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The application of nanotechnology is gaining worldwide attention due to

attractive physico-chemical and opto-electronic properties of nanoparticles

that can be also employed for catalytic dye degradation. This study reports a

phytogenic approach for fabrication of silver (AgNPs) and gold nanoparticles

(AuNPs) using Leucophyllum frutescens (Berl.) I. M. Johnst (Scrophulariaceae)

leaf extract (LFLE). Development of intense dark brown and purple color

indicated the synthesis of AgNPs and AuNPs, respectively. Further

characterization using UV-visible spectroscopy revealed sharp peak at

460 nm and 540 nm for AgNPs and AuNPs, respectively that were

associated to their surface plasmon resonance. High resolution transmission

electron microscope (HRTEM) revealed the spherical shape of the AgNPs,

whereas anisotropic AuNPs were spherical, triangular and blunt ended

hexagons. The majority of the spherical AgNPs and AuNPs were ~50 ±

15 nm and ~22 ± 20 nm, respectively. Various reaction parameters such as,

metal salt concentration, temperature and concentration of the leaf extract

were optimized. Maximum synthesis of AgNPs was obtained when 5mM for

AgNO3 reacted with 10% LFLE for 48 h at 50°C. Likewise, AuNPs synthesis was

highest when 2 mM HAuCl4 reacted with 10% LFLE for 5 h at 30°C. Energy

dispersive spectroscopy (EDS) showed phase purity of both the nanoparticles

and confirmed elemental silver and gold in AgNPs and AuNPs, respectively. The

average hydrodynamic particles size of AgNPs was 34.8 nm while AuNPs was

140.8 nm as revealed using dynamic light scattering (DLS) that might be due to

agglomeration of smaller nanoparticles into larger clusters. ZETA potential of

AgNPs and AuNPs were 0.67 mV and 5.70 mV, respectively. X-ray diffraction

(XRD) analysis confirmed the crystallinity of the nanoparticles. Fourier transform

infrared spectroscopy (FTIR) confirmed that various functional groups from the

phytochemicals present in LFLE played a significant role in reduction and

stabilization during the biogenic synthesis of the nanoparticles. The

bioreduced AgNPs and AuNPs catalytically degraded Rhodamine B dye (RhB)
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in presence of UV-light with degradation rate constants of 0.0231 s−1 and

0.00831 s−1, respectively. RhB degradation followed a first order rate kinetics

with 23.1 % and 31.7% degradation by AgNPs and AuNPs, respectively.

KEYWORDS

Leucophyllum frutescens, silver nanoparticles, gold nanoparticles, optimization,
rhodamine B dye, photocatalysis

Introduction

Nanotechnology has received wide attention globally owing

to the attractive surface properties of the nanoparticles that range

between 1–100 nm in size (Cheriyamundath and Vavilala, 2021).

Physical, chemical, optical and electronic properties of the

nanomaterials are largely dependent on their size and shape

(Dauthal and Mukhopadhyay, 2016). Large scale application of

nanotechnology include almost every aspect of life such as,

textiles, paints, sensors, electrical equipments, agriculture, and

even therapeutics (Jadoun et al., 2021). Smaller dimension and

large surface area makes the nanoparticles ideal for

functionalization with drugs, contrast agents and targeting

ligands that is significant for biomedical applications (Aftab

et al., 2018; Karmakar et al., 2021). Nanoparticles can be

fabricated employing top-down and bottom-up approaches.

Conventional physical methods for synthesis of metal

nanoparticles include lithography, laser ablation, milling and

sputtering. Likewise, chemical methods for nanoparticle

synthesis includes hydrothermal, sol-gel, pyrolysis and vapour

deposition (Bloch et al., 2021). However, these methods involve

hazardous reaction conditions and toxic chemicals during

synthesis for reduction of the metal ions to respective

nanoparticles and their stabilization thereafter (Tarannum and

Gautam, 2019). Moreover, energy consumption, high cost and

requirement of sophisticated instruments are major limitations

in these methods. Hence, more recently, biogenic metal and

metal oxide nanoparticles are reported from bacteria, algae,

fungi, medicinal plants and their metabolites with diverse

therapeutic applications (Ali et al., 2020; Ghosh and Webster,

2021).

Medicinal plant mediated synthesis of nanoparticles is more

advantageous as the plant extracts used in the synthesis process

are nontoxic and environmentally benign. The green synthesis

method is simple, rapid, economical, and perform under

moderate operational conditions with low energy

consumption (Ahmed and Mustafa, 2020). Various plant parts

such as root, stem, bark, leaf, flower, fruit, and even latex are

reported for synthesis of nanoparticles that is preferred over

microbe-mediated synthesis as this process neither require

stringent aseptic condition, nor long incubation periods

(Chandra et al., 2020; Hano and Abbasi, 2022). Secondary

metabolites of medicinal plants are superior reducing and

stabilizing agents that facilitate the synthesis of nanoparticles

with multiple applications (Khatami et al., 2018). Rich

phytochemical diversity that include predominance of

terpenoids, flavones, ketones, aldehydes, alkaloids and amides

play a significant role in the nanoparticle synthesis (Gour and

Jain, 2019). Among various medicinal plants Leucophyllum

frutescens (Berl.) I.M. Johnst (Scrophulariaceae) is a drought

tolerant shrub that can sustain even in unfavourable summer

heat (Mohammed and Al-Megrin, 2021). Diterpenoid

leubethanol from L. frutescens was reported to have potent

antimicrobial activity against multi-drug-resistant tuberculosis

(Miller et al., 2020). Anthocyanin, carotenoids, lutein, lycopene,

and phenolics in L. frutescens not only render it with the

antimicrobial property but also rationalize its traditional use

in treatment of asthma, cataracts, cough, dysentery, and liver

injury (Menchaca et al., 2013). Hence, it would be interesting to

explore the nanobiotechnological potential of L. frutescens.

In recent years, the excessive use of synthetic and organic

dyes in textiles, tannery, cosmetics and food industries has posed

a severe threat to the environment. Various conventional

methods employed for the removal of toxic synthetic dyes

from water bodies are often insufficient and ineffective.

Nanoparticles exhibit tremendous catalytic potential that can

be exploited for dye degradation for effective treatment of the

industrial effluents. Various phytogenic nanoparticles such as,

silver, gold, copper, zinc, platinum, palladium, etc. with

photocatalytic effect are reported for disinfection, and water

treatment by catalytic dye degradation (Iravani, 2011; Khan

et al., 2018). Dyes are toxic colouring agents that are largely

used in textile, food, paper, and pharmaceutical industries and

are released in huge amount in the environment (Naghizadeh

et al., 2021). Consumption of the dye contaminated water has

deleterious effect on the health due to oxidative stress mediated

damage and carcinogenesis.

Among various synthetic dyes, Rhodamine B (RhB) is a water

soluble xanthene dye that is widely used as a trace dye for the

determination of rate and direction of water flow in industries.

Hence this dye is considered as one of the most common organic

pollutants in the environment (Awad et al., 2021). Hereby,

photodegradation of dye pollutants to less harmful products is

an effective remedial method to control their adverse ecological

impact. Several conventional treatment methods like chemical

oxidation, sonochemical degradation, microwave, photoelectric,

and solar photofenton are often inadequate, expensive and

complicated (Baruah et al., 2018). Therefore, development of

more facile and eco-friendly approach for toxic dye removal is a

prerequisite for clean environment. Hence, use of biogenic
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nanoparticles for catalytic dye degradation can serve as a

promising alternative strategy for controlling the

environmental pollution (Ismail et al., 2018).

This novel study is the first report where critical reaction

parameters like duration, metal precursor concentration,

temperature and concentration of plant extracts are

thoroughly optimized for maximum green synthesis of silver

(AgNPs) and gold (AuNPs) nanoparticles using L. frutescens leaf

extract (LFLE). The resulting AgNPs and AuNPs were

characterized using advanced analytical techniques like high

resolution transmission electron microscopy, energy dispersive

spectroscopy, dynamic light scattering and X-ray diffraction

spectroscopy. This is the first report on photocatalytic RhB

dye degradation by phytogenic AgNPs and AuNPs

synthesized using LFLE.

Materials and methods

Plant extract preparation

Preparation of L. frutescens leaf extract (LFLE) was carried

out as per our earlier report (Ranpariya et al., 2021). In short, L.

frutescens leaves were collected from RK. University, Rajkot,

Gujarat, India in the month of February. The plant was

authenticated by taxonomist at the Saurashtra University,

Rajkot, India with the voucher specimen number BG001.

Mature and fresh leaves from the plant were thoroughly

washed in running tap water for 15 min and then shade dried

for 3 days at room temperature. Dried leaves were pulverized into

fine powder using an electric blender. Thereafter, 5 g of the leaf

powder was suspended in 100 ml of distilled water in a 300 ml

Erlenmeyer flask followed by boiling for 20 min. The extract

obtained was filtered through Whatman filter paper No. 1 and

the filtrate was collected and stored at 4°C for further

experiments.

Synthesis of AgNPs and AuNPs

Reduction of Ag+ ions was initiated on addition of 1 ml of

LFLE to 9 ml of 5 mM aqueous silver nitrate (AR grade)

solution. Thereafter, the flasks were incubated in darkness

under shaking condition (120 rpm) at 40°C (Soshnikova et al.,

2018). During the synthesis of AuNPs, reduction of Au3+ ions

started immediately on addition of 1 ml of LFLE to 9 ml of

1 mM aqueous chloroauric acid (AR grade) solution followed

by which the flasks were incubated under aforementioned

conditions (Alaqad and Saleh, 2016). Progress in the

synthesis of both the nanoparticles was monitored by

recording the UV-visible spectra of the reaction mixture at

regular intervals using an UV-1900 Shimadzu

spectrophotometer.

Optimization study

Different reaction parameters like metal salt concentration,

temperature, and LFLE concentration were optimized.

Temperature optimization for the synthesis of AgNPs and

AuNPs was carried out at different temperature ranging from

4°C to 50°C. In order to optimize concentration of metal salt for

the synthesis of AgNPs and AuNPs, the concentration of AgNO3

and HAuCl4 were varied respectively, from 0.3 mM to 5 mM.

The effect of variation in LFLE concentration from 1% to 10%

was also checked. Progress of the reactions were monitored using

UV-visible spectrophotometry at regular intervals (Shinde et al.,

2018). Statistical significance was determined by analysis of

variance (ANOVA two factor) with p < 0.05.

Characterization of synthesized AgNPs
and AuNPs

Morphological analysis of the phytogenic AgNPs and AuNPs

was accomplished in a high resolution transmission electron

microscope (HRTEM) Tecnai G2 F30 operating at an

accelerating voltage of 300 kV by placing a droplet of

sonicated sample directly on a carbon-coated copper grid that

was subsequently dried under infrared (IR) lamp for 20 min.

Energy dispersive spectroscopy (EDS) were obtained using an

energy dispersive spectrometer at 0–20 keV energy range to

confirm the elemental composition. The hydrodynamic size

and zeta potential of the AgNPs and AuNPs were measured

in polystyrene cuvettes employing dynamic light scattering

(DLS) Microtrac system. In short the freshly synthesized

samples were sonicated for 30 min to remove any

agglomeration and poured in the cuvettes followed by particle

size analysis and zeta potential measurement. A thin film of

concentrated nanoparticles was prepared on a thoroughly

washed grease-free clean glass slide and desiccated overnight

to obtain a moisture free layer. The phase and crystallographic

structure of synthesized AgNPs and AuNPs was determined by

subjecting to thin film X-ray diffraction (XRD) using an X-ray

wavelength of 1.5406 Å, current and voltage settings of 40 mA

and 40 kV, respectively, with a 2θ ranging from 20° to 90°.

Fourier transmission infrared
spectroscopy

The alteration of the functional groups in LFLE before and

after synthesis of AgNPs and AuNPs were analyzed using FTIR.

After 5 h of synthesis of the nanoparticles the reaction mixture

was centrifuged at 10,000 rpm for 15 min at room temperature.

The pellet was redispersed in sterile distilled water and the

supernatant was collected. The process of centrifugation and

redispersion in sterile distilled water was repeated three times to
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ensure better separation of free entities from the nanoparticles.

The purified pellet was then dried and subjected to FTIR

measurement using the potassium bromide (KBr) pellet

technique. The nanoparticle powder was mixed with KBr (AR

grade) and exposed to an infrared source of 600–4000 cm−1 for

identification of the functional groups associated with the

nanoparticles. Likewise, the functional groups in the recovered

supernatant after the reaction was also compared with the crude

unreacted LFLE.

Photocatalytic dye degradation

The procedure used for the measurement of

photocatalytic activity of samples is similar to the one

described earlier elsewhere (Zachariah et al., 2008). A

0.4 g L−1 of sample was added to 125 ml of 7.5 μM RhB

(Practical grade) dye solution in distilled water having an

initial pH of 6.67. The resulting suspension was equilibrated

by stirring in darkness (that is, without the UV irradiation)

for 1 h to stabilize the adsorption of RhB on the sample

surface. The aqueous suspension was then subjected to the

UV irradiation in the photoreactor chamber (LZC-4X,

Luzchem, Canada) by using the 14 UVA lamps (6 top and

8 side lamps) having an emission peak intensity of 350 nm

with the continuous in-built magnetic stirring for 1 h. An

8 ml aliquot was frequently taken out at 10 min interval

followed by centrifugation (Hettich EBA 20, Sigma-Aldrich

labware, Bengaluru, India). The filtrate was examined by

using a UV-visible absorption spectrophotometer (UV-

2401 PC, Shimadzu, Japan) to determine the residual RhB

concentration in the aqueous dye solution (Baiju et al., 2007).

RhBadsorbed(%) � C−60 − C0

C−60
× 100 � A−60 − A0

A−60
× 100 (1)

where, C−60 and C0 are the RhB concentrations within

the aqueous solution before (time (t) = −60 min) and after

(t = 0 min) the adsorption experiment conducted in the dark

condition; while, A−60 and A0 are the corresponding absorbance

values. The normalized concentration of RhB remaining in the

solution after stirring in the dark condition for 1 h is calculated

by using Eq. 2.

RhBresidual(%) � C0

C−60
× 100 � A0

A−60
× 100 (2)

The normalized concentration of RhB remaining in the

solution under the UV irradiation is calculated by using Eq. 3.

RhBresidual(%) � Ct

C−60
× 100 � At

A−60
× 100 (3)

where, Ct is the RhB concentration remaining within the aqueous

dye solution after the UV irradiation time of t = tmin; while,At is

the corresponding absorbance value.

The first order kinetic constant (k) for the degradation of

RhB is calculated using Eq. 4

ln
C0

Ct
� kt (4)

Results and discussion

UV-visible spectroscopy and optimization
studies

The green synthesis of nanoparticles is an attractive efficient

route for synthesis of metal and metal oxide nanoparticles. UV-

visible spectra of the reaction mixture of LFLE and AgNO3 were

recorded at regular time intervals. Reduction of Ag+ to AgNPs by

LFLE could be followed by color change from yellow to dark

brown as shown in the inset of Figure 1A. Although there was no

significant synthesis at t = 0 h and t = 0.5 h, the synthesis of

AgNPs was initiated after 1 h followed to which there was steady

increase in the intensity of peak at 460 nm up to 48 h. Likewise,

reduction of Au3+ to AuNPs by LFLE could be followed by color

change initially from yellow to light purple that turned further

dark as observed in the inset of Figure 1B. Synthesis of AuNPs

was extremely faster and was found to initiate immediately at t =

0.5 h. Subsequent rise in peak at 540 nm was noted till 5 h of

synthesis followed to which no further increase in the peak

insentity was noticed. Appearance of the brown and purple

colour indicating AgNPs and AuNPs were found to be

identical with the earlier reports with Sisymbrium irio and

Trachyspermum ammi extracts, respectively (Mickymaray,

2019; Perveen et al., 2021).

These findings rationalize LFLE as a promising reducing and

stabilizing agent that successfully reduced Ag+ and Au3+ ions into

AgNPs and AuNPs, respectively within 5 h. The synthesis was

carried out at ambient reaction conditions unlike conventional

methods such as chemical reduction, sol-gel method, and/or

photochemical method (Lkhagvajav et al., 2011; Gabriel et al.,

2017; Ranoszek-Soliwoda et al., 2017). No external chemical

reducing or capping agents were required as the

phytochemicals in the LFLE satisfied the purpose hence

making this one-pot synthesis more economical unlike the

physical and chemical methods (Bonigala et al., 2018). Our

results supporting the nanobiotechnological potential of L.

frutescens is in agreement with the earlier reports on synthesis

of nanoparticles from medicinal plants such as, Cleome viscosa

(Lakshmanan et al., 2018), Carica papaya (Banala et al., 2015),

Phytolacca decandra, Hydrastis canadensis, Thuja occidentalis

(Das et al., 2013), and Amomum villosum (Soshnikova et al.,

2018).

Phytogenic synthesis of metal nanoparticles depends on

several parameters such as reaction time, concentration of

metal salts, temperature, and plant extract concentration
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(Ahmed and Mustafa, 2020). The syntheses of both AgNPs and

AuNPs by LFLE were completed at 5 h which was faster as

compared to the reported synthesis of AgNPs by Pimpinella

anisum seed extract that took 96 h (Alsalhi et al., 2016). Likewise,

Withania somnifera extract was able to synthesize AgNPs only

after 7 days which substantiate the fact that LFLE mediated

nanoparticles synthesis is rapid which is advantageous over

others (Marslin et al., 2015). It is speculated that the reaction

time is a key factor determining the shape, size and stability of

nanoparticles. Size of nanoparticles increases with time and

hence shorter reaction time is beneficial to have smaller

nanoparticles with larger surface area (Alsalhi et al., 2016).

Optimization studies for AgNPs and AuNPs were carried out

at 460 nm and 540 nm, respectively which were their absorbance

maxima as revealed in the UV-visible spectroscopy of the

particles concerned. Various parameters such as, metal

precursor salt concentration, reaction temperature and LFLE

concentration were optimized to get maximum rate of

synthesis. Figure 2A shows the effect of AgNO3 concentration

on the synthesis of AgNPs with time. Till 1 mM concentration no

synthesis was observed up to 5 h while with 2 mMAgNO3 a slight

increase was observed only after 3 h. Further increase in the

AgNO3 concentration exhibited significant increase in the

synthesis of AgNPs maximum being at 5 mM. Hence, for

further optimization 5 mM of AgNO3 was selected. In case of

AuNPs, 0.3 mM HAuCl4 showed negligible synthesis while

further increase in the concentration of HAuCl4 resulted in

steady rise in the rate of synthesis. With 1 mM of HAuCl4,

synthesis was maximum till 3 h followed to which 2 mM showed

an increased AuNPs production as evident from Figure 2B.

From the above results it is evident that the concentration of

metal salts played a critical role in determining the speed of the

nanoparticle synthesis. Concentration of AgNO3 above 1 mM

facilitated better synthesis of AgNPs. Our results are well in

agreement where extracts of Carum carvi could synthesize

AgNPs with higher concentrations (10 mM) of AgNO3 (Nasiri

FIGURE 1
UV-visible spectra recorded as a function of reaction time for nanoparticle synthesis using LFLE. (A) AgNPs; and (B) AuNPs.

FIGURE 2
Time course of nanoparticle synthesis using LFLE at 40°Cwith (A) different concentrations of AgNO3 and (B)HAuCl4. The difference in synthesis
is significant among different concentrations and time points with p < 0.05 by two factor ANOVA.
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and Nasiri, 2016). Similarly, Atunola et al. (2017) reported that

100 mM AgNO3 was required for synthesis of AgNPs by the

extracts of Allium sativum L. (garlic), Zingiber officinale Rosc.

(ginger), and Capsicum frutescens L. (cayenne pepper). This

signifies that LFLE requires lower concentration of AgNO3 as

compared to other phytogenic routes and hence is more

economical as well. On the other hand 1 mM and 2 mM of

HAuCl4 were found to be suitable for synthesis of AuNPs which

is identical to the synthesis reported using extracts of Litchi

chinensis and Platanus orientalis (Shende et al., 2017; Shende

et al., 2018). It should be noted that reaction time can be

remarkably shortened by increasing higher concentration of

the metal ions if the quantity of the reducing phytochemicals

in plant extract is not sufficiently high. Moreover, altering the

metal ion concentration may modulate the morphologies and

applications of the biogenic nanoparticles (Dhand et al., 2016;

Zulfiqar et al., 2019).

Temperature had a pronounced effect on the rate of synthesis

of both AgNPs and AuNPs as observed from Figure 3. No

synthesis of AgNPs was observed at 4°C while gradual

increase in the reaction temperature upto 40°C showed a

steady rise in the synthesis. However, further increase of

temperature to 50°C showed an abrupt enhancement in the

rate of synthesis of AgNPs as observed in Figure 3A. It is

interesting to note that the synthesis of AuNPs was almost

instant even at 4°C that also increased with the increase in

temperature. Beyond 30°C the rate of synthesis was identical

and completed well before 1 h followed to which a plateau was

observed as evident from Figure 3B.

LFLE concentration also exhibited a significant role in

determining the speed of the synthesis. Very slow rate of

AgNPs synthesis was achieved with 1 and 3% of LFLE which

increased with increase in the LFLE concentration upto 10% as

illustrated in Figure 4A. A distinct gradual increase in the rate of

AuNPs on increasing the LFLE concentration from 1% to 10%

was observed as depicted in Figure 4B.

Spectral data for optimization study is available in the

Supplementary data (Supplementary Figures S1–S34). The

concentration of LFLE also had pronounced effect on the

synthesis of both AgNPs and AuNPs. As stated earlier, LFLE

FIGURE 3
Time course of nanoparticle synthesis using LFLE at different reaction temperatures with (A) 5 mM AgNO3 and (B) 1 mMHAuCl4. The difference
in synthesis is significant among different reaction temperatures and time points with p < 0.05 by two factor ANOVA.

FIGURE 4
Time course of nanoparticle synthesis using different concentrations of LFLE at 40°Cwith (A) 5 mMAgNO3 and (B) 1 mMHAuCl4. The difference
in synthesis is significant among different concentrations of LFLE and time points with p < 0.05 by two factor ANOVA.
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is a rich cocktail of diverse phytochemicals such as tannins,

terpenoids, flavonoids, ketones, aldehydes, amides, and

carboxylic acids that are assumed to donate electrons for

reduction of Ag1+ to Ag0 (Prabhu and Poulose, 2012; Srikar

et al., 2016). Similarly, water-soluble plant metabolites, such as

proteins, and reducing sugars were mainly responsible for the

biosynthesis of the metal nanoparticles by Foeniculum vulgare

and Dioscorea bulbifera (Sulthana and Rajanikanth, 2018;

Jamdade et al., 2019). Morphological features of the

phytogenic nanoparticles were reported to be dependent on

the concentrations of Azadirachta indica and Cassia

auriculata L extracts (Roy et al., 2017; Bhuvaneswari et al.,

2019). Our results are well in agreement where Chandraker

et al. (2022a) showed that higher temperature (80°C)

facilitated the synthesis of AgNPs using Thalictrum foliolosum

DC leaf extract (TFLE). Optimization studies revealed that

reaction time of 80 min, 2 ml TFLE, and 2 mM AgNO3 were

ideal for maximum synthesis of AgNPs. Likewise the optimum

temperature, pH, leaf extract concentration and

AgNO3 concentration were 60°C, 8, 2 ml and 2 mM,

FIGURE 5
High-resolution transmission electron micrographs of nanoparticles synthesized by LFLE. (A) Spherical and irregular AgNPs synthesized by
LFLE, (B) anisotropic AuNPs synthesized by LFLE showing triangular, spherical, rod shaped and blunt ended hexagonal shapes; their upper and lower
insets showing the magnified HRTEM image and histogram plot of the particle distribution, respectively.
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respectively during synthesis of AgNPs employing Rubia

cordifolia L. leaf extract. This signifies that the higher

temperature can enhance the synthesis of AgNPs (Chandraker

et al., 2022b). The yield of AgNPs and AuNPs were calculated as

40 mg and 30 mg from 100 ml reaction mixture, apparent cost of

which were 35 (INR) and 311.5 (INR), respectively.

High resolution transmission electron
microscope, energy dispersive
spectroscopy, dynamic light scattering
analyses

The size and shape of the bioreduced AgNPs and AuNPs

were elucidated with the help of HRTEM. The HRTEM images of

the bio-synthesized AgNPs and AuNPs are shown in Figures

5A,B, respectively. The bioreduced AgNPs as illustrated in

Figure 5A were mostly spherical and irregular in shape. The

particles were attached to each other in discrete clusters. The

average diameter of the AgNPs was calculated from the

histogram plot as shown in the lower right inset of Figure 5A

and was found to be ~50 ± 15 nm. Figure 5A shows smaller

AgNPs attached to the surface of the larger particles indicating

the increase in size due to fusion of initially formed smaller

AgNPs. Distinct lattice fringes were observed on the surface of

the AgNPs in the magnified HRTEM image of the selected

portion of Figure 5A as shown in the upper right inset. The

inter-planer d-spacing of 2.29 Å corresponds to (110) plane of

AgNPs. Anisotropic AuNPs with varied shapes and sizes were

formed by LFLE as evident from Figure 5B. The phytogenic

AuNPs showed spherical, triangular, blunt ended hexagonal and

even rod shaped particles. The average diameter of the spherical

AuNPs was ~22 ± 20 nm as shown in the histogram plot in the

lower right inset of Figure 5B.

The length of the sides of the triangular AuNPs was ~46 nm.

The AuNPs were separate and stable with no sign of

FIGURE 6
Representative spot EDS profile. (A) AgNPs and (B) AuNPs.
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agglomeration. Distinct lattice fringes on the surface of the

spherical AuNPs was observed in the magnified HRTEM

image of the selected portion of Figure 5B as shown in the

upper right inset and it is observed that the inter-planer

d-spacing was 2.35 Å which corresponds to (111) plane of

AuNPs.

The energy dispersive spectra in Figure 6 confirmed the

presence of elemental silver and gold in the LFLE synthesized

AgNPs and AuNPs, respectively. The hydrodynamic size

distribution of the colloidal AgNPs and AuNPs as revealed by

DLS in Figure 7 is in close agreement with the HRTEM results.

The average particle size of synthesized AgNPs and AuNPs were

34.8 nm and 140.8 nm, respectively that were larger compared to

HRTEM results. This might be attributed to the agglomeration of

the smaller particles into larger clusters with time. The zeta

potential of the biogenic AgNPs and AuNPs were 0.67 mV and

5.70 mV, respectively which indicate the higher stability of

AuNPs.

The particle size achieved in the LFLE mediated synthesis of

AgNPs was similar to that achieved with leaf and root extract of

Ricinus communis that also gave spherical particles in range

between 29 and 38 nm of diameter (Gul et al., 2021). Another

study with onion peel as a reducing agent synthesized AgNPs at

90°C which were spherical in shape with 12.5 nm particle size

(Abdullah et al., 2021). Earlier studies on phytofabrication of

AgNPs using Bryophyllum pinnatum leaf extract also showed

predominance of similar spherical shaped particles with an

average size of ~15 nm (Chandraker et al., 2021a). However,

anisotropic polydispersed AuNPs were synthesized by LFLE

which is in close agreement with triangular, pentagonal, and

hexagonal shaped AuNPs synthesized using extracts from

various plants such as blackberry, blueberry, pomegranate,

and turmeric (Nadagouda et al., 2014; Castillo-Henríquez

et al., 2020). Zeta potential reflects the effective charge on the

surface of nanoparticles. The stable and discrete AuNPs unlike

the agglomerated AgNPs was attributed to their higher zeta value

(Leroy et al., 2011). The fact was also reflected in the

hydrodynamic size as confirmed using DLS.

X-ray diffraction pattern analyses

The XRD patterns of the AgNPs and AuNPs are shown in

Figure 8. The XRD spectrum of AgNPs reveal a large number of

peaks at 2θ value of 27.90°, 32.30°, 38.10°, 46.30°, 54.90°, and

64.40° corresponding to (111), (102), (110), (220), (104), and
(114) planes of silver, respectively. Likewise, the XRD spectrum

of AuNPs reveal a large number of peaks at 2θ value of 38.10°,

44.30°, 64.70°, and 77.40° corresponding to (101), (200), (220),

and (311) planes of gold, respectively.

FIGURE 7
Histogram of size distribution of nanoparticles synthesized by LFLE. (A) AgNPs and (B) AuNPs.

FIGURE 8
XRD spectra of AgNPs and AuNPs.
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Fourier transform infrared spectroscopy
spectral analyses

The FTIR transmittance spectra of LFLE before and after

synthesis of AuNPs and AgNPs showed different vibrations and

bond stretching as observed in Figure 9. The absorbance bands in

LFLE at 3438 cm−1, 2398 cm−1, 2160 cm−1, 1640 cm−1, and

1180 cm−1 are associated with the stretch vibrations of N-H

stretching, O=C=O stretching, C-H bending, C=O stretching

and C-O stretching, respectively (Krueger and Smith, 1967;

Goudarzi et al., 2016; Md Salim et al., 2021). The LFLE

showed aliphatic primary amine which is supported by the

presence of a strong peak approximately at 3438 cm−1. This

sharp peak representing N–H bond was not seen in LFLE

after bioreduction of HAuCl4. This indicates that primary

amines are mainly responsible for the reduction of Au3+ into

AuNPs. We could observe minor C-O stretching and the

presence of secondary alcohol in the FTIR of AuNPs at

1180 cm−1. AgNPs showed sharp peak stretching of N-H bond

on 3438 cm−1. The presence of peaks at 2398 cm−1, 2160 cm−1,

1640 cm−1 and 1180 cm−1 indicated that the AgNPs may be

surrounded by amines and hydroxyl groups as a stabilizing

agent because the peaks indicate symmetric minor stretching

(Goudarzi et al., 2016).

It is interesting to note that various functional groups of the

phytoconstituents in LFLE were responsible in the reduction of

the metal ions to AgNPs and AuNPs as revealed by FTIR.

Further, some functional groups were also associated on the

surface of the phytogenic nanoparticles that might play a key role

in the capping. The slight band shift might be attributed to

transition of the phytochemicals such as alkaloids, flavonoids,

tannins, terpenes and quinones from free to nanoparticle bound

form. These shifts rationalize their involvement in the metal

reduction and formation of the nanoparticles (Ynalvez and

Compean, 2014). The anisotropy was attributed to the

obvious presence of diverse reducing and capping agents.

Hence, in order to address the polydispersity issue pure

phytochemicals like quercetin can be employed for synthesis

of nanoparticles that can give better control over the size and

shape of the phytogenic nanoparticles (Jain and Mehata, 2017).

Ghosh et al. (2020) reported the involvement of flavonoids,

tannins, glycosides, and alkaloids as potential reducing,

stabilizing and capping agents responsible in synthesis of

stable copper nanoparticles (CuNPs) with average size of 10 ±

1 nm using a leaf extract from Jatropha curcas.

Photocatalytic dye degradation

The photocatalytic activity of samples is shown in

Figure 10. The degradation of RhB under UV irradiation

in presence of phytogenic AgNPs and AuNPs was monitored

using an UV-visible spectrophotometer. The absorption

maxima of RhB was centered at 553 nm. The main

absorption peak steadily decreased and eventually

approached the base line in both the cases as clearly

evident from Figure 10A. The plot of ln (C0/C) vs. time

for the catalytic degradation of RhB is shown in

Figure 10B. The rate constants were calculated as

0.0231 s−1 and 0.00831 s−1, for AgNPs and AuNPs,

respectively. The experimental data fits well with the first

order kinetic model with 23.1 % and 31.7% degradation of

RhB dye by AgNPs and AuNPs, respectively.

The degradation mechanism for metal nanoparticles has

been widely studied. A possible mechanism for the

degradation of organic dye in this study is given below where

M represents the metallic element (Baruah et al., 2018; Khan

et al., 2020)

FIGURE 9
(A) FTIR spectra of LFLE after reduction of Au3+ (a) and Ag1+ (b) compared with before reduction (c); (B) FTIR spectra of AgNPs and AuNPs.
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M0 + hv(UV) → MNPs(eCB− + hVB+)
M(hVB+) +H2O → M0 +H•+•OH

M(eCB−) + O2 → MNPs + O•−
2

O•−
2 +H+ → HO•

2

Dye + •OH → Degradation − products

Dye + hVB+ → Degradation − products

Dye + eCB+ → Degradation − products

The results of the present study exhibited a good catalytic

potential of the synthesized AgNPs and AuNPs towards the

reductive degradation of RhB dye which is in consensus with the

previously addressed studies on phytogenic nanoparticles from

extracts of Trigonella foenum-graecum seed, Alpinia nigra leaves,

and Cocos nucifera (Baruah et al., 2018; Awad et al., 2021;

Rajendran et al., 2021). It was speculated that the layer of the

reducing agent on the surface of the biogenic nanoparticles may

promote the effective adsorption of the dye molecules on to the

nanoparticle surface. This in turn facilitates the oxidation-

reduction between the active RhB dye and reducing agent that

occurs more conveniently at a faster rate if the particles are

smaller in size (Yazdi et al., 2020). Our results indicated that the

reactivity of large surface area of AgNPs and AuNPs attributed to

an efficient photocatalytic degradation of the RhB dye

substantiating their promising role in elimination of dye

pollution. Earlier reports have established that such oxidation-

reduction reaction can occur due to involvement of intermediates

such as hydroxyl radicals (David and Moldovan, 2020). Further,

it was proposed that the irradiation mediated photocatalysis in

dye might be due to the transfer of excited electrons from the

valance band to the conduction band by the generation of

electron hole pair. As an active oxidizing agent, the generated

hydroxyl radical then degrades the dye to nontoxic products

(carbon dioxide, water, etc.). Both AgNPs and AuNPs with high

stability, conductivity and optical properties enable efficient

trapping of photo excited electrons on the surface of photocatalytic

material preventing the recombination of the electron hole pair

(Rostami-Vartooni et al., 2016). Photocatalytic potential of

nanoparticles under visible light was proposed to be attributed to

their SPR associated collective oscillations of electrons promoting the

interaction between the generated free radicals andmolecular oxygen.

Additionally, dye degradation can also involve the positive holes

generated due to electron excitation (Marimuthu et al., 2020).

Biogenic nanoparticles are reported to show high catalytic

activity due to their smaller size and stability (Ghosh et al., 2022a;

Nitnavare et al., 2022). Photocatalytic activity of phytogenic

nanoparticles was also reported by Chandraker et al. (2020)

where anisotropic CuNPs synthesized by Ageratum

houstonianum leaf extract had exhibited cubic, hexagonal, and

rectangular shape, with average size of 80 nm. The phytogenic

CuNPs effectively degraded Congo red dye within 2 h with a

pseudo-first-order kinetics. The phytogenic nanoparticles with

catalytic activity can be further coupled with solvent impregnated

resin (SIR) for their potential application like removal and

sensing of refractory pollutants such as dye, metal ions and

phenolic compounds from industrial effluents (Tamang et al.,

2022). Additionally, these nanoparticles can be functionalized

with bioactive principles, drugs, targeting ligands and/or contrast

agents for extending their applications as antimicrobial,

anticancer, antioxidant, tissue engineering and theranostic

agents (Chandraker et al., 2021b; Ghosh et al., 2022b).

Conclusion

L. frutescens leaf extract mediated synthesis of AgNPs and

AuNPs is an efficient, rapid and environmentally benign

approach. This green route involves the naturally occurring

bioactive molecules in the plant extract for reducing the metal

ions to corresponding nanoparticles and their further stabilization.

FIGURE 10
Degradation of RhB in presence of nanoparticles. (A) Photocatalytic RhB degradation by AgNPs and AuNPs under the UV light; (B) First-order
kinetic constant for the degradation of RhB under UV-light.
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The spherical to irregular shaped AgNPs with an average diameter of

~50 ± 15 nm were synthesized within 5 h having elemental Ag as

confirmed by EDS. PolydispersedAuNPswere comprised of spherical,

triangular, rod, and hexagonal shaped nanoparticles with an average

size of ~22 ± 20 nm.Optimization of various reaction parameters such

as reaction time, metal salt concentration, temperature, and LFLE

concentration showed their promising role in determining the rate of

the synthesis. FTIR spectra identified the potential functional groups in

LFLE that were involved in rapid reduction of Ag+ and Au3+ ions to

Ag0 and Au0. The phytofabricated AgNPs and AuNPs exhibited

catalytic degradation of RhB dye rationalizing their promising

applications in treatment of dye contaminated industrial effluent.

Based on the remarkable photocatalytic activities of AgNPs and

AuNPs it is hereby recommended for its uses in biomedical

applications and tissue engineering with elaborated research with

respect to photothermal and photodynamic therapy for controlling

biofilm associated infections and cancer.
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