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Abstract. Cadherins and catenins play an important 
role in cell-cell adhesion. Two of the catenins, [3 and ~/, 
are members of a group of proteins that contains a re- 
peating amino acid motif originally described for the 
Drosophila segment polarity gene armadillo. Another 
member of this group is a 120-kD protein termed p120, 
originally identified as a substrate of the tyrosine kinase 
pp60 ~r¢. In this paper, we show that endothelial and epi- 
thelial cells express p120 and pl00, a 100-kD, p120- 
related protein. Peptide sequencing of pl00 establishes 
it as highly related to p120. p120 and pl00 both appear 
associated with the cadherin/catenin complex, but inde- 
pendent p120/catenin and pl00/catenin complexes can 
be isolated. This association is shown by coimmunopre- 
cipitation of cadherins and catenins with an anti-p120/ 

pl00 antibody, and of pl20/pl00 with cadherin or cate- 
nin antibodies. Immunocytochemical analysis with a 
p120-specific antibody reveals junctional colocalization 
of p120 and 13-catenin in epithelial cells. Catenins and 
p120/p100 also colocalize in endothelial and epithelial 
cells in culture and in tissue sections. The cellular con- 
tent of p120/p100 and 13-catenin is similar in MDCK 
cells, but only ~20% of the p120/p100 pool associates 
with the cadherin/catenin complex. Our data provide 
further evidence for interactions among the different 
arm proteins and suggest that p120/p100 may par- 
ticipate in regulating the function of cadherins and, 
thereby, other processes influenced by cell-cell 
adhesion. 

C 
ELL adhesion is important for a wide variety of regu- 

latory and developmental processes. The cadherins 
comprise a family of transmembrane, cell surface 

glycoproteins that mediate Ca2+--dependent cell-cell ad- 
hesion in a homotypic manner (Takeichi, 1991). In cells 
with well-developed intercellular junctions, the cadherins 
are localized to the adherens junction (Boiler et al., 1985) 
but appear to influence other intercellular junctions such 
as gap junctions (Matsuzaki et al., 1990; Musil et al., 1990) 
and tight junctions (Gumbiner and Simons, 1986; Gum- 
biner et al., 1988). The adherens junction also plays a cru- 
cial role in developing and maintaining cell polarity (see 
Nelson, 1992), and its dysfunction has been strongly impli- 
cated in the invasiveness and carcinogenesis of tumor cells 
(see, e.g., Behrens et al., 1989; Frixen et al., 1991; Vlem- 
inckx et al., 1991; Shimoyama et al., 1992; Hedrick et al., 
1993; Tsukita et al., 1993; Birchmeier and Behrens, 1994). 

The conserved cytoplasmic domain of cadherins is known 
to associate with three proteins, termed or-, ~-, and ~t-cate- 
nin (Ozawa et al., 1989), which serve to link cadherins to 
the actin-based cortical cytoskeleton (Hirano et al., 1987). 
The association of cadherins with catenins is essential for 
intercellular Ca2+--dependent adhesiveness (Nagafuchi and 
Takeichi, 1988; Ozawa et al., 1990; Kintner, 1992). oc-catenin 
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is homologous to vinculin (Herrenknecht et al., 1991; Na- 
gafuchi et al., 1991), making it a good candidate for inter- 
action with the actin-based cytoskeleton (see Ozawa et al., 
1990; Hirano et al., 1992). [3-Catenin is homologous to the 
Drosophila segment polarity gene armadillo, suggesting a 
role in developmental signaling in vertebrates (McCrea et 
al., 1991). ~/-Catenin is probably identical to plakoglobin 
(Knudsen and Wheelock, 1992; but see Piepenhagen and 
Nelson, 1993), which again is homologous to armadillo 
(see Franke et al., 1989; Peifer and Wieschaus, 1990). In- 
deed, ~-catenin and plakoglobin appear to be part of a 
multigene family (Peifer et al., 1992). 

A repeating 42-amino acid motif originally identified in 
armadillo (Riggleman et al., 1989) has also been found in 
several other proteins, including ~-catenin and plakoglo- 
bin, with a variety of functions (Peifer et al., 1994). These 
include the APC gene product, a tumor suppressor protein 
(Kinzler et al., 1991); p120, a pp61Y rc substrate (Reynolds 
et al., 1992); smgGDS, an exchange factor for ras-related 
G proteins (Kikuchi et al., 1992); a suppressor of RNA 
polymerase I mutations in yeast (Yano et al., 1992, 1994); 
and band-6 protein, a major desmosomal constituent (Hatz- 
feld et al., 1994). The function of the repeats in these arm 
proteins is unknown. Interestingly, the APC gene product 
associates with [3-catenin (Rubinfeld et al., 1993; Su et al., 
1993), supporting an important role for catenins in intra- 
cellular processes that regulate cell growth. Furthermore, 
these studies illustrate that cadherins are not exclusive cel- 
lular partners of catenins, raising the possibility of other 
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interactions among catenins, cadherins, and arm proteins, 
important in a variety of biological processes. 

p120 was initially identified as one of several substrates 
of the tyrosine kinase pp60 ~rc (Reynolds et al., 1989; Kan- 
ner et al., 1990). It is membrane associated and can be 
myristoylated, but does not appear to be glycosylated 
(Kanner et al., 1991). Mutational analysis suggested that 
tyrosine phosphorylation of p120 is necessary for pp61Y rc- 
mediated cellular transformation (Linder and Burr, 1988; 
Reynolds et al., 1989). Although tyrosine phosphorylation 
of p120 has also been observed in response to epidermal 
growth factor, platelet-derived growth factor, and colony- 
stimulating factor 1, and in polyoma virus middle T 
antigen-transformed cells (Downing and Reynolds, 1991; 
Kanner et al., 1991), the exact role of p120 in cellular phys- 
iology and pathology remains to be established. 

For the present report, we studied p120 in endothelial 
and epithelial cells. First, we provide evidence for the ex- 
istence of a pl20-related 100-kD protein, which we term 
pl00. We then examine the possibility of interaction be- 
tween pl20/pl00 and other proteins. Our biochemical data 
suggest that pl20/pl00 associates with the cadherin/cate- 
nin complexes of endothelial and epithelial cells. Immuno- 
cytochemical analysis supports this conclusion. Because 
p120 appears to be an important pp61Y ~c substrate involved 
in cellular transformation, our data provide a link between 
tyrosine kinase substrates, cell adhesion molecules, and 
growth control, p120 and pl00 may also be important in 
modulating of other processes regulated by cell-cell adhe- 
siveness. For example, we recently presented evidence 
that increased tight-junction permeability was associated 
with tyrosine phosphorylation of proteins associated with 
intercellular junctions (Staddon et al., 1995). Clearly, the 
characterization of kinase substrates at intercellular junc- 
tions has implications for a variety of processes influenced 
by cell-cell adhesion. While the present study was in 
progress, Reynolds et al. (1994) published similar findings. 
Our work confirms and extends the observations of Rey- 
nolds et al. (1994), linking p120 with the cadherin/catenin 
complex. 

Materials and Methods 

Antibodies 

The anti-canine E-cadherin antibody rrl, developed by Gumbiner and Si- 
mons (1986), was provided by Barry Gumbiner (Memorial Sloan-Ketter- 
ing Cancer Center, NY) or obtained from the Developmental Studies Hy- 
bridoma Bank (maintained by the Department of Pharmacology and 
Molecular Sciences, Johns Hopkins University School of Medicine, Balti- 
more, MD, and the Department of Biological Sciences, University of 
Iowa, Iowa City, IA) under contract No. N01-HD-2-3144 from the Na- 
tional Institute of Child Health and Human Development (NICHD). The 
anti-human E-cadherin antibody HECD-1 (Shimoyama et al., 1989) came 
from Takara Biomedicals (Shiga, Japan). Anti-pl20 and anti-focal adhe- 
sion kinase (FAK) 1 antibodies came from Transduction Laboratories 
(Lexington, KY). The anti-p120 antibody 2B12 (Karmer et al., 1990) was a 
gift from J. T. Parsons (University of Virginia, Charlottesville, VA). The 
peptide-directed antibodies against a- and 13-catenin (Staddon et al., 1995) 
were kindly provided by Kurt Herrenknecht (Eisai Research Laboratories 
Ltd., University College London, London, UK). The anti-collagen IV an- 
tibody came from Biogenesis (Bournemouth, UK). All secondary anti- 
bodies used for immunoprecipitation and immunocytoehemistry came 
from Jackson Laboratories Inc. (West Grove, PA). HRP-conjugated sec- 

1. Abbreviation used in this paper: FAK, focal adhesion kinase. 

ondary antibodies used for immunoblotting came from Amersham (Buck- 
inghamshire, UK). 

Cells 
The following cells were cultured at 37°C in a medium containing 100 U/ml 
penicillin and 100 ixg/ml streptomycin: Caco-2 (epithelial cells derived 
from a human colonic tumor: 5% COz, MEM, 10% FCS, 1% nonessential 
amino acids, 1 p,g/ml insulin); CMT 93/69 (epithelial cells derived from a 
mouse rectal carcinoma: 10% CO2, DME, 10% FCS); ECV304 (a cell line 
derived from human umbilical vein endothelial cells: 5% CO2, M199, 10% 
FCS); LLC-PK1 (epithelial cells derived from porcine kidney: 5% CO2, 
M199, 10% FCS); MDBK (epithelial cells derived from bovine kidney: 
5% CO2, MEM, 10% FCS); Strain I MDCK cells (epithelial cells derived 
from canine kidney: 5% CO2, MEM, 10% FCS); RBE4 cells (immortal- 
ized rat brain endothelial ceils [see Durieu-Trautmann et al., 1993]: 5% 
CO2, ct-MEM: Ham's F10 [1:1], 10% FCS, 0.3 mg/ml geneticin, 1 ng/ml 
bFGF); Swiss 3T3 fibroblasts (10% CO2, DME, 10% FCS). Caco-2, CMT 
93/69, ECV304, LLC-PK1 and MDBK cells were obtained from the Euro- 
pean Collection of Animal Cell Cultures (Salisbury, UK). MDCK cells 
were provided by Barry Gumbiner, RBE4 cells came from Pierre Cour- 
aud (Universit6 Paris, Paris, France) and Swiss 3T3 fibroblasts came from 
Enrique Rozengurt (Imperial Cancer Research Fund, London, UK). Hu- 
man umbilical vein endothelial cells came from Clonetics (Palo Alto, CA) 
and were cultured according to the manufacturer's instructions. Primary 
cultures of bovine and porcine brain endothelial cells were grown as de- 
scribed by Rubin et al. (1991). For experimental purposes, confluent cul- 
tures of Caco-2, MDBK, MDCK, and brain endothelial cells were estab- 
lished on tissue culture-treated, polycarbonate Transwell filters 
(polycarbonate, 0.4 i~m; Costar, Cambridge, MA). Other cells were grown 
on tissue culture plastic. 

Immunoblotting and Immunoprecipitation 
Whole-cell lysates from cultures maintained 16-20 h in 0.5% serum were 
prepared by rapidly replacing the medium with hot Laemmli sample 
buffer (Laemmli, 1970) supplemented with 5 mM EDTA, followed by 
heating at 100°C for 5 min. Proteins were resolved by slab-gel electro- 
phoresis as described by Laemmli (1970). The gels were equilibrated in 
buffer containing 48 mM Tris, 39 mM glycine, 0.03% SDS (wt/vol) and 
20% methanol (vol/vol), and then transferred to nitrocellulose filters (Hy- 
bond ECL; Amersham). After Ponceau S staining, the filters were 
blocked in 5% (wt/vol) nonfat dried milk in PBS at 4°C for 16-18 h. Filters 
were then incubated for 1 h with primary antibody in PBS containing 
0.05% Tween 20 and 1% BSA, followed by detection with appropriate 
HRP-conjugated secondary antibody and chemiluminescence (ECL; Am- 
ersham). 

Immunoprecipitations were performed at 4°C. Cultures were rinsed 
with PBS and then lysed in either TX buffer (1% (vol/vol) Triton X-100, 
25 mM Hepes, 2 mM EDTA, 0.1 M NaCI, 25 mM NaF, 1 mM vanadate, 25 
~M phenylarsine oxide, pH 7.6 [adjusted with NaOH], 1 mM PMSF, 10 
~,g/ml soybean trypsin inhibitor, 0.1 U/ml etz-macroglobulin, 10 ~g/ml leu- 
peptin) or TDS buffer, which was identical to the TX buffer except that it 
was supplemented with 0.5% (wt/vol) sodium deoxycholate and 0.2% (wt/ 
vol) SDS. The cells were incubated with lysis buffer for 10-15 min and 
then scraped. The lysates were collected and centrifuged at 14,000 g for 20 
rain. The supernatant was precleared with protein A Sepharose (Pharma- 
cia, UK) for 1-2 h and then incubated with primary antibody for 1 h fol- 
lowed by an additional 1 h with protein A Sepharose alone, in the case of 
rabbit antibodies, or together with rabbit anti-mouse antibodies for the 
mouse monoclonal antibodies. After five washes in lysis buffer, immune 
complexes were dissociated by adding of Laemmli sample buffer, followed 
by heating at 100°C for 5 min. Protein analysis was performed using SDS- 
PAGE, and immunoblotting was performed as described earlier. 

For the analysis of stoichiometry (see Fig. 6), MDCK cells were lysed in 
1 ml TX buffer per 10 cm 2 of filter. Immunoprecipitations were performed 
with either 5 ~g of the 13-catenin antibody or 10 ~g of the anti-pl20 anti- 
body per ml of lysate. After an initial centrifugation to collect the immune 
complex, the supernatant, containing protein that was not immunoprecip- 
itated, was collected and mixed with 0.33 volumes of 4× concentrated 
SDS sample buffer. The immune complex was washed as usual, and pro- 
teins were collected in sample buffer that was the same in volume as the 
collected supernatant. Equal volumes of the immunoprecipitated proteins 
and the supernatant (equivalent to 0.7 cm 2 filter area) were analyzed by 
SDS-PAGE and immunoblotting using anti-13-catenin antibody (0.1 ~g/ 
ml) or the anti-pl20 antibody (0.25 ~g/ml). 
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For [35S]methionine labeling, the cultures were washed twice in me- 
thionine-free MEM supplemented with 0.5% FCS. The cells were incu- 
bated for 16--18 h in this medium containing 50 p~Ci/ml [35S]methionine 
(>1,000 Ci/mmol; Amersham). Protein analysis was performed using 
SDS-PAGE, followed by fixation in 25% methanol/10% acetic acid. La- 
beled protein was detected either by direct autoradiography at room tem- 
perature or by fluorography at -80°C following impregnation of the gel 
with Amplify (Amersham). For quantitative detection of proteins by ei- 
ther fluorography or enhanced chemiluminescence, films were preflashed 
(Laskey and Mills, 1975). Integrated band density was determined by den- 
sitometry. 

Microsequencing 
Confluent cultures (20-x-9-cm dishes) of Caco-2 cells were washed three 
times with ice-cold PBS. The cells were lysed in TX buffer (1 ml/dish) at 
4°C, conditions which minimize nuclear lysis but extract p120 and pl00 in 
association with catenins. After the dishes were scraped, the pooled lysate 
was centrifuged at 10,000 g for 20 rain. Sodium deoxycholate and SDS 
were added to the supernatant to final concentrations of 0.5% and 0.2%, 
respectively, thereby dissociating p120 and pl00 from catenins. This TDS 
lysate was precleared with protein A Sepharose (1 ml of a 10% [wt/vol] 
suspension) for i h. Anti-p120 antibody (50 p~g) was then added to immu- 
noprecipitate p120 and the immunologically related pl00. After 2 h, the 
immune complex was collected using 100 Ixg of rabbit anti-mouse IgG and 
I ml of protein A Sepharose. The beads were washed five times with TDS 
buffer. Immunoprecipitated protein was eluted into 1 ml of Laemmli sam- 
ple buffer, followed by heating at 100°C for 5 min. Protein was then pre- 
cipitated using 4 volumes of ethanol followed by 16 h incubation at 
-20°C. The protein precipitate was collected by centrifugation at 4,000 g 
for 30 min at 4°C and then solubilized in 50 p,1 of 2x concentrated 
Laemmli sample buffer followed by heating at 100°C for 5 min. Protein 
was resolved on a 0.75-mm thick 6% polyacrylamide gel, which was fixed 
in 25% (vol/vol) methanol/0.5% (v/v) acetic acid for 5 min, followed by 
staining with 0.2% (wt/vol) Coomassie brilliant blue for 1 h. The gel was 
de-stained in 30% methanol. A slice of polyacrylamide containing stained 
protein corresponding to pl00 (see Fig. 1) was excised from the gel and di- 
gested in situ with lysylendopeptidase C, according to Ferrara et al. 
(1993), except that (1) the "dehydration buffer" contained 50 mM Tris-C1, 
pH 8.5, 1 mM EDTA, 50% acetonitrile, and the "rehydration buffer" con- 
tained 50 mM Tris-C1, pH 8.5, 1 mM EDTA, 0.02% Tween 20; and (2) di- 
gestion with lysylendopeptidase C was allowed to proceed overnight at 
37°C, with shaking on an Eppendorf Thermomixer (Eppendorf North 
America, Madison, WI), with 50 pmole protease added at time zero and 
after 4 h. Peptide fragments were extracted as described with 0.1% TFA 
and 60% acetonitrile, and the organic solvent was removed by vacuum 
centrifugation. The fragments were subsequently captured on a peptide 
trap cartridge (Michrom BioResources, Inc., Auburn, CA) and then puri- 
fied on a Reliasil RP-18 column (1 x 150 mm) at 50 }~l/min using Michrom 
UMA HPLC (Michrom BioResources, Inc.). A 60-min linear gradient 

from 10% "B" to 70% "B" was employed where solvent A contained 
0.1% TFA, 2% acetonitrile, and solvent B was composed of 0.1% TFA, 
90% acetonitrile. RPLC-purified digestion fragments were subjected to 
microsequence analyses on a G1000 protein sequencer (Hewlett-Packard 
Co., Palo Alto, CA) using version 2.2 chemistry and software. 

Immunocytochemistry 
For the majority of experiments, cells were fixed at room temperature for 
15 min in 3% paraformaldehyde made up in PBS containing 0.5 mM 
CaCl2 and 0.5 mM MgSO4. Fixed cells were washed and then permeabi- 
lized by incubation with 0.5% Triton X-100 in PBS for 10 min. After wash- 
ing, the cells were incubated for 30 min in PBS containing 10% calf serum 
and 0.1 M lysine, pH 7.4. Incubation with primary antibody was in PBS 
containing 10% calf serum for 1 h. After washing, the cells were incubated 
for 30-60 min with a 1:100 dilution of fluorophore-conjugated anti-mouse 
or anti-rabbit IgG, as appropriate, in PBS containing 10% calf serum. Af- 
ter washing, the filters were mounted with Citifluor (Citifluor Products, 
Canterbury, UK) and examined using a Microphot-FXA fluorescence mi- 
croscope (Nikon Inc., Melville, NY) fitted with 40x and 60x objectives. 
Photographs were taken using Kodak T-MAX film (400 ASA; Eastman 
Kodak, Rochester, NY). 

Where indicated, unfixed cells were also labeled after permeabilization 
with digitonin. Cultures were washed three times at 4°C with PBS lacking 
calcium and magnesium. They were then incubated at 4°C for 5 min in K 
medium (see Staddon et al., 1990) containing 0.007% (wt/vol) digitonin, 
washed three times in K medium, and then labeled with antibodies as de- 
scribed earlier. After staining, the cells were fixed in paraformaldehyde 
for 15 rain, washed, and examined. 

For preparing cryosections, brain and skeletal muscle from CO2- 
asphyxiated rats were removed and rapidly frozen in liquid nitrogen. Tis- 
sue blocks were mounted in Tissue Tek (R. Lamb, London, UK), and sec- 
tions of 5-10 }xm thickness were cut on a cryostat (Bright Instrument 
Company Ltd., Cambridge, UK), air dried, and stored for up to 4 wk at 
-20°C. After thawing, the sections were fixed and permeabilized as de- 
scribed earlier. The sections were then washed, blocked with PBS contain- 
ing 10% calf serum for 15 rain and incubated with primary antibody di- 
luted in PBS containing 10% calf serum for 2 h. After washing, they were 
incubated with PBS containing 10% calf serum with either 10% goat se- 
rum or 10% donkey serum, as appropriate for the host of the secondary 
antibody, for 15 min. They were then incubated with secondary antibody 
diluted in PBS and serum for I h. Sections were washed, mounted, and ex- 
amined as described previously. 

Results 

Antibody Characterization: p120 and p l O0 Proteins 

SDS lysates of a variety of cell types were analyzed by im- 

Figure 1. Character iza t ion  of  the  anti-p120 and 
2B12 ant ibodies .  (A and B) Var ious  cell lines 
and pr imary  cultures of  bovine bra in  endothe l ia l  
cells (Brain EC)  were  lysed in SDS sample  
buffer  and separa ted  by S D S - P A G E ,  fo l lowed 
by immunoblo t t ing  with anti-p120 ant ibody (A) 
or  2B12 an t ibody  (B). The  exposure  t imes were  1 
min for  (A) (apar t  f rom that  for the  M D B K  cells, 
which was 10 s) and 15 min for  (B). The  migra- 
t ions of  p120 (O)  and p l00  (O) are  indicated.  (C) 
p120 p ro te in  is recognized  by the  anti-p120 anti- 
body  and cross-reacts  with the  2B12 ant ibody,  
whereas  p l00  is recognized  only by the  anti-p120 
ant ibody.  M D B K  cells were  lysed in TDS buffer.  
Immunoprec ip i ta t ions  were  p e r f o r m e d  using the  
anti-p120 an t ibody  or  2B12, fo l lowed by cross- 
blotting. M D B K  cells were  chosen  because  p120 

and  p l00  are  well s epa ra ted  by S D S - P A G E  and react  with bo th  ant ibodies .  (D) M D B K  cells were  labeled  with [35S]methionine, lysed in 
TDS buffer ,  and then  immunoprec ip i t a t ed  using anti-p120 or  2B12. Prote ins  were  separa ted  by S D S - P A G E  and de tec ted  by autora-  
diography.  Clearly, the  b road  bands  (see A and C) co r respond ing  to p120 and p l00  as de tec ted  by immunoblo t t ing  are resolved as mul- 
t iple bands.  The  same bands  seen  in the  2B12 immunoprec ip i t a t e  (O) are  seen  in the  anti-p120 immunoprec ip i ta tes .  In the  anti-p120 im- 
munoprec ip i ta tes ,  addi t ional  bands  (O) cor responding  to p l00  are  also observed.  
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Figure 2. Detection of p120/p100 in 13-catenin im- 
munoprecipitates and 13-catenin in anti-pl20 immu- 
noprecipitates from endothelial cells. ECV304 cells 
(A) and human umbilical vein endothelial cells (B) 
were lysed in either TX or TDS buffer. Lysates were 
immunoprecipitated using anti-13-catenin or the 
anti-pl20 antibody, followed by analysis using 
SDS-PAGE and immunoblotting. The migration of 
13-catenin (arrowheads), pl00 (O), and p120 (O) 
have been indicated. Note the absence of anti-pl20 
reactive material in the 13-catenin immunoprecip- 
itates obtained using TDS buffer. Even though 
13-catenin and pl00, as defined by its reactivity with 
anti-pl20 antibody, migrate very closely, they are 
clearly distinct proteins. (C) Distinct 13-catenin-pl20 
and 13-catenin-pl00 complexes. ECV304 cells were 
lysed in TX buffer and immunoprecipitated with the 
anti-pl20 antibody, which recognizes p120 and pl00, 
or 2B12, which only recognizes p120. Immunopre- 
cipitates were analyzed by SDS-PAGE and immu- 
noblotted with the anti-pl20 antibody or [3-catenin 

antibody. Clearly, 2B12 immunoprecipitated p120 and coprecipitated 13-catenin but not pl00. Therefore, pl00 does not associate with a 
pl20/~-catenin complex, implying the existence of a separate pl00/13-catenin complex. 

munoblotting for expression of p120 using an anti-pl20 
antibody (Fig. 1 A). This antibody was raised against a 
polypeptide containing amino acids 790-911 at the COOH 
terminal of p120. The antibody clearly reacted with two 
distinct bands of apparent molecular mass 120 and 100 kD 
in extracts of Caco-2, ECV 304, RBE4, Swiss 3T3, LLC- 
PK1, MDBK, and brain endothelial cells. Hereafter, we 
refer to these two bands as p120 and pl00. With MDCK 
cells, a broad continuous band was detected. The relative 
intensity of staining of p120 and pl00 depended on the cell 
type. For example, pl00 was more intense than p120 in 
Caco-2 cells, whereas in the Swiss 3T3 cells the reverse was 
observed. These blots were also probed with the mono- 
clonal anti-pl20 antibody 2B12, raised against a phospho- 
tyrosine immunoprecipitate prepared from pp60~rC-trans - 
formed chicken embryo fibroblasts (Kanner et al., 1990). 
This antibody recognized only the upper of the two bands 
(Fig. 1 B). 2B12 reacted strongly with bovine protein, 
moderately with rodent protein, and weakly with human 
protein. However, it failed to react under these conditions 
with whole-cell extracts of the LLC-PK1 (porcine) and 
MDCK (canine) cells, suggesting limited cross-species re- 
activity in immunoblot analysis. 

The relationship between the known pp61Y rc substrate 
p120 and pl00 was further examined by immunoblot anal- 
ysis of immunoprecipitates from cells lysed in TDS buffer, 
used to minimize protein-protein interaction (Fig. 1 C). 
MDBK cells were used as an example because both the 
anti-p120 and 2B12 antibodies reacted well with protein 
from these cells (Fig. 1, A and B). In the anti-p120 immu- 
noprecipitates, p120 and pl00 were detected by blotting 
with the anti-pl20 antibody. 2B12 only reacted with p120 
in these immunoprecipitates. In 2B12 immunoprecipitates, 
blotting with both 2B12 and the anti-pl20 antibody re- 
vealed p120 (Fig. 1 C). Thus, 2B12 recognized p120, 
whereas the anti-pl20 antibody recognized the same p120 
protein as did 2B12 and, in addition, a pl00 protein. 

Autoradiographic analysis of immunoprecipitates of [35S] 
methionine-labeled MDBK cells, as resolved by SDS-PAGE 

(Fig. 1 D), revealed that the p120 protein migrated as a 
cluster of at least three bands that were identical in both 
the 2B12 immunoprecipitates and the anti-pl20 immuno- 
precipitates. However, in the anti-pl20 immunoprecipi- 
tates, a similar cluster of additional bands corresponding 
to pl00 was detected. Technically, detection by immuno- 
blotting (chemiluminescence) is light based, and resolu- 
tion is not as good as when using direct autoradiography; 
hence, the multiple bands seen in Fig. 1 D appear as a 
broad band in Fig. 1 C. The basis of the multiplicity of the 
bands corresponding to p120 and pl00 in the MDBK cells 
is unclear. [32p]Phosphate-labeling of these cells raised the 
possibility that these bands may represent differentially 
phosphorylated protein, because they all labeled with 
phosphate. However, dephosphorylation of the proteins in 
the immunoprecipitate with potato acid phosphatase prior 
to electrophoresis (see Meisenhelder and Hunter, 1991) 
did not affect their migration (results not shown). Also, 
the ability to resolve p120 and pl00 into multiple bands 
depended on the cell type from which they were isolated 
(e.g., see data for MDCK cells, later in section). 

It is possible that p120 and pl00 share an epitope recog- 
nized by the p120 antibody but are otherwise unrelated. 
To extend the analysis of the relationship between these 
proteins, we immunoaffinity purified pl00 from human 
epithelial cells and determined the amino acid sequence of 
peptides derived from this protein. As shown in Table I, 

Table L Peptide Sequences of Human Epithelial plOO/Lys C 
Digestion Fragments 

Mouse p120 Mouse p120 sequence Human pl00 sequence 

43 A. A.A..4 NISFG RDQDN K NI(S)FG RDQDN K 
744-751 HA RPN LV HA_IPN LV 
799-804 LVLIN K XVLIN K 

Amino acid sequences (single-letter code) of peptides derived from pl00 purified 
from Caco-2 cells were as described in Materials and Methods. Sequence differences 
between the mouse p120 (Reynolds et al., 1992) and human pl00 sequences are ac- 
centuated in bold, underlined type. Tentative sequence assignments are indicated by 
parentheses. X, unidentified amino acid. 
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the sequences we obtained are highly homologous with re- 
gions of the known mouse p120 protein (Reynolds et al., 
1992). These homologous sequences were identified both 
within and without the immunological epitope defined by 
the antibody used to immunoprecipitate and purify pl00. 
Additionally, the three sequences we obtained are con- 
tained in the third, ninth, and tenth arm repeats of p120, as 
defined by Peifer et al. (1994). Some but not all of the 
amino acids of pl00 correspond to those of the universal 
consensus for the arm repeat (see Peifer et al., 1994). To 
date we have not determined whether the sequence differ- 
ence we observed between the known mouse p120 se- 
quence and our human pl00 sequence is a species-specific 
difference or whether the two proteins, p120 and pl00, are 
different but highly related. However, pl00 is clearly an 
arm protein. 

Association with the CadherinlCatenin Complex: 
Endothelial Cells 

Given that certain members of the arm protein family are 
known to interact with other proteins, we next explored 
the possibility that pl20/pl00 might associate with other 
proteins. Endothelial cells form junctional complexes simi- 
lar in composition to those found in epithelial cells (for re- 
view see Rubin, 1992). As shown in Fig. 1, A and B, they 
also contain p120 and pl00 proteins well separated by 
SDS-PAGE. Using [35S]methionine-labeling, we found 
that p120 and pl00 were the major proteins in the anti- 
p120 immunoprecipitates from TDS-lysed ECV304 cells 
and human umbilical vein endothelial cells (results not 
shown; they were, however, similar to those obtained with 
epithelial cells; see Fig. 1 D). These proteins are clearly 
detected by immunoblotting in such immunoprecipitates, 
but [3-catenin was absent (Fig. 2, A and B). Conversely, 
13-catenin was observed in anti-13-catenin immunoprecipi- 
tares from TDS lysates, but p120 and pl00 were absent. 
However, immunoprecipitation of lysates prepared in the 
milder TX buffer revealed that p120/p100 could associate 
with other proteins. Thus, in the [3-catenin immunoprecip- 
itates, [~-catenin together with p120 and pl00 were de- 
tected. In the anti-pl20 immunoprecipitates, p120 and 
pl00 were detected together with [3-catenin (Fig. 2, A and 
B). Thus, anti-B-catenin antibody coimmunoprecipitates 
p120 and pl00, and anti-p120 antibody coimmunoprecipi- 
tates 13-catenin from TX-, but not TDS-, lysed cells. 

Although 13-catenin and pl00 seen in the immunopre- 
cipitates have a similar mobility (Fig. 2, A and B), this does 
not represent cross-reactivity of the anti-p120 antibody 
with [3-catenin. Clearly, the anti-p120 antibody does not 
react with [3-catenin in [3-catenin immunoprecipitates from 
TDS-lysed cells. Conversely, 13-catenin antibody does not 
react with pl00 in anti-pl20 immunoprecipitates from 
TDS-lysed cells. Therefore, it is unlikely that the 13-catenin 
antibody coimmunoprecipitates p120 and pl00 by cross- 
reacting with these proteins and vice versa. 

By [35S]methionine-labeling, in both anti-pl20 and anti- 
[3-catenin immunoprecipitates fxom [~SS]methionine-labeled, 
TX-lysed ECV304 cells, human umbilical vein endothe- 
lial cells and brain endothelial cells, bands corresponding 
to a- and [3-catenin and higher molecular weight bands 
(~130-140 kD) perhaps corresponding to cadherins (see, 

e,g., Liaw et al., 1990; Lampugnani et al., 1992; Salomon et 
al., 1992) were detected (results not shown). 

These experiments, although clearly indicating an inter- 
action between p120/p100 and catenins, could not distin- 

Figure 3. Detection of anti-pl20 reactive material in anti-E-cad- 
herin immunoprecipitates and E-cadherin and [3-catenin in the 
anti-pl20 immunoprecipitates from epithelial cells. (A) MDCK 
cells were lysed in TX buffer. Immunoprecipitations were per- 
formed with either antibody to E-cadherin (rrl), the anti-p120 
antibody, or anti-FAK. Following separation by SDS-PAGE, 
parallel blots were probed using rrl (arrowhead; E-cadherin), 
anti-13-catenin (arrowhead; 13-catenin), anti-pl20 (arrowhead; anti- 
p120 reactivity), and anti-FAK (arrowhead; FAK). Clearly, rrl 
and the anti-pl20 antibody immunoprecipitated E-cadherin and 
13-catenin. rrl could also immunoprecipitate anti-p120 immuno- 
reactive material, but to a lesser extent than that immunoprecipi- 
tated by the anti-pl20 antibody. FAK could only be immuno- 
precipitated by anti-FAK. (B) and (C) Comparison of anti-pl20 
and anti-E-cadherin immunoprecipitates from [sSS]methionine- 
labeled MDCK and Caco-2 cells. MDCK cells (B) were lysed in 
either TX buffer or TDS buffer. Immunoprecipitations were per- 
formed using anti-pl20 or anti-E-cadherin (rrl). Proteins were 
separated by SDS-PAGE followed by fluorography. Bands corre- 
sponding to E-cadherin (E), et-catenin (a), and [3-catenin (13), 
which are seen strongly in the rrl immunoprecipitates, have been 
indicated. The major anti-pl20 reactive band migrates at approx- 
imately the position of that of pl00 (see Fig. 1 A). 2B12 does not 
appear to react well in immunoblots with canine protein (see Fig. 
1 B), making positive identification of p120 difficult. Caco-2 cells 
(C) were lysed in TX buffer, and immunoprecipitations were 
performed using anti-E-cadherin (HECD-1), anti-13-catenin, or 
anti-p120 antibodies. Proteins were separated by SDS-PAGE 
followed by fluorography. In all cases, four major bands were im- 
munoprecipitated, corresponding in order of increasing mobility 
to E-cadherin and a-, 13-, and ~/-catenin (on the basis of immuno- 
blotting; results not shown). 
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guish between the possible existence of a catenin/pl20/ 
pl00 complex or independent catenin/pl20 and catenin/ 
pl00 complexes. We therefore compared irnmunoprecipi- 
tates from TX-lysed ECV304 cells using either the anti- 
p120 antibody or the 2B12 antibody. Both antibodies 
coimmunoprecipitated 13-catenin (Fig. 2 C). However, the 
anti-pl20 antibody immunoprecipitated p120 and pl00, as 
expected, but 2B12 immunoprecipitated only p120. The 
absence of pl00 in the 2B12 immunoprecipitate implies 
that independent p120/catenin and pl00/catenin complexes 
exist, because 2B12 should have immunoprecipitated pl00 
if a catenin/pl20/pl00 complex was present. 

Association with the CadherinlCatenin Complex: 
Epithelial Cells 

We next explored the possibility of association of p120/ 
pl00 with the cadherin/catenin complex in epithelial cells. 
MDCK cells were lysed in TX buffer and immunoprecipi- 
tated with the anti-E-cadherin antibody rrl,  anti-p120 
antibody, or, as a negative control, anti-focal adhesion ki- 
nase (anti-FAK). The identity of proteins in the E-cadherin 
and anti-pl20 immunoprecipitates was examined by im- 
munoblotting (Fig. 3 A). As expected, E-cadherin and 
13-catenin were both present in the rrl  immunoprecipi- 
tates. An anti-pl20 reactive band displaying a mobility 
similar to that of 13-catenin was also present in the rrl  im- 
munoprecipitates. In the anti-pl20 immunoprecipitates, 
E-cadherin and 13-catenin were clearly detected as well as 
a relatively greater amount of  anti-p120 reactive material 
than seen in the rr l  immunoprecipitates. As a negative 
control, immunoprecipitation with anti-FAK antibody, of 
the same species and isotype as the anti-pl20 antibody, 
immunoprecipitated FAK but not E-cadherin, 13-catenin, 
or anti-pl20 reactivity (Fig. 3 A). Therefore, it appears 
that, under the conditions of the experiment, anti-pl20 
immunoreactive material, apparently mainly pl00, is asso- 
ciated with the E-cadherin complex. However, in the anti- 
p120 immunoprecipitates, more pl20/pl00 is immunopre- 
cipitated than in the rrl  immunoprecipitates, indicating 
that a pool of pl20/pl00 exists that is not associated with 
the cadherin/catenin complex. 

When [35S]methionine labeling was used, the major band 
seen in anti-pl20 immunoprecipitates from TDS lysates of 
MDCK cells corresponded to the broad band detected by 
immunoblotting (cf. Figs. 1 A and 3 B). In contrast, the 
anti-p120 immunoprecipitates from MDCK cells lysed in 
TX buffer, used to preserve macromolecular protein com- 
plexes, revealed additional distinct bands at ~130, 105, 
and 97 kD (Fig. 3 B). Proteins of similar molecular mass 
were seen in E-cadherin immunoprecipitates from simi- 
larly lysed cells (Fig. 3 B). In both cases, as confirmed by 
immunoblotting, the 130-kD band corresponded to E-cad- 
herin, the 97-kD band to 13-catenin, and the 105-kD band 
to ct-catenin, which is dissociated from the complex by ly- 
sis in TDS buffer (see McCrea and Gumbiner, 1991). 

The p120 antibody does not cross-react with ct- or 
13-catenin or E-cadherin in these cells. Thus, lysis in TDS 
buffer results in dissociation of the E-cadherin/catenin/ 
pl20/pl00 complex into an E-cadherin/13-catenin complex, 
free a-catenin (see McCrea and Gumbiner, 1991) and free 
pl00/pl20. Under these conditions, rrl,  anti--~-catenin, 

anti-13-catenin, and anti-p120 antibodies only immunopre- 
cipitate their primary antigens (except for the coimmuno- 
precipitation of 13-catenin with anti-E-cadherin, and vice 
versa). Cross-reactivity with 3,-catenin, a protein of N85 
kD, is unlikely, because the immunoblots in Fig. 1 fail to 
show reactivity with protein below 100 kD. We have also 
observed the anti-pl20 immunoreactive band, as seen in 
the rr l  immunoprecipitates (Fig. 3 A), in a-catenin (results 
not shown), and in 13-catenin immunoprecipitates (see 
later section). 

To explore the generality of the observations made with 
MDCK cells, Caco-2 cells were also [35S]methionine la- 
beled and lysed in TX buffer, and immunoprecipitations 
were performed using another anti-E-cadherin antibody 
HECD-1, anti-13-catenin antibody, or the anti-pl20 anti- 
body. HECD-1 or anti-13-catenin clearly immunoprecipi- 
tated four major bands corresponding in order of increas- 
ing mobility to E-cadherin, a-, 13-, and ~-catenin. Similar 
bands were immunoprecipitated, but to a lesser extent, 
with the anti-pl20 antibody (Fig. 3 C). These results (not 
shown) were also obtained in MDBK cells when 13-catenin 
immunoprecipitates were compared with those obtained 
with the anti-pl20 antibody. Thus, it appears that the anti- 
p120 antibody can immunoprecipitate proteins that comi- 
grate with those of the cadherin/catenin complex from a 
variety of epithelial cell lines as well as from different 
types of endothelial cells. 

With respect to the detection of catenins and pl20/pl00 
by [35S]methionine labeling and fluorography in the MDCK 
cells, the catenins are easier to detect because their me- 
thionine content is approximately twice that of p120 (and 
we assume that pl00 is similar in methionine content to 
p120). Furthermore, the catenins migrate as discrete bands 

Figure 4. The [35S]methio- 
nine labeling of catenins domi- 
nates that of pl20/pl00. 
MDCK cells were [35S]me- 
thionine labeled for 16 h, 
lysed in TX buffer, and im- 
munoprecipitated in dupli- 
cate with the anti-pl20 anti- 
body. SDS sample buffer was 
added to one of the immuno- 
precipitates (TX). The other 
(TX~TDS) was mixed with 
TDS buffer for 1 h, followed 
by washing in TDS buffer 
and then extraction into 
SDS sample buffer. In this 
manner, p120/p100 was re- 
tained by the antibody in the 
immune complex, whereas 
the catenins and E-cadherin 
were dissociated. The sam- 

ples were analyzed by SDS-PAGE, followed by detection of pro- 
teins by fluorography (A, left) or immunoblotting with the anti- 
p120 antibody (A, right). The migration of p120/p100 is indicated 
by the bracket. Labeled bands corresponding to E-cadherin (E), 
a-catenin (ct), and 13-catenin (13) are indicated. The cadherin/ 
catenin/p120/p100 region of the gel was scanned by densitometry 
(B). The scans (in register) show the TX lane (continuous line) 
and TX-~TDS lane (dashed line). 
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Figure 5. Metabolic half-lives of [3-catenin, E-cadherin, and p120/ 
pl00. MDCK cells were labeled for 16 h with [35S]methionine, 
chased with unlabeled methionine, and then lysed at the indi- 
cated times in TX buffer. After centrifugation and preclearance 
with Protein A Sepharose, SDS and deoxycholate were added to 
final concentrations of 0.2% and 0.5%, respectively. [~-catenin 
was immunoprecipitated using the anti-13-catenin antibody, and 
pl20/pl00 were immunoprecipitated using the anti-pl20 anti- 
body. E-cadherin was coimmunoprecipitated with I~-catenin. Un- 
der these detergent conditions, pl20/pl00 is dissociated from the 
cadherin/catenin complex. Following SDS-PAGE and fluorogra- 
phy using flashed film, the integrated density of the bands corre- 
sponding to [3-catenin, E-cadherin, and pl20/pl00 (as seen, for 
example, in Fig. 3) were determined by densitometry. The values 
shown are the means _+ SD of immunoprecipitations from tripli- 
cate filters of cells. Where the error bars are not apparent, they 
were too small to clearly depict. The half-fives are ~3-catenin, 13.7 h 
(A); E-cadherin, 12.0 h (B); and pl20/pl00, 20.0 h. 

Stoichiometry of the 
CadherinlCateninlp l 2OIp l O0 Complex 
The data presented so far do not indicate how much p120/ 
pl00 is in the cadherin/catenin complex in relation to the 
cadherins and catenins. We assessed the stoichiometric re- 
lationship between [3-catenin and pl20/pl00 in the cad- 
herin/catenin complex in MDCK cells. In these cells, pl00 
was expressed to a much greater extent than p120. Fur- 
thermore, because the two proteins were not well resolved 
electrophoreticaUy, data with respect to pl20/pl00 were 
combined for this analysis. First, the relative amounts of 
13-catenin and pl20/pl00 were determined by [3SS]me- 
thionine labeling, correcting for differences in metabolic 
half-lives, efficiencies of immunoprecipitation, a n d  me- 
thionine content. Cells were labeled with [35S]methionine 
for 16 h, extracted into TX buffer, and immunoprecipi- 
tated under TDS buffer conditions with the anti-13-catenin 
antibody or the anti-pl20 antibody. Following SDS-PAGE 

in SDS-polyacrylamide gels. In MDCK cells, pl00 is ex- 
pressed to a greater extent than p120 and migrates as a dif- 
fuse band, further reducing the intensity of exposure of the 
fluorogram. The results depicted in Fig. 4 illustrate the 
problem of detection. MDCK cells were labeled with 
[35S]methionine, lysed in TX buffer, and immunoprecipi- 
tated with the anti-pl20 antibody. The immunoprecipi- 
tates were analyzed by SDS-PAGE, followed by fluorog- 
raphy (Fig. 4 A,  left) and anti-pl20 blotting (Fig. 4 A, 
right). Another identical anti-pl20 immunoprecipitate 
prepared from the same lysate was mixed with TDS buffer 
for 1 h and then washed. The proteins remaining in the im- 
mune complex were also analyzed. In this manner, p120/ 
pl00 was retained in the immune complex, and catenins 
and cadherins were dissociated. The major bands seen in 
the fluorogram from the TX immunoprecipitate corre- 
spond to E-cadherin, ot-catenin, and 13-catenin, but it is dif- 
ficult to discern any labeling due to pl20/pl00 (Fig. 4). 
However, removing greater than 95 % of the catenins from 
the anti-pl20 immune complex (verified by immunoblot- 
ring; results not shown) reveals labeling attributable to 
p120/p100. The anti-pl20 immunoblots indicate that p120/ 
pl00 in both the anti-pl20 immune complex and the cate- 
nin-depleted anti-pl20 immune complex are very similar. 
Densitometry of the fluorogram (Fig. 4 B) demonstrates 
quantitatively the relationship between band intensities of 
the catenins and pl20/pl00. Clearly, the labeling due to 
13-catenin dominates that of plO0. 

Figure 6. Analysis of stoichiometry of p1201p100 in the cadherin/ 
catenin complex. (A, left) MDCK cells were lysed in TX buffer 
and immunoprecipitated with either the B-catenin antibody or 
the anti-p120 antibody. Protein in the immunoprecipitate (ip) 
and that remaining in the supernatant (snt) were analyzed by im- 
munoblotting. (A, right) Decreasing known amounts of the pro- 
tein in the immunoprecipitate--13-catenin from the 13-catenin im- 
munoprecipitate (upper) and pl20/pl00 from the anti-p120 
immunoprecipitate (lower)--allowed the determination of the 
amount of protein in the immunoprecipitate relative to that re- 
maining in the supernatant. By measuring the integrated density 
of the bands shown in (A, left), the amount of protein in the im- 
munoprecipitate relative to that in the supernatant could be de- 
termined by referring to B (B-catenin) and C (pl20/pl00), which 
show the relative integrated density of the bands in A (right). In 
this way, no assumptions are made with respect to band intensity 
and amount of protein. The data shown in this figure are typical 
of those obtained with the usual conditions employed in the 
present study. By increasing the ratio of antibody to the number 
of extracted ceils, 100% efficient immunoprecipitation could be 
achieved. In this case, the stoichiometric relationship with re- 
spect to the amount of pl20/plO0 in a 13-catenin immunoprecipi- 
tate, and vice versa, was very similar to that obtained from the 
data presented in this figure (results not shown). 
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Figure 7. Localization of p120 and 13-catenin in epithelial cells. CMT 93/69 cells (a and b) and MDCK cells (c and d) were colabeled with 
2B12 (a and c) and anti-13-catenin antibody (b and d). Cells were labeled after digitonin permeabilization. Secondary antibodies were flu- 
orescein-conjugated anti-mouse and rhodamine-conjugated anti-rabbit. In this instance, it was verified that each secondary antibody was 
absolutely specific for its designated species of primary antibody. Bar, 20 p.m. 

and fluorography, the bands detected (result not shown) 
were similar to those presented in Fig. 3 B. The relative 
[35S]methionine content of the proteins, by densitometry, 
gave a ratio of [3-catenin:pl20/pl00 of 1:0.45. The half-lives 
(see Fig. 5) of [3-catenin (13.7 h) and E-cadherin (12.0 h) 
were very similar (see also McCrea and Gumbiner, 1991) 
but shorter than that of p120/p100 (20.1 h). Therefore, cor- 
recting for the differential kinetics of protein labeling 
gives B-catenin:pl20/pl00 as 1:0.59. Correction for differ- 
ences in efficiency of the immunoprecipitations was un- 
necessary because it was very similar (,'.~80%; see later) for 
the two antibodies. With respect to methionine content, 

[3-catenin contains 30 methionines (see murine [Butz et al., 
1992] and Xenopus laevis sequence [McCrea et al., 1991]), 
whereas murine p120 contains 17 (Reynolds et al., 1992). 
Assuming that the methionine content of the canine pro- 
teins are the same, and that the methionine content of 
pl00 is the same as that of p120, we finally get a corrected 
relative amount of [3-catenin:pl20/pl00 as 1:1.04. 

To determine the relative amount of pl20/pl00 in the 
cadherin/catenin complex, the cells were lysed in TX 
buffer, and the amount of pl20/pl00 in a [3-catenin immu- 
noprecipitate was analyzed (Fig. 6, A). Immunoblotting 
was used to detect protein because of the close migration 
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Figure 8. Localization of anti-pl20 reactivity and B-catenin in MDCK cells and brain endothelial cells. MDCK cells (a and b) and por- 
cine brain endothelial cells (c and d) were colabeled with anti-p120 antibody (a and c) and anti-B-catenin antibody (b and d). Cells were 
labeled after paraformaldehyde fixation. Secondary antibodies were fluorescein-conjugated anti-mouse and rhodamine-conjugated 
anti-rabbit. In this instance, it was verified that each secondary antibody was absolutely specific for its designated species of primary an- 
tibody. Bar, 20 Ixm. 

of the catenins with pl20/pl00. For quantitation, linearity 
of the signal with respect to the amount of blotted protein 
could not be assumed; therefore, calibration curves were 
constructed (Fig. 6, A [right], B, and C). Furthermore, the 
efficiency of the immunoprecipitations had to be deter- 
mined (Fig. 6 A,  left). In the [3-catenin immunoprecipitate, 
which was 80% efficient, 17% of the extracted pool of 
pl20/pl00 was coimmunoprecipitated. Normalizing to 100% 
efficiency gives 21% of the pool of p120/p100 in associa- 
tion with [3-catenin. In the p120/p100 immunoprecipitate, 

which was 83% efficient, 20% of the extracted pool of 
13-catenin was immunoprecipitated. Normalizing to 100% 
efficiency gives 24% of the pool of B-catenin in association 
with pl20/pl00. Thus, relative to [3-catenin, pl20/pl00 is 
substoichiometric. 

Localization to CeU-CeU Junctions 

To investigate the cellular localization of p120, immunocy- 
tochemical analysis was performed. Initially, we attempted 
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to label paraformaldehyde- or methanol-fixed MDCK 
cells with the 2B12 antibody, which should be specific for 
p120. However, in comparison with p120 from other spe- 
cies, 2B12 does not appear to react well with canine pro- 
tein by immunoblotting (see Fig. 1 A). We therefore at- 
tempted to stain p120 in cells from these other species. 
Using paraformaldehyde-fixed mouse epithelial cells (which 
express similar amounts of pl00 and p120, as detected by 
immunoblotting using the anti-p120 antibody; results not 
shown), we found that 2B12 appeared to stain intercellular 
junctions, but the staining was not very intense (results not 
shown). We then found that digitonin permeabilization of 
unfixed cells allowed much greater reactivity of the 2B12 
antibody with its antigen, allowing the clear demonstration 
of colocalization of p120 (Fig. 7 a) and [3-catenin (Fig. 7 b). 
When applied to the MDCK cells, digitonin permeabiliza- 
tion also revealed the colocalization of p120 (Fig. 7 c) and 
13-catenin (Fig. 7 d). Presumably, the 2B12 epitope is sig- 
nificantly masked by reactivity with formaldehyde or as a 
consequence of protein precipitation. 

Cultured cells were also labeled with the anti-p120 anti- 
body, which reacted well after paraformaldehyde fixation 
of cells. This antibody labeled MDCK (Fig. 8 a) and brain 
endothelial cells (Fig. 8 c) in a pattern similar to that of 
anti-[3-catenin (Fig. 8, b and d, respectively). With the 
mouse epithelial cells, the labeling observed with the anti- 
p120 antibody after paraformaldehyde fixation was similar 
to that observed with the 2B12 antibody after digitonin 
permeabilization (results not shown). Because the anti- 
p120 antibody also recognizes pl00, this antigen presum- 
ably has a cellular distribution similar to that of p120. 

Immunocytochemistry was further performed on frozen 
sections of rat brain and skeletal muscle (Fig. 9). Anti- 
p120 immunoreactivity colocalized with a-catenin at inter- 
cellular junctions of choroid plexus epithelium and ven- 
tricular ependymal cells (Fig. 9, a and b). In addition, the 
anti-p120 antibody stained interendothelial junctions in 
both large (Fig. 9, c and d) and small blood vessels of the 
brain (Fig. 9, e and f) and blood vessels of muscle tissue 
(Fig. 9, g and h). At the given detection level, anti-p120 
immunoreactivity was limited to endothelial and epithelial 
cells in the two types of tissue investigated. 

Discussion 

In the present study, immunoblot analysis of a variety of 
different cells revealed that the anti-pl20 monoclonal anti- 
body 2B12 (Kanner et al., 1990) recognized a broad band 
of ~120 kD. Another anti-p120 monoclonal antibody that 
had been raised against the COOH terminal portion of 
p120 recognized the same bands as 2B12 and, in addition, 

another cluster of bands at 100 kD. The reason for the 
multiplicity of bands at 120 and 100 kD is not clear, but ob- 
viously they are immunologically related. The pattern of 
appearance of these multiple bands also depended on the 
cell type. For example, in MDCK cells, the bands were 
very diffuse, whereas in MDBK cells they were clearly re- 
solved, especially when visualized by [35S]methionine la- 
beling in the absence of fluorographic reagent. Enzymatic 
dephosphorylation of protein prior to electrophoresis did 
not alter the mobility of the bands, but it is still possible 
that other posttranslational modification, such as differen- 
tial myristoylation, may give rise to mobility shifts. Apart 
from sharing an epitope recognized by the anti-pl20 anti- 
body, our sequence information indicates that pl00 is 
highly related to p120. Essentially, the sequences we de- 
termined are found in three of the arm repeats of p120 
(see Peifer et al., 1994), clearly establishing pl00 as an arm 
protein. Furthermore, the Northern blots described by 
Reynolds et al. (1992) suggested the possibility of pl20- 
related gene products or alternatively spliced transcripts, 
and Southern analysis apparently indicated that one or 
more pl20-related genes exist (Reynolds et al., 1992). It 
follows that the cluster of bands corresponding to p120 
and the similar cluster corresponding to pl00 could also 
represent isoforms of pl00 and p120, respectively. It is also 
possible that pl00 could simply represent a degradation 
product of p120, although samples were prepared in dena- 
turing buffer, and immunoprecipitations were performed 
in the presence of inhibitors of a broad spectrum of pro- 
teases. Reynolds et al. (1994) have also reported a protein 
of 100 kD, which they showed was related to p120 by 
Cleveland mapping. 

Next we demonstrated that pl20/pl00 is associated with 
the cadherin/catenin complex. Our study confirms and ex- 
tends the similar findings of Reynolds et al. (1994). Here, 
in a variety of endothelial cells, pl20/pl00 were shown to 
associate with catenins (Fig. 2) and higher molecular 
weight proteins (detected by [35S]methionine labeling) that 
probably represent cadherins (results not shown). Further- 
more, we also demonstrated that independent complexes 
of catenins exist with p120 and pl00. This apparent associ- 
ation between pl20/pl00 and the cadherin/catenin com- 
plex was not restricted to endothelial cells, because results 
similar to those of Reynolds et al. (1994) were obtained us- 
ing epithelial cells, both by [35S]methionine labeling and 
immunoblot analysis (Fig. 3). We also provided an ade- 
quate explanation as to why bands corresponding to p120/ 
pl00 cannot be seen in pl20/pl00 immunoprecipitates 
from [35S]methionine-labeled, Triton-lysed MDCK cells. 

The interpretation of the biochemical analyses of the 
protein complexes in the epithelial and endothelial cells is 

Figure 9. Distribution of anti-pl20 immunoreactivity in brain and skeletal muscle tissue of the rat. Brain tissue was colabeled with the 
anti-pl20 antibody (a and c) and anti-a-catenin (b and d). Anti-pl20 immunoreactivity and ct-catenin colocalize at intercellular junc- 
tions of choroid plexus epithelium (arrows, a and b) and ventricular ependymal ceils (arrowheads, a and b). Both antigens also colocalize 
at interendothelial junctions of blood vessels of macrovascular origin (arrows, c and d). Microvascular profiles in brain sections were 
identified by labeling with anti-collagen IV antibody (f); colabeling with the anti-p120 antibody (e) revealed the presence of antigen at 
interendothelial junctions (e, arrows). In these microvessels, a-catenin colocalized with anti-p120 immunoreactivity (not shown). In 
muscle tissue that had been cut perpendicular to the orientation of the muscle fibers, anti-p120 immunoreactivity is limited to areas be- 
tween muscle fibers where blood vessels are located (g, arrows). Higher magnification reveals a punctate staining pattern (h, arrows), 
which is likely to reflect anti-pl20 immunoreactivity at interendothelial junctions, bp, brain parenchyma; cp, choroid plexus; m, muscle 
tissue; v, ventricular lumen. Bars: (a and g) 100 Ixm; (c, e, and h) 25 ~m. 
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further supported by the immunocytochemical results. 
The present study, and that of Reynolds et al. (1994), dem- 
onstrated junctional colocalization of anti-pl20 immu- 
noreactivity, reflecting the localization of either p120 or 
pl00, or both, and 13-catenin labeling in MDCK cells (Fig. 
8). We also showed a similar, perhaps more striking, colo- 
calization in endothelial cells (Fig. 8). Colocalization of 
p120 itself with 13-catenin was established in our study by 
employing digitonin-permeabilized, unfixed cells to suc- 
cessfully label p120 with the pl20-specific antibody 2B12 
(Fig. 7). Finally, in tissue sections, the anti-pl20 antibody, 
like the anti--a-catenin antibody, also labeled junctions be- 
tween epithelial and endothelial cells (Fig. 9). 

We also demonstrated that 13-catenin and pl20/pl00 ap- 
pear to be expressed to similar extents in MDCK cells, 
suggesting that these proteins may be organized stoichio- 
metrically in a complex. However, the amount of p120/ 
pl00 in the cadherin/catenin complex is approximately 
one-fifth the amount of 13-catenin. We cannot be sure if 
this reflects the stoichiometry in the intact cell or if the ly- 
sis conditions result in partial dissociation. Staining cells 
with the anti-pl20 antibody reveals a mainly junctional lo- 
calization of pl20/pl00; however, we probably would not 
have detected a diffusely distributed pool of protein. It is 
also possible that the degree of association between catenins 
and pl20/pl00 may be subject to regulation by, for exam- 
ple, phosphorylation. Modulation of pl20/pl00 association 
could influence the adhesiveness of cadherins or the func- 
tion of catenins. Although the half-lives of 13-catenin and 
E-cadherin were very similar, suggesting that they may be 
assembled and degraded as a complex (see McCrea and 
Gumbiner, 1991), that of pl20/pl00 was greater (by about 
half as much again), indicating that it may be indepen- 
dently synthesized, assembled into, and disassembled from 
the cadherin/13-catenin complex. 

The interaction between pl20/pl00 and adherens junc- 
tion proteins, perhaps via the influence of such regulatory 
kinases as src, lyn, and yes (see Tsukita et al., 1991), may 
play a role in the modulation of cadherin function, and 
thereby other cellular functions influenced by the adher- 
ens junction. With respect to phosphorylation, the tyrosine 
phosphatase inhibitor phenylarsine oxide was found to 
cause an increase in tight junction permeability in MDCK 
cells and brain endothelial cells and caused an increase in 
the tyrosine phosphorylation of junctional proteins, in- 
cluding 13-catenin and ZO-1 (see Staddon et al., 1995). 
This inhibitor also increased the tyrosine phosphorylation 
of the anti-p120 immunoreactive material (a major pl00 
band, a minor p120 band) in MDCK ceils, as analyzed by 
anti-pl20 immunoblotting of anti-pl20 immunoprecipi- 
rates from SDS lysates (results not shown; see Staddon et 
al., 1995). Reynolds et al. (1994) also examined the conse- 
quences of src-catalyzed tyrosine phosphorylation on the 
composition of the cadherin/catenin/pl20 complex but did 
not detect any changes. 

The pl20/pl00 proteins could be involved in the interac- 
tion between cadherins and the actin-based cytoskeleton. 
Therefore, they may also be part of a signaling cascade, 
communicating information about the state of cell-cell ad- 
hesiveness to the interior of the cell. Our data (Fig. 2 C) 
also clearly reveal separate complexes of catenins with 
p120 and pl00. These different complexes may have dif- 

ferential effects on the function of the cadherin/catenin 
complex with respect to cell--cell adhesiveness or signaling. 
Furthermore, the pool of pl20/pl00 not associated with 
the cadherin/catenin complex raises the possibility that 
pl20/pl00 binds to other proteins, affecting processes 
other than those initiated by cadherins. 

13-catenin is an arm protein (McCrea et al., 1991) and 
can associate with cadherins and the APC gene product 
(Rubinfeld et al., 1993; Su et al., 1993), also an arm protein 
(see Peifer et al., 1994). p120 is an arm protein as well 
(Reynolds et al., 1992; Peifer et al., 1994), and, as we de- 
scribe here, pl00 is a highly related arm protein. These 
proteins can interact with 13-catenin. The exact nature of 
the interaction between pl20/pl00 and the catenins remains 
to be established. These proteins may interact directly or 
may associate with different regions of the cytoplasmic do- 
main of cadherins. Other linking or intermediary binding 
proteins could also be involved. Clearly, there appears to 
be diverse interactions among arm proteins, suggesting the 
importance of the arm motif in intracellular signaling. 
Given the important role of the cadherin/catenin complex 
in cellular transformation and the identification of p120 as 
a pp60 ~'c substrate, this suggests that pl20/pl00 may play a 
role in cellular growth control and other processes, such as 
tight junction permeability control, via an influence on 
cell-cell adhesion. 
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