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18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) reveals altered
brain metabolism in individuals with mild cognitive impairment (MCI) and Alzheimer’s
disease (AD). Some biomarkers derived from FDG-PET by computer-aided-diagnosis
(CAD) technologies have been proved that they can accurately diagnosis normal control
(NC), MCI, and AD. However, existing FDG-PET-based researches are still insufficient
for the identification of early MCI (EMCI) and late MCI (LMCI). Compared with methods
based other modalities, current methods with FDG-PET are also inadequate in using
the inter-region-based features for the diagnosis of early AD. Moreover, considering the
variability in different individuals, some hard samples which are very similar with both two
classes limit the classification performance. To tackle these problems, in this paper, we
propose a novel bilinear pooling and metric learning network (BMNet), which can extract
the inter-region representation features and distinguish hard samples by constructing
the embedding space. To validate the proposed method, we collect 898 FDG-PET
images from Alzheimer’s disease neuroimaging initiative (ADNI) including 263 normal
control (NC) patients, 290 EMCI patients, 147 LMCI patients, and 198 AD patients.
Following the common preprocessing steps, 90 features are extracted from each FDG-
PET image according to the automatic anatomical landmark (AAL) template and then
sent into the proposed network. Extensive fivefold cross-validation experiments are
performed for multiple two-class classifications. Experiments show that most metrics
are improved after adding the bilinear pooling module and metric losses to the Baseline
model respectively. Specifically, in the classification task between EMCI and LMCI, the
specificity improves 6.38% after adding the triple metric loss, and the negative predictive
value (NPV) improves 3.45% after using the bilinear pooling module. In addition, the
accuracy of classification between EMCI and LMCI achieves 79.64% using imbalanced
FDG-PET images, which illustrates that the proposed method yields a state-of-the-art
result of the classification accuracy between EMCI and LMCI based on PET images.

Keywords: early Alzheimer’s disease, mild cognitive impairment, FDG-PET images, bilinear pooling, inter-region
representation, metric learning, embedding space
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INTRODUCTION

Alzheimer’s disease (AD), a brain degenerative disorder, is
harming the health of thousands of old people now, and its rate of
prevalence is expected to increase rapidly in the coming decades
(Wang et al., 2013; Alzheimer’s Association, 2018, 2019). Mild
cognitive impairment (MCI) is considered to be a preclinical
precursor of AD, but it is difficult to predict whether it will
convert to AD or not (Gauthier et al., 2006; Dubois et al., 2016;
Hampel and Lista, 2016). Considering the unpredictable process
of MCI, it is crucial to develop relevant methods for diagnosing
the early MCI and AD.

18F-fluorodeoxyglucose (FDG)-positron emission
tomography (PET) can reveal altered brain metabolism in
individuals with MCI and AD (Sörensen et al., 2019; Zhou et al.,
2019; Wang et al., 2020). Various recent studies have proved
that biomarkers derived from FDG-PET by computer-aided-
diagnosis (CAD) technologies of machine learning and deep
learning can accurately diagnose NC, MCI, and AD (Pagani et al.,
2017; Choi et al., 2018; Blazhenets et al., 2019). Liu et al. (2018)
proposed a new classification framework for AD diagnosis with
3D PET images. They decomposed 3D images into 2D slices
to learn the intra-slice and inter-slice features and achieved a
promising classification performance of AUC of 83.9% for MCI
vs. NC classification. Zhou et al. (2021) developed a new deep
belief network model for AD diagnosis based on sparse-response
theory, which identified a better classification result than that of
other models. To solve the multimodal data missing problem,
Dong et al. (2021) proposed a high-order Laplacian regularized
low-rank representation method for the classification tasks of
NC, MCI, and AD. Pan et al. (2021) developed a disease-image-
specific deep learning (DSDL) framework which can achieve
neuroimage synthesis and disease diagnosis simultaneously using
incomplete multi-modality neuroimages.

Many studies have achieved good performance on the
classification of NC, MCI, and AD based on FDG-PET
images. However, when it comes to the more refined task like
classification of early MCI (EMCI) and late MCI (LMCI), the
studies with FDG-PET images are still insufficient. Hao et al.
(2020) proposed a novel multi-modal neuroimaging feature
selection method with consistent metric constraint (MFCC) and
obtained an accuracy (ACC) of 73.87% for the classification
between EMCI and LMCI based on MRI and FDG-PET but
only 64.69% when just using FDG-PET. Singh et al. (2017)
proposed a multilayer neural network involving probabilistic
principal component analysis for binary classification and only
achieved an F1 score of 68.44%. Nozadi et al. (2018) used learned
features from semantically labeled PET images to perform group
classification and got an ACC of 72.5%. Forouzannezhad et al.
(2018, 2020) applied a novel deep neural network and a random
forest model respectively, and both models got a moderate
ACC. Fang et al. (2020) introduced a supervised Gaussian
discriminative component analysis (GDCA) algorithm for the
effective classification of early Alzheimer’s disease with MRI and
PET. Yang and Liu (2020) applied the Convolutional Architecture
for Fast Feature Embedding (CAFFE) as the framework of the
deep learning platform for early Alzheimer’s disease diagnosis.

By comparison, based on fMRI and DTI images, Lei et al. (2020)
got an ACC of 78.05% for the classification between EMCI and
LMCI via proposing a new joint multi-task learning method
by combining low-rank self-calibrated functional and structural
brain networks. Song et al. (2021) constructed a new graph
convolution network (GCN) and got an ACC of 79.26% based
on fMRI and 82.92% based on DTI for the same classification
task. With MRI images, Lian et al. (2018) developed a hierarchical
fully convolutional network that can achieve an ACC of 81%
for the classification between progressive MCI (pMCI) and
stable MCI (sMCI).

To sum up, the refined classification performance for early AD
based on FDG-PET images still has some room for improvement.
One of the reasons might be that existing classification methods
based on FDG-PET have not fully explored the inter-region
representation among different brain regions. For example, based
on fMRI, there are many methods like Pearson’s correlation
and sparse representation for functional brain network (FBN)
estimation (Huang J. et al., 2020). However, several studies have
proved that brain metabolism connectivity has value in the
diagnosis of early AD (Huang et al., 2010; Sanabria-Diaz et al.,
2013; Titov et al., 2017), but few PET-based studies are using
the inter-region features to improve classification performance.
In addition, another reason might be that the number of PET
images is generally much more than that of fMRI images in
most researches. The bigger dataset might increase the variety
of individuals and the probability of special samples which are
hard to distinguish, thus causing complexity of the problem for
classification tasks.

Considering these two limitations, we propose a novel
bilinear pooling and metric learning network (BMNet) for
early Alzheimer’s disease identification with FDG-PET images,
especially for the classification task between EMCI and LMCI.
Our main contributions are as follows: (1) We propose a shallow
convolutional neural network model to achieve the classification;
(2) We introduce a bilinear pooling module into the model for
exploring the inter-region representation features in the whole
brain; (3) We introduce the deep metric learning to help model
learn the hard samples in the embedding feature space; (4) We
conduct our method on the dataset collected from the publicly
released ADNI database and obtain a state-of-the-art result of the
classification between EMCI and LMCI based on PET images.

The rest of this paper is organized as follows. In section
“Materials and Methods,” we present details of the materials
and the proposed methods. Section “Results” presents the results
of the experiments on the public ADNI database. Finally, we
provide the discussions and conclusion of this paper in section
“Discussion and Conclusion.”

MATERIALS AND METHODS

Image Acquisition and Preprocessing
In this work, we use the data in the publicly released Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (Jack et al.,
2008). We collect a cohort of subjects with FDG-PET images
from the ADNI databases. The ADNI cohort includes FDG-PET
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images from 898 subjects, including 263 NC, 290 EMCI, 147
LMCI, and 198 AD participants. Table 1 lists the demographic
characteristics of subjects.

We choose FDG-PET images which are in a state of rest
with 30–35 min with 185 ± 18.5 MBq FDG, and details of
acquisition can be obtained from the study protocols in the
ADNI database. Firstly, we normalize the images based on the
template of the Montreal Neurological Institute (MNI). Then,
we perform the smoothing with a Gaussian filter of 8 mm
fullwidth at half-maximum (FWHM) (Wang et al., 2020). Finally,
to verify the effectiveness of the proposed method, we do the
main experiments using two different brain atlas. Based on the
automated anatomical labeling (AAL) (Ashburner and Friston,
2000) atlas, we extract features of 90 regions of interest (ROIs)
from FDG-PET images with intensity normalized averagely.
Similarly, based on the Schaefer et al. (2018) atlas (Schaefer
et al., 2018), we extract features of 400 regions. We perform all
preprocessing steps by Statistical Parametric Mapping software
(SPM12) (Tzourio-Mazoyer et al., 2002) and Matlab (2020).

Methods
Overview of the Proposed Network
Figure 1 illustrates the method framework of this study. The left
box is the preprocessing step of FDG-PET images, in which the
left image is the raw PET image of the brain, and the right one is
the AAL template. Then 90 features extracted based on the AAL
template are input into the subsequent model. The model consists
of two convolution layers, a bilinear pooling layer, and two fully
connected layers.

After extracting the first-order features through two
convolution layers, the bilinear pooling module is used to
further extract the inter-region-based features. Finally, the metric
learning loss is added to the classification loss to strengthen the
ability to learn hard samples of the proposed model.

Baseline Model
We construct a shallow neural network as the Baseline model,
including two convolution blocks and three fully connected
layers. Each convolution block includes a convolution layer, a
batch normalization layer, and a Rectified Linear Unit (ReLU)
activation layer.

Given a set of nodes (regions) R = {r1, r2, r3}, and the
features of each region is denoted as Xi. Each convolution block
is defined as:

Yi = σ[BN(f (Xi))] (1)

TABLE 1 | Demographic characteristics of the subjects in the ADNI database.

Subjects NC EMCI LMCI AD

Number 263 290 147 198

Gender (M/F) 130/133 160/130 80/67 119/79

Age 75.49 ± 6.47 71.40 ± 7.33 72.16 ± 7.55 75.05 ± 7.60

MMSE 29.06 ± 1.13 28.32 ± 1.57 27.62 ± 1.84 23.20 ± 2.17

The values are presented as mean ± standard deviation.
MMSE, Mini-Mental State Examination.

Where the f represents the convolution process, BN
represents the batch normalization process, σ represents the
activation process.

Generating Inter-Region Representation via Bilinear
Pooling Module
In this section, we propose to use a bilinear pooling module
to further generate second-order features which may represent
inter-region features among whole brain regions. Bilinear pooling
is an effective feature fusion method, which has been widely used
in various computer vision and machine learning tasks (Lin et al.,
2015; Gao et al., 2020). Bilinear pooling captures the high-order
statistical information of features by matrix operations and then
generates an expressive global representation (Kim et al., 2016; Li
et al., 2017; Gao et al., 2020). In the research of DTI and fMRI,
this method is also used to extract connectivity-based features
between brain regions (Huang F. et al., 2020). In theory, by using
these features, the inter-region representation among the whole
brain regions in FDG-PET images could be exploited to some
extent, as the functional brain network of fMRI.

In this work, we introduce a new factorized bilinear pooling
method (Gao et al., 2020) to capture inter-region features by
fusing homogeneous features where the input features are from
the same source. This new bilinear pooling method simplifies
the complexity of calculation, reduces heavy computational
redundancy issues. Based on factorized bilinear coding, it is
proved that bilinear features are rank-one matrices whose rank
is one. The bilinear features could be extracted by factorizing
dictionary atoms into low-rank matrices and Hadamard product,
instead of massive matrix operations, reducing the dimension of
matrices and computational burden.

The main operations of bilinear features are as follows (Kim
et al., 2016; Gao et al., 2020):

B = YTWY = YTUVTY = PT(UTY◦VTY) (2)

where B represents the bilinear features, and Y represents the
input feature, UT , VT and PT are learnable parameters of the
dictionary, ◦ represents Hadamard product.

The low-rank matrix U and V are used to approximate W,
and the operation is simplified. Matrix P is used to control the
length of the output. In the network, three fully connected layers
are used to learn UT , VT and PT . Then, we use an average
pooling layer to diminish the feature dimension and obtain the
global information. Finally, the feature map is flattened to one-
dimensional and a fully connected layer is used to diminish the
feature dimension to facilitate subsequent learning processes.

We use this bilinear pooling method to capture inter-region
representation with FDG-PET images. The homogeneous
features achieve interaction of the whole brain by the
bilinear pooling module, which needs complex and expensive
computation before.

Distinguishing Hard Samples in Embedding Space by
Metric Learning
In this section, we introduce the deep metric learning strategy
into the classification of different stages of AD. Metric learning
is widely utilized with deep neural networks in classification
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FIGURE 1 | The architecture of the proposed bilinear pooling and metric learning network (BMNet) for MCI diagnosis using PET images. There are four modules in
our framework (i.e., images preprocessing module, convolutional feature-extraction module, bilinear pooling module, and the metric learning module).

tasks, especially in problems affected by large intra-class sample
changes (Liu et al., 2017; Sundgaard et al., 2021). Deep metric
learning loss maps features to the embedded space, which is
conducive to learning difficult samples and can effectively deal
with the imbalance of data (Sundgaard et al., 2021). Inspired by
these, we argue that deep metric learning might be suitable for
our classification task. Thus, in this paper, we employ deep metric
learning for the diagnosis of AD to help distinguish hard samples
in the embedding space.

In deep neural networks, the loss function is a manifestation
of metric learning, and there are a variety of different metric
learning loss functions. In this paper, we employ two deep metric
learning loss functions for automatic diagnosis of early AD,
including contrastive loss and triplet loss, which are widely used
in recent studies (Cheng et al., 2016; He et al., 2021; Sundgaard
et al., 2021). Contrastive loss employs a pair of positive and
negative samples for each training iteration. The contrastive loss
function is measured by the Euclidian distance between two
vectors in embedding space. The contrastive loss function is given
as (Hadsell et al., 2006):

Lc(b1,i, b2,i) =
∑N

i=1
[yid2

1,2 + (1− yi){max(0, m− d1,2)}
2
](3)

d1,2 = ||f1,i − f2,i||22 (4)

where yi = 0 for two positive vectors and yi = 1 for negative
pairs, b1,i, b2,i is the training input from two classes, f1,i, f2,i
represents the embedding vector of each training input generated
by the network, N is the number of input samples, and m is the
margin, usually set to 1.0.

When the input is a positive sample pair, d1,2 decreases
gradually, and the same kind of samples will continue to form
clusters in the feature space. On the contrary, when the network
inputs a negative sample pair, d1,2 will gradually rise until it
reaches the set m. By minimizing the loss functions, the distance

between positive sample pairs can be gradually reduced and
the distance between negative sample pairs can be gradually
increased, to meet the needs of the classification task.

Triplet loss is a widely used measure of metric learning loss,
which is the basis of a large number of metric learning methods.
Unlike contrastive loss, triplet loss requires three input samples
including two positive samples and a negative sample. The three
samples are named as fixed sample (anchor) ba, positive sample
(positive) bp and negative sample (negative) bn respectively.
ba and bp form positive sample pairs, and ba and bn form
negative sample pairs.

This triplet loss function simultaneously penalizes a short
distance da,n between an anchor and a negative sample and a
long distance da,p between an anchor and a positive sample, and
is defined as (Schroff et al., 2015):

Ltriplet(ba
i , bp

i , bn
i ) =

∑N

i=1
max(0,m+ da,p − da,n) (5)

where ba
i , bp

i , bn
i is the input from two training groups, N

represents the number of samples, and m is the margin, usually
set to 1.0.

da,p = ||f a
i − f p

i ||
2
2 (6)

da,n = ||f a
i − f n

i ||
2
2 (7)

f a
i , f p

i , f n
i represents the vector of training input in

embedding space.
As shown in Figure 1, the triple loss can shorten the distance

between positive sample pairs, while pushing away the distance
between negative sample pairs. Finally, samples with the same
class form feature clusters and embedding space to improve the
performance of the classification tasks.
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Loss Functions
In addition, we use cross-entropy loss LC for the classification
task. Therefore, the final loss function includes a joint loss
function Ltotal that contains metric loss LM for the embedding
space and cross-entropy loss for the classification task.

Ltotal = λLM + LC (8)

LC =
1
N

∑N

i
− [yilog(pi)+ (1− yi)log(1− pi)] (9)

Where yi represents the label of the sample i, where pi
represents the probability that the sample i is projected to be
a positive class, λ represents the coefficient which we define as
0.05 by experience.

Performance Evaluation
We adopt six commonly used evaluation metrics to evaluate
the performance of the models objectively, including accuracy
(ACC), sensitivity (SEN), specificity (SPE), positive predictive
value (PPV), negative predictive value (PPV), F1 score (F1), area
under the receiver operating characteristic curve (AUC).

Implementation Details
We implement the proposed network based on the public
platform PyTorch 1.8 and Intel Core i5-9400 CPU with 16 GB
memory. Besides, we adapt stochastic gradient descent (SGD) to
optimize the model, in which momentum and weight decay are
set to 0.9 and 0.001 respectively.

Validation Strategies and Statistic Analysis Methods
To evaluate the effectiveness of the proposed model, we conduct a
fivefold cross-validation strategy in all ablation and comparative
experiments based on the AAL atlas. For each experiment, we

divide data into five groups, and each group maintains the same
proportion of two classes. In each fold experiment, four groups
are used as train groups and another group is used as the test
group. The detailed classification results on the ADNI database
are summarized in section “Ablation Experiments.”

In addition, we apply independent testing set strategy in the
experiments based on Schaefer et al. (2018) atlas. We divide
the collected dataset from the ADNI database into a training
set (80%), validation set (10%), and testing set (10%). The
corresponding detailed classification results are summarized in
sections “Experiments on Different Atlases.”

Similarly, to evaluate the effectiveness of the proposed model,
we use two methods to validate the statistical significance
including the t-test and DeLong test. In the experiments on the
AAL atlas, we use the t-test. In the experiments on Schaefer et al.
(2018) atlas, we use the DeLong test.

RESULTS

Ablation Experiments
To verify the effect of the bilinear pooling module and the
metric learning loss on the performance of the proposed
model, we remove the bilinear pooling module and the
metric learning mechanism loss from the proposed BMNet,
respectively. In the first experiment (i.e., our method without
a bilinear pooling module), we directly use a fully connected
layer to replace the bilinear pooling module. In the second
experiment (i.e., our method without metric learning losses),
we just use the cross-entropy loss function. The details are
as follows and the results are shown in Tables 2–5 and
Figure 2.

TABLE 2 | Results of the ablation studies of BP module and metric learning losses for EMCI vs. LMCI classification (Mean ± Standard Deviation).

Method ACC (%) PPV (%) NPV (%) SEN (%) SPE (%) AUC F1 (%) p

Baseline 75.74 ± 2.96 83.79 ± 2.32 59.84 ± 13.06 80.79 ± 4.89 64.92 ± 2.09 0.7332 ± 0.0602 82.26 ± 1.53 –

Baseline + BP 78.48 ± 3.44 86.21 ± 4.22 63.29 ± 4.18 82.24 ± 2.03 70.29 ± 7.26 0.7629 ± 0.0719 84.17 ± 2.70 0.068

Tri-loss 77.35 ± 5.28 87.93 ± 5.72 56.34 ± 19.67 80.49 ± 6.45 71.3 ± 8.60 0.7415 ± 0.0963 84.05 ± 3.41 0.342

Tri-loss + BP 79.64 ± 3.11 89.31 ± 2.56 60.55 ± 9.54 81.84 ± 3.66 74.29 ± 4.18 0.7589 ± 0.0633 85.41 ± 2.13 0.013*

Con-loss 77.81 ± 3.05 86.55 ± 3.57 59.17 ± 9.13 80.88 ± 3.37 70.53 ± 5.67 0.7387 ± 0.0801 83.94 ± 2.22 0.342

Con-loss + BP 79.40 ± 1.92 86.90 ± 6.41 64.67 ± 10.58 83.22 ± 3.86 72.43 ± 6.59 0.7707 ± 0.0848 85.01 ± 1.89 0.079

The bold values represent the highest number.
The asterisk represents the results have the statistical significance.

TABLE 3 | Results of the ablation studies of BP module and metric learning losses for NC VS. AD classification (Mean ± Standard Deviation).

Method ACC (%) PPV (%) NPV (%) SEN (%) SPE (%) AUC F1 (%) p

Baseline 85.25 ± 2.50 92.01 ± 2.82 76.33 ± 6.77 83.91 ± 3.96 87.99 ± 3.52 0.9074 ± 0.0215 87.77 ± 1.96 –

Baseline + BP 88.94 ± 1.20 93.52 ± 3.48 82.79 ± 3.50 87.92 ± 1.77 90.93 ± 4.33 0.9286 ± 0.0218 90.63 ± 1.22 0.051

Tri-loss 88.29 ± 0.86 93.54 ± 0.99 81.33 ± 2.04 86.92 ± 1.44 90.47 ± 1.31 0.9279 ± 0.0127 90.35 ± 0.74 0.059

Tri-loss + BP 89.80 ± 0.62 93.53 ± 3.70 84.81 ± 4.88 89.28 ± 2.79 91.20 ± 4.28 0.9281 ± 0.0192 91.11 ± 0.70 0.032*

Con-loss 89.14 ± 1.75 93.53 ± 2.56 83.35 ± 2.78 88.02 ± 1.59 90.76 ± 3.54 0.9281 ± 0.0253 90.69 ± 1.48 0.088

Con-loss + BP 89.80 ± 0.99 93.90 ± 2.44 84.32 ± 3.40 88.91 ± 2.00 91.40 ± 2.97 0.9334 ± 0.0141 91.35 ± 0.80 0.029*

The bold values represent the highest number.
The asterisk represents the results have the statistical significance.
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TABLE 4 | Results of the ablation studies of BP module and metric learning loss for NC VS. LMCI classification (Mean ± Standard Deviation).

Method ACC (%) PPV (%) NPV (%) SEN (%) SPE (%) AUC F1 (%) p

Baseline 76.81 ± 4.27 78.86 ± 9.26 73.45 ± 10.68 84.50 ± 4.26 66.81 ± 6.33 0.7527 ± 0.0520 81.58 ± 4.79 –

Baseline + BP 80.00 ± 4.61 86.28 ± 6.49 68.71 ± 8.88 83.25 ± 3.83 74.45 ± 7.40 0.7871 ± 4.57 84.74 ± 4.03 <0.001*

Tri-loss 80.49 ± 2.86 89.33 ± 4.01 64.60 ± 5.42 81.91 ± 2.04 77.68 ± 6.17 0.7702 ± 5.77 85.46 ± 2.34 0.007*

Tri-loss + BP 82.20 ± 4.36 89.36 ± 3.17 69.42 ± 11.53 84.18 ± 5.23 78.48 ± 5.76 0.7985 ± 5.38 86.69 ± 3.05 <0.001*

Con-loss 79.03 ± 4.83 83.22 ± 7.72 71.36 ± 13.62 84.31 ± 5.15 71.28 ± 6.79 0.7841 ± 4.18 83.76 ± 4.23 0.016*

Con-loss + BP 81.46 ± 3.99 84.64 ± 6.62 72.02 ± 9.80 84.96 ± 3.64 76.05 ± 7.78 0.8096 ± 4.22 84.80 ± 4.35 0.001*

The bold values represent the highest number.
The asterisk represents the results have the statistical significance.

TABLE 5 | Results of the ablation studies of BP module and metric learning loss for LMCI vs. AD classification (Mean ± Standard Deviation).

Method ACC (%) PPV (%) NPV (%) SEN (%) SPE (%) AUC F1 (%) p

Baseline 77.69 ± 2.67 74.16 ± 5.54 80.30 ± 6.73 74.57 ± 5.91 80.86 ± 2.54 0.7964 ± 0.0216 74.37 ± 2.67 –

Baseline + BP 80.06 ± 5.78 72.92 ± 11.12 85.37 ± 4.11 78.62 ± 5.95 81.29 ± 6.67 0.8108 ± 0.0581 75.66 ± 8.02 0.243

Tri-loss 80.60 ± 3.04 74.25 ± 9.76 85.31 ± 6.67 79.77 ± 6.85 82.23 ± 5.29 0.8040 ± 0.0422 76.91 ± 4.30 0.307

Tri-loss + BP 81.18 ± 2.72 78.90 ± 7.80 82.85 ± 4.39 77.53 ± 3.26 84.41 ± 4.42 0.8167 ± 0.0295 78.21 ± 3.97 0.022*

Con-loss 79.71 ± 0.97 74.87 ± 7.56 83.31 ± 5.89 77.53 ± 5.36 82.00 ± 3.37 0.8018 ± 0.0332 76.18 ± 2.19 0.327

Con-loss + BP 81.77 ± 4.50 77.54 ± 8.19 84.91 ± 6.27 79.64 ± 6.88 83.84 ± 4.97 0.8297 ± 0.0346 78.57 ± 5.53 0.028*

The bold values represent the highest number.
The asterisk represents the results have the statistical significance.

FIGURE 2 | The F1 scores of experiments for EMCI vs. LMCI classification, NC vs. LMCI classification, LMCI vs. AD classification and NC vs. AD classification.
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TABLE 6 | Results of the main studies based on the Schaefer et al. (2018) atlas.

Class Method ACC SEN SPE F1 AUC p

EMCI-
LMCI

Baseline 0.7500 0.7647 0.7000 0.8254 0.7379 0.0358*

Con-loss 0.7727 0.7714 0.7778 0.8438 0.7609 0.1090

Baseline + BP 0.7955 0.8125 0.7500 0.8525 0.7425 0.0990

Con-loss + BP 0.8409 0.8235 0.9000 0.8889 0.8529 –

NC-AD Baseline 0.8298 0.8519 0.8000 0.8519 0.8796 0.0395*

Con-loss 0.8511 0.8571 0.8421 0.8727 0.9139 0.3212

Baseline + BP 0.8511 0.8333 0.8824 0.8772 0.9259 0.3548

Con-loss + BP 0.8936 0.8929 0.8947 0.9091 0.9574 –

The bold values represent the highest number.
The asterisk represents the results have the statistical significance.

The Ablation Experiments of the Bilinear Pooling
Module
Firstly, we conduct the experiments based on the Baseline model.
Then we conduct the experiments of adding a bilinear pooling
(BP) module to the Baseline model. According to the results,
after the BP module is added, the four groups of classification
experimental results have been improved to a certain extent.
Specifically, in classification experiments between EMCI and
LMCI, ACC increases by 2.74%, and AUC increases by 2.97%. In
classification experiments between NC and AD, the results are the
best, where ACC increases by 3.69% and AUC increases by 2.12%.
In addition, we also conduct experiments in the classification
between NC and LMCI, LMCI, and AD. The results illustrate that
the BP module has a good generalization ability in the different
classification tasks.

Furthermore, we conduct comparative experiments to verify
the effectiveness of the BP module based on metric learning
loss. For example, in the classification experiments of EMCI and
LMCI, after adding the BP model to the triplet loss (Tri-loss),
ACC increases by 2.29%, and AUC increases by 1.74%.

The Ablation Experiments of Metric Learning Losses
In this sub-section, we perform comparative experiments in
terms of metric learning losses, including the triplet loss (Tri-loss)
and the contrastive loss (Con-loss). We use two kinds of metric
learning losses respectively, and the results illustrate that the two
metric learning losses are both effective in different experiments.
Specifically, in the classification experiments between EMCI and
LMCI, ACC increases by 2.07% after adding the contrastive loss,
which is a little higher than that of triplet loss. Similarly, in the
classification experiments between NC and AD, ACC increases
by 3.89%. In the classification experiments between NC and
LMCI, the results of triplet loss improve more than these of
contrastive loss, and ACC reaches 0.8049. On the contrary, in
the classification experiment between LMCI and AD, the results
of contrastive loss are better, where ACC reaches 0.8177 and
AUC reaches 0.8297.

Finally, we use the t-test to measure the statistical significance
comparing AUCs and the results are shown as p-value in
Tables 2–5. We can see that most results of the two final models
(Con-loss + BP and Tri-loss + BP) are statistically significant.
In addition, we can also see that most F1 scores of the two final
models are higher than these of other models in Figure 2.

Experiments on Different Atlases
In this section, we evaluate the performance of our method (Con-
loss + BP) based on the Schaefer et al. (2018) atlas. We conduct
two groups of experiments for EMCI vs. LMCI classification and
NC vs. AD classification and the results are shown in Table 6
and Figure 3. As stated earlier, we apply independent testing set
strategy in these experiments and use the DeLong test to validate
the statistical significance.

The results illustrate that both BP module and contrastive
loss are effective based on the Schaefer et al. (2018) atlas. In the
experiments for EMCI vs. LMCI classification, ACC increases
by 2.27% after adding the contrastive loss, which is a little

FIGURE 3 | Receiver operating characteristic (ROC) curves of experiments for EMCI vs. LMCI classification and the ROC of experiments for NC vs. AD classification
based on the Schaefer et al. (2018) atlas. TPR, true positive rate; FPR, false-positive rate; AUC, area under the receiver operating characteristic curve. Please see
the web version for the complete colorful picture.
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TABLE 7 | Comparison of the performance of different model algorithms in experiments for EMCI vs. LMCI classification with the related works.

Method Modality DATA (EMCI/LMCI) ACC SEN SPE AUC F1

SVM PET 290/147 0.6620 0.7769 0.4653 0.6329 –

Singh et al., 2017 PET 178/158 – 0.6482 – – 0.6844

Nozadi et al., 2018 PET 164/189 0.7250 0.7920 0.6990 0.790 –

Forouzannezhad et al., 2018 PET 296/193 0.6230 0.7820 0.4000 – –

Forouzannezhad et al., 2020 PET 296/193 0.6280 0.6150 0.6430 – –

Yang and Liu, 2020 PET – 0.7219 0.7382 0.7305 – –

Hao et al., 2020 PET 273/187 0.6469 0.7817 0.4444 0.6300 –

PET+MRI 0.7387 0.9055 0.4952 0.7000 –

Fang et al., 2020 PET+MRI 297/196 0.8333 0.8235 0.8966 0.8947

Lei et al., 2020 fMRI 44/38 0.7805 0.7368 0.8182 0.8571 –

DTI 0.5366 0.5789 0.5000 0.5260 –

Song et al., 2021 fMRI 44/38 0.7926 0.8421 0.7500 0.9067 –

DTI 0.8292 0.9473 0.7272 0.9414 –

Our method (Tri-loss+BP) PET 290/147 0.7964 0.8184 0.7429 0.7589 0.8541

Our method(Con-loss+BP on Schaefer atlas) PET 290/147 0.8409 0.8235 0.9000 0.8889 0.8529

The bold values represent the highest number.

lower than that of the BP module. Similarly, in the classification
experiments between NC and AD, ACC increases by 2.13%.
Finally, combining the BP module and contrastive loss, the final
model (Con-loss + BP) achieves much improvement in both
two classification experiments. Specifically, in the classification
experiments for EMCI and LMCI, ACC, SEN, SPE, F1 and
AUC achieve 84.09%, 82.35%, 90%, 88.89% and 0.8529 with
an improvement of 9.09, 5.88, 20, 6.35, and 11.5% respectively,
compared with Baseline model. In the NC vs. AD classification
experiments, ACC, SEN, SPE, F1 and AUC increases by 6.38%,
4.1%, 9.47%, 5.72%, 7.78% and reach 89.36%, 89.29%, 89.47%,
90.91% and 0.9574.

Comparison With Other Methods
In this section, we compare the performance of our method
(Tri-loss + BP) with that of several recent representative

TABLE 8 | Comparison of the performance of different model algorithms in
experiments for NC vs. AD classification with the related works.

Method Modality DATA
(NC/AD)

ACC SEN SPE AUC

SVM PET 263/198 0.6213 0.8063 0.5547 0.8445

Hao et al., 2020 PET 211/160 0.8006 0.8602 0.7194 0.85

MRI 0.8663 0.9028 0.8181 0.93

Lei et al., 2020 fMRI 44/38 0.7805 0.7368 0.8182 0.8571

DTI 0.5366 0.5789 0.5000 0.5260

Song et al., 2021 fMRI 44/38 0.7926 0.8421 0.75 0.9067

DTI 0.8292 0.9473 0.7272 0.9414

Lian et al., 2018 MRI 429/358 0.90 0.82 0.97 0.95

Dong et al., 2021 MRI+PET 440/367 0.9305 0.9474 0.9091 0.9732

Our method
(Tri-loss+BP)

PET 263/198 0.898 0.8928 0.912 0.9281

Our method
(Con-loss+BP on
Schaefer atlas)

PET 263/198 0.8936 0.8929 0.8947 0.9574

The bold values represent the highest number.

methods. In addition, we apply the least absolute shrinkage and
selection operator (LASSO) feature selection method and support
vector machine (SVM) method for the contrast experiments.
From Table 7, we can find that our method gets the highest
performance in classification experiments between EMCI and
LMCI based on FDG-PET images. Specifically, the proposed

TABLE 9 | Comparison of the performance of different model algorithms in
experiments for NC vs. LMCI classification with the related works.

Method Modality DATA
(NC/LMCI)

ACC SEN SPE AUC

SVM PET 263/147 0.6415 0.7446 0.5437 0.6724

Hao et al., 2020 PET 273/187 0.6677 0.7545 0.5594 0.68

MRI 0.712 0.7801 0.6332 0.76

Lei et al., 2020 Fmri 44/38 0.7805 0.7368 0.8182 0.8571

DTI 0.5366 0.5789 0.5000 0.5260

Song et al., 2021 fMRI 44/38 0.7926 0.8421 0.75 0.9067

DTI 0.8292 0.9473 0.7272 0.9414

Our method
(Tri-loss+BP)

PET 263/147 0.822 0.8418 0.7848 0.7985

The bold values represent the highest number.

TABLE 10 | Comparison of the performance of different model algorithms in
experiments for LMCI vs. AD classification with the related works.

Method Modality DATA
(LMCI/AD)

ACC SEN SPE AUC

SVM PET 147/198 0.5841 0.7834 0.5044 0.6908

Hao et al., 2020 PET 273/187 0.6677 0.7545 0.5594 0.68

MRI 0.712 0.7801 0.6332 0.76

Lei et al., 2020 fMRI 44/38 0.7805 0.7368 0.8182 0.8571

DTI 0.5366 0.5789 0.5000 0.5260

Song et al., 2021 fMRI 44/38 0.7926 0.8421 0.75 0.9067

DTI 0.8292 0.9473 0.7272 0.9414

Our method
(Tri-loss+BP)

PET 147/198 0.8118 0.7753 0.8441 0.8167

The bold values represent the highest number.
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FIGURE 4 | The AUCs of ablation experiments loss functions for EMCI vs. LMCI classification and NC vs. AD classification based on the Schaefer et al. (2018) atlas.
AUC, area under the receiver operating characteristic curve.

method yields big improvement than the results of Singh et al.
(2017) and Nozadi et al. (2018), although the dataset in our
experiments is highly unbalanced. Based on a similar dataset, the
proposed method still has better performance than the methods
proposed by Forouzannezhad et al. (2018, 2020). In addition,
compared with the method proposed by Hao et al. (2020), our
method achieves an overall huge improvement with 14.95%
in ACC, 3.67% in SEN, 29.85% in SPE, and 12.89% in AUC,
respectively. Compared to the results of the fusion of PET and
MRI (Singh et al., 2017; Forouzannezhad et al., 2018, 2020;
Nozadi et al., 2018; Fang et al., 2020; Hao et al., 2020), our
method also achieves an improvement in most metrics. Besides,
our method gets a comparable performance compared to the
methods based on fMRI and DTI adapted by Lei et al. (2020) and
by Song et al. (2021), but the subjects in our research are much
more than those they use.

Similarly, from Table 8, we can find that our method gets
the highest performance of classification experiments between
NC and AD based on PET images too. Specifically, compared
with the method proposed by Hao et al. (2020) based on PET
images, our method achieves an overall huge improvement
with 9.74% in ACC, 3.26% in SEN, 19.26% in SPE, and 7.81%
in AUC, respectively. Besides, our method gets a comparable
performance compared to the methods based on other modalities
(Lian et al., 2018; Lei et al., 2020; Song et al., 2021). ACC, SEN,
SPE, AUC of our method based on PET images improve 10.76%,
4.69%, 16.83%, and 2.82% than those of their method based
on fMRI. While SEN and AUC are slightly lower, ACC and
SPE based on PET images improve 7.1% and 19.11% than
those based on DTI.

In addition, we conduct the classification experiments
between NC and LMCI, LMCI and AD, and the results compared
with other methods are shown in Tables 9, 10 respectively, to
further validate the effectiveness of our method.

From those experiments above, we can see that our
classification results between EMCI and LMCI have exceeded
those of the existing methods overall based on FDG-PET images.
In addition, our results are also comparable with those based on
fMRI and DTI images.

DISCUSSION AND CONCLUSION

Comparison of Different Coefficients in
Loss Functions
To select the proper coefficient of loss functions, we compare
several numbers of coefficient λ in Equation 8, including 0, 0.03,
0.05, 0.08, and 0.1. We conduct the ablation experiments based
on methods in section “Experiments on Different Atlases” and
the corresponding AUCs are shown in Figure 4. It can be seen
that the AUC turns out to be the highest when coefficient is
around 0.05 and keep at a relatively high level in the range
from 0.05 to 0.08. Therefore we set coefficient λ as 0.05 in
most experiments.

Comparisons With Previous Researches
In general, there are three major advances between the proposed
method and previous methods. Firstly, current PET-based
methods are deficient in extracting representation features
among different brain regions, incurring poor performance
for the classification of early AD. The proposed BMNet
introduces a bilinear pooling module into the model to
explore the inter-region representation features and get a good
classification performance. Secondly, there are few methods
to study hard samples to improve the classification results
in the brain disorder analysis. By comparison, we apply
two metric learning losses to our model which has been
proved useful for hard samples classification and they both
get a good performance in the experiments. Thirdly, brain
metabolism is very important for AD diagnosis and can
only be obtained by PET images. Based on PET images,
the proposed method could extract region-based features
which represent the brain metabolic connectivity network,
excavate the potential of PET images, and improve the
diagnosis performance. This is the main superiority of inter-
region-based methods with PET images compare with other
modalities. In addition, the proposed PET-based method
is comparable to other modalities in classification tasks
between EMCI and LMCI.
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Potential Applications in Other
Modalities
Considering the good performance based on FDG-PET images,
the proposed BMNet including the bilinear pooling module and
the metric learning loss functions also has the potential capability
of diagnosis for other neurological diseases with other kinds
of brain images. Besides, the proposed method only requires
features of each brain region as the input. This lightweight
characteristic allows the model to be easily applied to fMR and
DTI images. We will try to explore more applications of the
proposed method in future work.

Limitations and Future Works
While the proposed BMNet achieves good results for the
diagnosis of early AD, there are still some limitations. Firstly,
considering the characteristics of the convolution neural
network, the models and results are hard to be interpreted
and the inter-region representation of the brain regions is
hard to be visualized. Secondly, the proposed method focus
on region-based features, which are lightweight but only utilize
the metabolism of brain regions, limiting the ability of the
network. In future work, we will try to integrate whole 3D PET
images into the network to achieve joint feature extraction and
classification. Finally, there is still some potential in exploiting
methods that can extract brain inter-region representation
features based on FDG-PET images. In the future, we will try
to design methods that could extract inter-region representation
features more effectively. In addition, the proposed method
directly combined the contrastive loss and triplet loss with the
entropy loss to better distinguish the hard samples. In the
future, we will some novel designs of these losses based on
domain knowledge.

Conclusion
We propose a novel neural network method for the
diagnosis of early AD with FDG-PET. We firstly construct
a shallow neural network as the Baseline model. Then we
introduce a bilinear pooling module into the network to
try to extract inter-region representation features among
the whole brain. We also apply the deep metric learning
losses into the final loss function to help distinguish hard
samples in the embedding space. Finally, we conduct the
BMNet on the ADNI database and the results show that

our method yields comparable classification performance
with several representative methods. Especially, we get
a satisfying classification performance in the experiment
between EMCI and LMCI, which is the state-of-the-art
result with FDG-PET.
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