cognitive dysfunction is found in 20–40% of patients with
early PD but is a major cause of long-term disability [113]. In
one large study, after 20 years’ follow-up, 83%of survivors had
dementia [120]. The most commonly documented deficits in
early PD are in executive “frontal” functions [121, 122] and
memory [123, 124].

Sleep is a state that is crucial for proper cognitive function.
It allows for consolidation of declarative memory [125] and
of “implicitly” learned motor skills [126]. Implicit learning
is dependent on attention [127] and is sensitive to sleep
effects [128]. Poor sleep quality affects memory consolidation
[129] and executive function [130, 131] in older adults.
Changes in sleep EEG characteristics (sleep spindles and
slow waves) with aging have been implicated in reduction
in sleep-dependent memory consolidation in older adults
[129].

Studies looking at sleep and sleep disorders in PD have
found that subjective daytime sleepiness and fatigue are
linked with cognitive impairment [132]. Presence of RBD is
also linked with worse cognitive function [133, 134]. Poor
sleep efficiency as measured by actigraphy has been variably
associated with executive dysfunction [135] and memory
deficits [136]. A recent meta-analysis has found multiple
cognitive domains to be affected by poor sleep in PD [137],
though most studies relied on self-reported sleep quality.
Regarding implicit learning, PD patients appear not to have
the expected improvement in motor skill following sleep
[138, 139]. Hence, disrupted sleep, though a nonspecific
symptom, appears to be an important factor in poor cognitive
function and learning in PD. A recent study has found
that specific sleep EEG (sleep spindle) alterations in PD are
associated with subsequent development of dementia [140].
These alterations may be a marker of future dementia but
it is unclear if sleep changes could be a causative factor
in cognitive decline. Further work will need to be done to
assesswhether strategies aimed at improving sleep quality can
reduce the risk of dementia.

8. Neuroimaging in relation to Cognitive
Function in OSA and PD

Structural and functional changes on brain imaging associ-
ated with neurocognitive deficits have been found in OSA
patients [23, 33, 141–143].They include decreased grey matter
in the hippocampus and temporal lobe, anterior cingulate,
and cerebellum, as well as in the frontal and parietal lobes.
CPAP therapy appears to increase gray-matter volume in
hippocampal and frontal structures [33]. In PD, cortical
atrophy in the hippocampus and frontal areas has been found
in patients with mild cognitive impairment (MCI), but not
in cognitively intact PD patients [144]. Most studies report a
correlation of temporal lobe atrophy with poor memory in
PD [145, 146], but some find a correlation between memory
problems and frontal regions [147], or with medial temporal
and frontal lobes [145]. It is conceivable that the variability
in results is related at least partly to confounding effects
of OSA, which was not accounted for in those studies. In
that similar brain regions have been found to be affected in
OSA, particularly temporal and frontal areas [33, 141]; OSA
may contribute significantly to the cortical atrophy patterns
identified in PD-MCI.

Functional neuroimaging in OSA has revealed decreased
brain activation in cingulate, frontal, and parietal regions
during performance of sustained attention andmemory tasks
[23, 141, 148]. In PD, poor performance onmemory and exec-
utive function tests was associated with metabolic reductions
in frontal and parietal association areas and relative increases
in the cerebellar vermis and dentate nuclei, using FDG PET
[149]. Other studies also report recruitment of additional
pathways for the performance of certain cognitive tasks in
PD, suggesting an adaptive compensatory response [150, 151],
which has also been found in OSA [152, 153]. CPAP therapy,
in one study [153], decreased OSA-related overactivation of
prefrontal and hippocampal structures.Hence, bothOSAand
PD are independently associated with altered CNS activation
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during cognitive tasks, whichmay be reversible in the context
of OSA. Activation patterns in patients with PD and OSA
have not been studied.

9. Preliminary Data on Impact of OSA in PD

Little literature exists on outcomes related to OSA in PD. In
one study, OSA was found to have a greater influence on
memory consolidation in subjects with PD than in otherwise
healthy OSA controls [154]. In another, working memory
improvements after sleep showed a negative correlation with
hypoxemia [155]. Our own preliminary data suggest thatOSA
is associated in PD patients with self-reported hypersom-
nolence and lower Montreal Cognitive Assessment (MoCA)
scores [53], after adjusting for possible confounders. In an
observational study, we have found that CPAP treatment
of OSA led to an improvement in MoCA scores in PD
patients with OSA but not those untreated or without OSA
[156]. Neikrug et al., in the only RCT of OSA treatment in
PD published to date, found that CPAP therapy was well
tolerated and resulted in improved sleep architecture, as well
as in reduced daytime sleepiness [157]. Despite the potential
difficulties in applying CPAP therapy to PD patients, these
promising results support further studies in this area.

10. Conclusion

Clearly, many questions remain and further work in this area
will be necessary to clarify the role ofOSA in PD. In a possible
bidirectional relationship, OSA is potentially both a manifes-
tation of PD, as well as a factor contributing to its signs and
progression. Large prospective cohort studies will be needed
to evaluate the impact of OSA on progression of PD-related
cognitive dysfunction, as well as motor dysfunction. OSA
has the merit of being largely correctable, such that effective
treatment can readily improve its symptoms. RCTs will be
needed to assess the effect of OSA therapies in PD. Treatment
typically includes CPAP, though possibly other modalities
could be more effective in PD than in the general population,
given the somewhat different pathophysiology of OSA in PD.
Moreover, if a deleterious effect of OSA on PD progression
is confirmed, OSA treatment could be evaluated as a disease-
modifying therapy, which could potentially delay cognitive
decline or motor dysfunction.
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