Iran J Public Health, Vol. 51, No.9, Sep 2022, pp.1964-1976

Review Article

Milk as a Non-Invasive and Alternative Sample for Serum in the Diagnosis of Animal Toxoplasmosis: A Systematic Review

Tooran Nayeri ^{1,2,3}, Shahabeddin Sarvi ^{1,2}, Rohallah Abedian ^{1,2,3}, Shaban Gohardehi ^{1,2}, Seyed Abdollah Hosseini ^{1,2}, *Ahmad Daryani ^{1,2}

1. Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

Toxoplasmosis Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran

*Corresponding Author: Email: daryanii@yahoo.com

(Received 04 Aug 2021; accepted 15 Nov 2021)

Abstract

Background: Toxoplasmosis is one of the most important zoonotic parasitic diseases worldwide with a high impact on human and animal health. Body fluids such as milk are used to diagnose many parasitic diseases, including toxoplasmosis. Therefore, this study aimed to investigate the role of milk as a non-invasive and alternative sample for serum in the diagnosis of animal toxoplasmosis.

Methods: Five English-language databases (ScienceDirect, PubMed, ProQuest, Scopus, and Web of Science) were explored for published articles before Dec 2020.

Results: In total, 42 out of 2256 published articles were included in this systematic review. In 21 articles, serum and milk samples were evaluated simultaneously with serological or molecular tests, and the results were compared. The results of descriptive studies and a review of nine experimental studies showed that milk could be used as a non-invasive and alternative sample for the serum in the diagnosis of toxoplasmosis.

Conclusion: Due to the relatively high prevalence of *Toxoplasma gondii* (*T. gondii*) infection in milk, consumption of raw milk from infected animals can be a potential source of human infection and a significant threat to public health. On the other hand, due to the ease and cheapness of collecting milk samples, the use of milk is recommended for the diagnosis of toxoplasmosis.

Keywords: Toxoplasma gondii; Non-invasive samples; Milk; Serological; Molecular

Introduction

Toxoplasma gondii is a zoonotic apicomplexan that can infect all warm-blooded animals (1, 2). This parasite has a cosmopolitan distribution (3) and about one-third of the world's population have antibodies to this intracellular protozoan (4). The definitive hosts, including domestic cats and other felids, contaminate the environment by shedding the unsporulated oocysts through feces (1, 5). Humans and many animals, as the intermediate hosts, could be infected by eating food contaminated with oocysts shed by cats or by consumption of tissue cysts of the parasite after eating raw or undercooked meat (2). *Toxoplasma* infection in immunocompetent humans is generally asymptomatic (5), but in immunocompromised individuals may cause more intense consequences

Copyright © 2022 Nayeri et al. Published by Tehran University of Medical Sciences. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license. (https://creativecommons.org/licenses/by-nc/4.0/). Non-commercial uses of the work are permitted, provided the original work is properly cited such as chorioretinitis, encephalitis, and congenital birth defects (6). In a pregnant woman who was first infected by the parasite, *T. gondii* reaches the fetus via the placenta (2). Treatment of toxoplasmosis requires appropriate diagnostic tools and specimens. The diagnosis of *T. gondii* infection may be established by serological, biological, histological, and molecular methods, or by a combination of some of them (7).

Today, most invasive specimens such as serum or cerebrospinal fluid are used for the diagnosis of toxoplasmosis. Many studies have discussed the use of non-invasive specimens such as milk (8), urine (9), and tear (10) to diagnose *T. gondii* infection. Milk samples have certain advantages over serum samples. The collection of serum samples is more invasive and difficult than the collection of milk samples. In addition, serum sampling requires qualified veterinary expertise and specific equipment as well as may cause stress in animals. Therefore, we aimed to evaluate whether milk is a suitable sample to replace serum according to the available literature.

Methods

Study Design and Protocol Registration

This study was accomplished according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines (11). The study protocol has been registered in PROS-PERO with the registration number CRD42021236783.

This article is an approved plan from Student Research Committee of Mazandaran University of Medical Sciences, Sari, Iran (number: 9032). The code of ethics of this plan is IR.MAZUMS.REC.1400.028.

Search Strategy

To evaluate data on the role of milk in the diagnosis of toxoplasmosis, five English databases (ScienceDirect, PubMed, ProQuest, Scopus, and Web of Science) were searched from 1990 to 2020. Search terms used alone or in combination were *Toxoplasma gondii*, *T. gondii*, toxoplasmosis, non-invasive samples, milk, diagnosis, detection, serological, and molecular.

Inclusion and Exclusion Criteria

The articles were included according to the following criteria: 1) articles performed on milk as a non-invasive sample by serological and molecular methods, 2) the articles performed on animals and humans, and 3) original papers and short communications with available full texts in only English language. Duplicate articles, articles in languages other than English, non-original publications as well as thesis and conference papers were excluded.

Study Selection and Data Extraction

At first, all the recovered articles were imported to EndNote. Then the two authors independently assessed the selected articles. The third author resolved any disagreements in the included studies by arbitration and discussion with other authors. The relevant studies data were imported into a Microsoft Excel datasheet. The data extracted from every study included first author, host, type of sample, sample size, antibody type, as well as the molecular and serological results of milk and serum.

Results

Study Characteristics and Search Results

The preliminary search in the five databases yielded 2256 relevant studies. After discarding the duplicate articles, 2136 publications remained. In the next stage, two researchers reviewed the titles and abstracts of full texts independently. Eventually, 54 articles were chosen for the precise evaluation of full texts, of which 43 papers were eligible. Out of 43 studies, one study was excluded due to the lack of reporting of positive samples with *T. gondii* (12). Finally, 42 studies were included in this systematic review. Nine articles had an experimental design and 35 studies had a descriptive design. Two articles contained data used in both designs (experimental and descriptive design) (13, 14) (Fig. 1).

Fig. 1: Flow diagram of the study design process

Results of Descriptive Studies on Milk and Serum Samples

The selected articles were performed in the UK (15), Italy (16-23), Slovak Republic (24, 25), Tunisia (26), Poland (27, 28), Malaysia (6), Mongolia (29), China (8), Iran (14, 30-33), Brazil (34-39), Egypt (13, 40-44), and Iraq (45).

In 28 descriptive studies, 6576 milk samples were evaluated using different molecular techniques such as polymerase chain reaction (PCR), realtime PCR, reverse-transcriptase PCR (RT-PCR), nested-PCR, and loop-mediated isothermal amplification (LAMP) for identification of the *T. gondii* DNA that 332 out of these samples (5.05%) were positive. In addition, the number of 2453 milk samples in 9 articles was assessed using various serological techniques such as modified agglutination test (MAT), enzyme-linked immunosorbent assay (ELISA), latex agglutination test (IAAT), indirect fluorescent antibody test (IFAT), indirect hemagglutination test (IHAT), indirect agglutination test (DAT), dye test, and rapid test cassette for detection of the *T. gondii* and 557

cases (22.7%) were positive. Moreover, 21 studies were conducted on serum samples by serological techniques including 6106 samples, out of which 1517 were positive for toxoplasmosis (24.84%), and five studies containing 302 serum samples, out of which 36 were positive for toxoplasmosis (11.92%) by molecular techniques (Table 1).

	1 1 1	• • • • • • • • • •
Table 1: Baseline of descriptive studies	on milk and serum sample	es included in this systematic review
Free Free Free Free Free Free Free Free	r i i i i i i i i i i i i i i i i i i i	· · · · · · · · · · · · · · · · · · ·

First author	Host (s)	Sam- ple (s)	Methods	Detected antibodies	Sample size (n)	Serologi- cal results of milk n (%)	Serological results of serum n (%)	Molecular results of milk n (%)	Mo- lecu- lar re- sults of serum n (%)
Skinner	Goat	Milk	IHAT, Dye test, and bio- assay	IgM and IgG	6		4 (66.66)		
Fusco	Sheep	Milk and serum	IFAT and PCR	IgG	1170		333 (28.5)	4/117 (3.4)	
Ludmila	Goat	Milk and serum	ELISA, PCR, and nested- PCR	IgG	87		43 (49.43)	14/43 (32.56)	
Camos- si	Ewe	Milk and serum	PCR and MAT	IgG	139		70 (50.36)	7 (5.03)	
Abdel- Rahman	Goat	Milk and serum	IHAT	IgM and IgG	73 milk and 182 serum	43 (58.90)	77 (42.30) [IgG: 55 (30.22) and IgM: 22 (12.09)]		
Bezerra	Goat	Milk and serum	IIR and PCR	IgG	248 milk and 248 serum		56 (22.58)	15 (6.05)	
Dehkor di	Bovine, ovine, caprine, buffalo, and camel	Milk	Cell line cul- ture, cat bio- assay, ELISA, and PCR	IgG	889	41 (4.61)		46 (5.17)	
Manci- anti	Goat	Milk and serum	MAT and nested-PCR	IgG	77 milk and 127 serum		77 (60.62)	10 (13)	10 (13)
Tavasso li	Sheep and goats	Milk	PCR		625			19 (3.04)	
Ahmed	Goat, sheep, and cow	Milk	PCR	IgM and IgG	150			5 (3.33)	
Da Sil- va	Ovine	Milk and serum	IFAT	IgG	40 milk and 40 serum	10 (25)	18 (45)		
Da Sil- va	Sheep and goats	Milk and serum	IFAT and PCR	IgG	243		16 (6.58)	5 (2.02)	

Iran J Public Health, Vol. 51, No.9, Sep 2022, pp.1964-1976

Lupta- kova	Sheep	Milk and	ELISA and real-time PCR	IgM	80 milk and 80		25 (31.25)	9 (11.25)	5 (6.25)
Rova		serum	icar time i or		serum				(0.23)
Manci- anti	Donkey	Milk and	IFAT and nested-PCR	IgG	44 milk and 44		11 (25)	3 (6.81)	6 (13.63)
Martini	Donkey	serum Milk and	IFAT and PCR	IgG	serum 18 milk and 18		4 (22.22)	4 (22.22)	4 (22.22)
		serum	I CK		serum				(22.22)
Sadek	Sheep and goats	Milk	Microscopic examination, LAT, and PCR		105	41 (39)		8 (16)	
De Santana Rocha	Sheep	Milk and serum	PCR and IFAT	IgG	275		114 (41.5)	18 (6.5)	
Amairia	Goat	Milk and	ELISA and nested-PCR	IgG	77 milk and 77		24 (31.2)	6 (7.8)	
Attia	Goat	serum Milk and serum	ELISA and MAT	IgG and IgM	serum 600 milk and 600 serum	ELISA:120 (20) and MAT:110 (18)	ELISA:132 (22) and MAT:120 (20)		
Cisak	Sheep, goat, and cow	Milk	PCR		119			12 (10.1)	
Ossani	Ewes	Milk	IFAT, PCR, and bioassay	IgG	42 ewes or 108 milk samples		42 (100)	13/42 (30.95) or 13/108 (12.04)	
Razmi	Cattle	Milk	ELISA		123	14 (11.38)			
Sroka	Goat	Milk and serum	DAT, real time PCR, and nested- PCR	IgG	60 milk and 73 serum		51 (70)	Real time PCR: 39 (65) and nested- PCR: 26 (43)	
Vismar- ra	Sheep	Milk	PCR and real time PCR		21			PCR: 1/10 (10) and real time PCR: 9/10 (90)	
Abdul- lah	Cow	Milk	PCR		14			0 (0)	
Alipour	Bovine, ovine, caprine, buffalo, camel, and donkey	Milk and tradi- tional dairy prod- uct	Nested-PCR		880			70 (7.95)	
Gazzo- nis	Goat	Milk and	ELISA	IgG	383 milk and 383	242 (63.18)	245 (63.96)		
Saad	Sheep, goat, and	serum Milk	ELISA and qPCR	IgG	serum 90	46 (51.11)		2 (4.34)	

Nayeri et al.: Milk as a Non-Invasive and Alternative Sample for Serum in the ...

Gazzo- nis	camel Goat	Milk and serum	ELISA and PCR	IgG	30		19 (63.3)	8/30 (26.66) or 13/63 (20.63)	
Iacobuc ci	Sheep, goats, and Bactrian camels	Milk	Nested-PCR		126			9 (7.14)	
Mo- hamed	Ewes, does, and cows	Milk and serum	ELISA	IgM and IgG	150 milk	79 (52.7) [IgM: 56 (37.3) IgG: 0 (0), and IgM & IgG: 23 (15.3)]			
A.A. Abadi	Buffalo, cow, sheep, goat, don- key, and camel	Milk and dairies	Nested-PCR		230 raw milk			18 (4.86) [milk: 14 (6.08) and dairies: 4 (2.85)]	
Alkanaq	Goats and pregnant women	Milk and serum	PCR and rap- id test cassette	IgM and IgG	150 milk and 150 serum		33 (22)	6/150 (4)	14/33(42.42)
Ranucci	Ewe	Milk and cheese	LAMP and RT-PCR		16 milk and 32 cheese			LAMP [milk:16 (100) and cheese: 32 (100)] and RT-PCR [milk: 16 (100) and cheese: 0 (0)]	
Wang	Cattle	Milk and serum	ELISA and semi-nested PCR	IgG	2092 milk and 2092 serum		123 (5.88)	22 (1.05)	

Results of Experimental Studies on Milk Samples

These studies were conducted in France (46), the USA (47, 48), Brazil (49, 50), Sudan (51), Egypt (13), Iran (14), and Greece (52). The animals used in these studies were mice (46, 49), cat (47), she-camel (51), rat (50), goat (13, 14, 48, 52), ovine (14, 52), bovine, buffalo, and camel (14). *Toxoplasma* antibodies were determined using ELISA, LAT, and MAT. Furthermore, molecular methods used in this study were PCR and nested PCR. The strains of the *T. gondii* that were used to infect the animals in the experimental studies were

included 76K (46), Mozart, Maggie (47), ME-49 (47, 49), and BTU4 (50) as well as TgGoatUS26 and GT1 (48). The amplification of B1 (47, 50) and Ncl8s-ITS1 (48) genes of the *T. gondii* was performed in three studies. *T. gondii* infection was evaluated in milk by flotation technique for detection of *Toxoplasma* oocysts in fecal samples of cats, serological and molecular methods as well as bioassay following oral infection of the animal model (mice, cat, she-camel, and goat) with different strains of the parasite (46-48, 50-52) or infection of animal models (cats and mice) through fed with the milk from infected animals

with T. gondii (13, 14, 49). Moreover, the transmission of T. gondii infection through contaminated milk with *Toxoplasma* to offspring was examined (51) (Table 2).

Table 2: Baseline of experimental studies on milk sample	les included in this systematic review
--	--

First author	Host (s)	Sample size (n)	<i>Type</i> sample	Methods	Detected antibod-	Results
	(-)		(s)		ies	
Chardes	Mice	6 to 10 for each experi- ment	Milk, blood, and intestinal secretions	ELISA and western blotting	IgA, IgG, and IgM	The IgA antibody response began earlier in se- rum and milk than in intestinal secretions. Never- theless, at the intestinal level, the IgA antibody response was the first humoral response, where- as, in milk and serum, IgA, IgG, and IgM pro- duction all commenced at the same time after infection. Initially, the IgA and IgM antibody titers in serum and intestinal secretions rose in parallel but the IgM antibody titers peaked earlier than the IgA antibody titers.
Powell	Cat	6	Milk	PCR and bioassay		The milk of one cat was bioassay positive only, one was PCR positive only, and three were bioas- say and PCR positive.
Hiramo- to	Mice	Groups of eight mice	Milk and cheese	ELISA, western blot, and histology	IgG	The infectivity of cysts of the ME-49 strain was maintained in the milk even after storage for 20 days at refrigerator temperatures.
Ishag	She- camel	3	Milk	LAT, his- topatholo- gy, and bioassay	IgG	Tachyzoites and cysts were detected in the brains of all inoculated mice (6/9) and suckling calf- camels (2/3). <i>Toxoplasma</i> antibodies were detect- ed in the sera of mice and calves.
Costa	Rat	18	Milk	PCR, IFAT, MAT, bio- assay, and PCR		Rat milk samples were PCR-positive, pups were serum reactive to <i>T. gondii</i> and tissue samples presented positive DNA results through PCR.
Abdel- Rahman	Goat	2 (milk from IgG sero- positive goats and milk from IgM sero- positive goats)	Milk	Bioassay in cats		Experimental infection in cats showed that only one cat out of 4 given milk from IgG seroposi- tive goats (chronically infected) shed oocysts 5 days post-infection, whereas all 4 cats given milk from IgM seropositive goats (acutely infected) shed oocysts in their feces 5-7 days post- infection.
Dehkordi	Bovine, ovine, caprine, buffalo, and camel	51 (bovine: 8, ovine: 13, caprine:8, buffalo: 7, and camel:5)	Milk	Bioassay in cats		The oocyst of <i>T. gondii</i> was detected the feces of all 51 cats.
Dubey	Goat	8	Milk and cheese	MAT, bio- assay in mice and cat, and nested-PCR		By mouse bioassay, <i>T. gondii</i> was detected in milk from all eight goats. With respect to the infectivi- ty of cheese, <i>T. gondii</i> was detected in mice inocu- lated subcutaneously with cheese stored for 3 days at 4 °C but not in any mouse inoculated orally with the cheese suspension. One cat fed cheese shed oocysts 7 to 11 days after consuming

					cheese. Also, of the 20 samples of uncentrifuged
					milk from all four goats, 18 were positive for T.
					<i>gondii</i> DNA.
Lafi	Sheep	36 [sheep: 18	Milk	ELISA and	 All infected animals started to show an increase
	and	(12 infected		PCR	in the antibody titers on day 14 after infection
	goat	and 6 con-			and continued to rise staidly until day 60 of infec-
		trol) and			tion and then started to decline. T. gondii DNA
		goats: 18 (12			was detected in tissue samples (95%) collected
		infected and			from aborted fetuses. T. gondii DNA was detect-
		6 control)]			ed in 94% of blood samples that were collected
					from infected animals and live newborn lambs
					and kids. T. gondii DNA was detected in blood on
					the 3th day after infection in all infected animals
					and continued for 21 day after infection. PCR
					detected T. gondii DNA in maternal blood of
					infected animals 3-5 days before abortion oc-
					curred. Eighty-eight percent pre-colostral udder
					secretion and 12.5% of colostral and milk sam-
					ples collected during the 21 days period following
					the infection were PCR positive. No T. gondii

Discussion

The current systematic review shows the value of raw milk instead of serum for diagnosis in humans and animals around the world. According to Table 1, the lowest and highest seroprevalence rates of anti- T. gondii antibodies in milk samples were related to the studies as 4.61% (41/889) (14) and 63.18% (242/383) (22). Additionally, the lowest and highest prevalence rates of T. gondii in milk samples using molecular methods were observed in studies as 0% (0/14) (6) and as 100%(16/16) (23). Differences in prevalence may be attributed to different climatic characteristics, the examined populations, sensitivity and specificity of detection techniques, cultural, hygienic, and nutritional habits, breeding conditions and management of animals, immune status, the timing of infection, the genetic composition of the host and the organism, or distribution and behavior of cats (38, 40, 53-56). The lack of evaluation of these factors in most eligible studies can be considered a basic gap.

T. gondii can be a source of infection for humans and animals due to the consumption of meat and milk from infected animals. This pathogen causes

significant human and animal health problems (57). Some researchers have demonstrated the milk of sheep, goats, cattle, buffalo, camel, donkeys, and mice have tachyzoites, which favor vertical transmission (31, 35, 39, 43). Tachyzoites can survive in goat's milk at 4 °C for about three to seven days (58). In addition, the infectivity of cysts persisted in cow's milk even after 20 days of refrigerated storage (49). These studies confirm the possibility of human infection due to the consumption of raw milk as well as the possibility of tachyzoite shedding in milk. In addition, an experimental study confirmed the transmission of T. gondii to milk and offspring in rats infected with the parasite (50). Reactivation of tissue cysts during an acute infection or low immunity during pregnancy results in the release of tachyzoites in milk (33, 38). However, tachyzoite is not an important source of oral transmission of T. gondii because they are sensitive to the proteolytic enzyme in milk and are immediately destroyed by gastric proteolytic enzymes (54). Gastric enzymes easily destroyed tachyzoite; however, due to the low concentration of gastric enzymes, the consumption of tachyzoite in milk, especially in infants, leads to infection (59). Moreover, the sur-

DNA was detected in tissues, milk samples of the control groups or in milk samples obtained from infected animals after 28 days of infection.

vival of tachyzoite in acid pepsin solution for up to 2 hours can support the achievement of infection via the consumption of milk and other foods (60). Another explanation is that infection may occur by penetration of tachyzoite into the mucosal tissues before reaching the stomach (59, 61, 62). Likewise, the transmission of T. gondii tachyzoite in milk is attributed to suckling trauma and tissue cyst excretion (63). Endogenous contamination of the milk and excretion of T. gondii tachyzoite in the mammary gland is facilitated by cellular exocytosis of milk secretion (64). During pre-lactation, cysts of T. gondii could harbor relatively stable mammary cells. Silent cysts are secreted from mammary gland cells by exocytosis, similar to the secretion of milk fat globules, which are covered by the host cell membrane, and then contaminate the milk inside the gland. Lower concentrations of proteolytic enzymes in the intestines of children and suckling animals lead to worsening of infection and increasing the survival of T. gondii forms (65).

The diagnosis of T. gondii infection in milk samples is usually based on serology, PCR, protein analysis, cell line culture, and bioassays (66, 67). Serological tests are mostly used as a preliminary test to detect the parasite, while molecular techniques such as PCR are the best choice for diagnosis of T. gondii infection because it has shown higher accuracy, sensitivity, and specificity than other diagnostic methods (68, 69). Seroconversion of this parasite is complex and may involve many factors. In the initial phase of infection, when the amount of antibody is not yet sufficient for diagnosis in serology methods, the animal may be PCR positive for milk and serologically negative (35). The presence of DNA of T. gondii in milk does not ensure the viability of the parasite in the sample. PCR has advantages over traditional methods such as bioassay and there is a good correlation between PCR and bioassay (70). The role of drinking cow's milk in the epidemiology of toxoplasmosis is small (65), while milk, regardless of the type of animal, especially if consumed raw, can be considered a potential source of infection (59, 71). Moreover, the long persistence of T. gondii cysts in infected bovine milk

and homemade fresh cheese under regular refrigeration conditions (49). Finally, raw milk may play a role in the epidemiology of T. gondii infection. On the other hand, various studies proposed the use of non-invasive samples such as milk as an alternative to serum samples in the diagnosis of T. gondii due to easier collection and storage of milk, no need for expert staff for sampling, improvement of animal welfare and reduction of productivity due to stress, and collection of sufficient quantities of the sample for analysis at the lowest cost (41, 72). Serum antibodies in an endemic area indicate a past or present invasive disease, while the presence of antibodies in milk indicates the presence of an active infection that reflected local antigenic stimuli to infection and contributes to epidemiological studies of the disease (73). About the quantity of milk, levels of antibodies in serum were higher than in other body fluids such as milk (74). There were several limitations in the present systematic review as follows: 1) a limited number of studies have examined the milk as a non-invasive and alternative sample for serum in the diagnosis of toxoplasmosis; 2) the use of English language articles due to lack of resources for translation; 3) the use of various diagnostic methods without equal specificities and sensitivities; 4) lack of evaluation of various risk factors such as type of animal, breed, and sampling season; 5) diagnosis of T. gondii in milk samples is possible only in female animals and in lactation seasons, especially in herbivores, and this limitation reduces the generality of the results of T. gondii infection with this sample; and 6) in most studies, toxoplasmosis was diagnosed in animal serum by the determination of antibodies and simultaneously in milk by serological or molecular methods; the discrepancy in the results of the original articles (in some articles the prevalence of *T. gondii* was higher in the serum sample and in others in the milk sample) is one of the limitations of this study.

Conclusion

To the best of our knowledge, this is the first systematic review providing a general view of the role of milk samples in the diagnosis of *T. gondii* infection. The data obtained in this study indicate the possibility of using milk as a substitute for serum in the diagnosis and screening of toxoplasmosis in animals. There is still a scarcity of studies investigating the role of milk as an alternative sample for serum in the diagnosis of toxoplasmosis in humans. In general, the use of milk samples instead of serum samples in the diagnosis of toxoplasmosis is debatable, and further and more comprehensive investigations, as well as the use of new methods, are needed.

Journalism Ethics considerations

Ethical issues (Including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

Conflict of interest

The authors declare that there is no conflict of interest.

References

- Stelzer S, Basso W, Silván JB, et al (2019). *Toxoplasma gondii* infection and toxoplasmosis in farm animals: risk factors and economic impact. *Food Waterborne Parasitol*, 15:e00037.
- 2. Ouchetati I, Ouchene N, Khelifi-Ouchene NA, et al (2020). Prevalence of *Toxoplasma gondii* infection among animals in Algeria: a systematic review and meta-analysis. *Comp Immunol Microbiol Infect Dis*, 101603.
- Rouatbi M, Amairia S, Amdouni Y, et al (2019). *Toxoplasma gondii* infection and toxoplasmosis in North Africa: a review. *Parasite*, 26: 6.
- 4. Pleyer U, Gross U, Schlüter D, et al (2019). Toxoplasmosis in Germany: epidemiology,

diagnosis, risk factors, and treatment. Dtsch Ärztebl Int,116:435.

- De Barros LD, Garcia JL, Bresciani KDS, et al (2020). A review of toxoplasmosis and neosporosis in water Buffalo (*Bubalus bubalis*). *Front vet sci*, 7:455.
- Abdullah R, Amarasekera S (2018). Detection of *Toxoplasma gondii* in cow fresh milk using pcr technique. *J Manag Sci*,16.
- Hill D, Dubey J (2002). Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect, 8:634-40.
- Wang Y-L, Meng Q (2020). Short reports low prevalence of *Toxoplasma gondii* DNA in the fresh milk of cattle in China. *Research Square*, 1-10.
- Ahmedani EI, Elagib AA, Mohamed K, et al (2020). Detection of *Toxoplasma gondii* by loop-mediated isothermal amplification in blood and urine samples from women, Saudi Arabia. *J Clin Diagn Res*, 14:DC15-DC18.
- Lynch MI, Cordeiro F, Ferreira S, et al (2004). Lacrimal secretory IgA in active posterior uveitis induced by *Toxoplasma gondii*. Mem Inst Osmaldo Cruz, 99:861-4.
- 11. Moher D, Liberati A, Tetzlaff J, et al (2010). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Int J Surg*, 8:336-41.
- 12. Veronesi F, Chiesa F, Zanet S, et al (2018). Screening of *Toxoplasma gondii* positive sheep flocks in Perugia province (Umbria Region, central Italy) using bulk milk analyses. *Large Anim Rev*, 24:185-187.
- Abdel-Rahman M, EL-Manyawe SM, Khateib A, et al (2012). Occurrence of *Toxoplasma* antibodies in caprine milk and serum in Egypt. *Assiut Vet Med J*, 58:145-52.
- 14. Dehkordi FS, Haghighi Borujeni MR, Rahimi E, et al (2013). Detection of *Toxoplasma gondii* in raw caprine, ovine, buffalo, bovine, and camel milk using cell cultivation, cat bioassay, capture ELISA, and PCR methods in Iran. *Foodborne Pathog Dis*, 10:120-5.
- 15. Skinner LJ, Timperley AC, Wightman D, et al (1990).Simultaneous diagnosis of toxoplasmosis in goats and goatowner's family. *Scand J Infect Dis*, 22:359-61.
- Fusco G, Rinaldi L, Guarino A, et al (2007). Toxoplasma gondii in sheep from the Campania region (Italy). Vet Parasitol, 149:271-4.

- Mancianti F, Nardoni S, Papini R, et al (2014). Detection and genotyping of *Toxoplasma gondii* DNA in the blood and milk of naturally infected donkeys (*Equus asinus*). *Parasit Vectors*, 7:165.
- Mancianti F, Nardoni S, D'Ascenzi C, et al (2013). Seroprevalence, detection of DNA in blood and milk, and genotyping of *Toxoplasma gondii* in a goat population in Italy. *Biomed Res Int*, 2013:905326.
- 19. Martini M, Altomonte I, Mancianti F, et al (2014). A preliminary study on the quality and safety of milk in donkeys positive for *Toxoplasma gondii. Animal*, 8:1996-8.
- 20. Vismarra A, Barilli E, Miceli M, et al (2017). *Toxoplasma gondii* and pre-treatment protocols for polymerase chain reaction analysis of milk samples: a field trial in sheep from Southern Italy. *Ital J Food Saf*, 6:6501.
- Gazzonis AL, Zanzani SA, Villa L, et al (2019). *Toxoplasma gondii* in naturally infected goats: Monitoring of specific IgG levels in serum and milk during lactation and parasitic DNA detection in milk. *Prev Vet Med*, 170:104738.
- 22. Gazzonis A, Zanzani S, Stradiotto K, et al (2018). *Toxoplasma gondii* antibodies in bulk tank milk samples of caprine dairy herds. *J Parasitol*, 104:560-5.
- 23. Ranucci D, Battisti E, Veronesi F, et al (2020). Absence of viable *Toxoplasma gondii* in artisanal raw-milk ewe cheese derived from naturally infected animals. *Microorganisms*, 8:143.
- Spišák F, Turčeková Ľ, Reiterová K, et al (2010). Prevalence estimation and genotypization of *Toxoplasma gondii* in goats. *Biologia*, 65:670-4.
- 25. Luptakova L, Benova K, Rencko A, et al (2015). DNA detection of *Toxoplasma gondii* in sheep milk and blood samples in relation to phase of infection. *Vet Parasitol*, 208:250-3.
- 26. Amairia S, Rouatbi M, Rjeibi MR, et al (2016). Molecular prevalence of *Toxoplasma gondii* DNA in goats' milk and seroprevalence in northwest Tunisia. *Vet Med Sci*, 2:154-60.
- 27. Cisak E, Zając V, Sroka J, et al (2017). Presence of pathogenic Rickettsiae and protozoan in samples of raw milk from cows, goats, and sheep. *Foodborne Pathog Dis*, 14:189-94.
- 28. Sroka J, Kusyk P, Bilska-Zając E, et al (2017). Seroprevalence of *Toxoplasma gondii* infection in goats from the south-west region of

Poland and the detection of *T. gondii* DNA in goat milk. *Folia Parasitol (Praha)*, 64:2017.023.

- Iacobucci E, Taus N, Ueti M, et al (2019). Detection and genotypic characterization of *Toxoplasma gondii* DNA within the milk of Mongolian livestock. *Parasitol Res*, 118:2005-8.
- Alipour Amroabadi M, Rahimi E, Shakerian A (2020). Seasonal and age distribution of *Toxoplasma gondii* in milk of naturally infected animal species and dairy samples. *EJVS*, 51:171-80.
- Alipour M, Rahimi E, Shakerian A (2018). Retracted: prevalence of *Toxoplasma gondii* and *Neospora caninum* in different types of raw milk and traditional dairy product samples. *J Food Saf*, 38:e12575.
- Razmi G, Barati M (2017). Prevalence of *Neospora caninum* and *Toxoplasma gondii* antibodies in bulk milk of dairy cattle, Mashhad, Iran. *Arth Razi Inst*, 72:265-9.
- 33. Tavassoli M, Esmaeilnejad B, Malekifard F, et al (2013). Detection of *Toxoplasma gondii* DNA in sheep and goat milk in northwest of Iran by PCR-RFLP. *Jundishapur J Microbiol*, 6:e8201.
- 34. Camossi L, Greca-Júnior H, Corrêa A, et al (2011). Detection of *Toxoplasma gondii* DNA in the milk of naturally infected ewes. *Vet Parasitol*, 177:256-61.
- 35. Bezerra M, Kim P, Moraes ÉP, et al (2015). Detection of *Toxoplasma gondii* in the milk of naturally infected goats in the northeast of Brazil. *Transbound Emerg Dis*, 62:421-4.
- 36. Da Silva AS, Tonin AA, Camillo G, et al (2014). Ovine toxoplasmosis: indirect immunofluorescence for milk samples as a diagnostic tool. *Small Rumin Res*, 120:181-4.
- 37. da Silva JG, Alves BHL, Melo RPB, et al (2015). Occurrence of anti-*Toxoplasma gondii* antibodies and parasite DNA in raw milk of sheep and goats of local breeds reared in northeastern Brazil. *Acta Trop*, 142:145-8.
- de Santana Rocha D, de Sousa Moura R, Maciel B, et al (2015). Detection of *Toxoplasma gondii* DNA in naturally infected sheep's milk. *Genet Mol Res*, 14:8658-62.
- Ossani R, Borges H, Souza A, Sartor A, et al (2017). *Toxoplasma gondii* in milk of naturally infected dairy ewes on west mesoregion of Santa Catarina state, Brazil. *Arq Bras Med Vet Zootec*, 69:1294–300.

- 40. Ahmed HA, Shafik SM, Ali ME, et al (2014). Molecular detection of *Toxoplasma gondii* DNA in milk and risk factors analysis of seroprevalence in pregnant women at Sharkia, Egypt. *Vet World*, 7:594-600.
- Attia MM, Saad M, Abdel-Salam AB (2017). Milk as a substitute for serum in diagnosis of toxoplasmosis in goats. J Egypt Soc Parasitol, 47:227-34.
- 42. Sadek O, Abdel-Hameed ZM, Kuraa HM (2015). Molecular detection of *Toxoplasma gondii* DNA in raw goat and sheep milk with discussion of its public health importance in Assiut Governorate. *Assint Vet Med J*, 61:166-77.
- 43. Saad NM, Hussein AA, Ewida RM (2018). Occurrence of *Toxoplasma gondii* in raw goat, sheep, and camel milk in Upper Egypt. *Vet World*, 11:1262.
- 44. Mohamed HM, Hussein AA, Lila M, et al (2019). Serological survey on *Toxoplasma gondii* in some dairy animals and pregnant women in Qena, Egypt. J Adv Vet Res, 9:97-101.
- 45. Alkanaq MN SZ, Salih H, Alrammah NSAA, et al (2020). Detection of *Toxoplasma gondii* in blood and milk of infected goats and pregnant women by rapid test cassette and conventional-PCR methods in AL-Qadisiyah province, Iraq. *Int J Pharm Sci Res*, 12:2170-2176.
- 46. Chardes T, Bourguin I, Mevelec M, et al (1990). Antibody responses to *Toxoplasma gondii* in sera, intestinal secretions, and milk from orally infected mice and characterization of target antigens. *Infect Immun*, 58:1240-6.
- 47. Powell CC, Brewer M, Lappin MR (2001). Detection of *Toxoplasma gondii* in the milk of experimentally infected lactating cats. *Vet Parasitol*, 102:29-33.
- 48. Dubey J, Verma S, Ferreira L, et al (2014). Detection and survival of *Toxoplasma gondii* in milk and cheese from experimentally infected goats. *J Food Prot*, 77:1747-53.
- Hiramoto R, Mayrbaurl-Borges M, Galisteo Jr A, et al (2001). Infectivity of cysts of the ME-49 *Toxoplasma gondii* strain in bovine milk and homemade cheese. *Rev Saude Publica*, 35:113-8.
- 50. Costa V, Langoni H (2010). Detection of *Toxoplasma gondii* in the milk of experimentally

infected wistar female rats. J Venom Anim Toxins Incl Trop Dis, 16:368-74.

- Ishag MY, Magzoub E, Majid M (2006). Detection of *Toxoplasma gondii* tachyzoites in the milk of experimentally infected lactating She-Camels. *J Anim Vet Adv*, 5:456-458.
- Lafi SQ, Giadinis ND, Papadopoulos E, et al (2014). Ovine and caprine toxoplasmosis: experimental study. *Pak Vet J*, 34:50-3.
- 53. Masala G, Porcu R, Madau L, et al (2003). Survey of ovine and caprine toxoplasmosis by IFAT and PCR assays in Sardinia, Italy. *Vet Parasitol*, 117:15-21.
- Tenter AM, Heckeroth AR, Weiss LM (2000). *Toxoplasma gondii*: from animals to humans. *Int J Parasitol*, 30:1217-58.
- 55. Suzuki Y (2002). Host resistance in the brain against *Toxoplasma gondii*. J Infect Dis, 185:S58-S65.
- 56. Buxton D (1990). Ovine toxoplasmosis: a review. J R Soc Med, 83:509-11.
- Dubey J (1980). Persistence of encysted Toxoplasma gondii in caprine livers and public health significance of toxoplasmosis in goats. J Am Vet Med Assoc, 177:1203-1207.
- Walsh C, Hammond S, Zajac A, et al (1999). Survival of *Toxoplasma gondii* tachyzoites in goat milk: potential source of human toxoplasmosis. *J Eukaryot Microbiol*, 46:73S-74S.
- 59. Tenter AM (2009). *Toxoplasma gondii* in animals used for human consumption. *Mem Inst Osmaldo Cruz*, 104:364-9.
- Dubey J (1998). Re-examination of resistance of *Toxoplasma gondii* tachyzoites and bradyzoites to pepsin and trypsin digestion. *Parasitology*, 116:43-50.
- 61. Riemann H, Meyer M, Theis J, et al (1975). Toxoplasmosis in an infant fed unpasteurized goat milk. *J Pediatr*, 87:573-6.
- 62. Sacks JJ, Roberto RR, Brooks NF (1982). Toxoplasmosis infection associated with raw goat's milk. JAMA, 248:1728-32.
- Pettersen EK (1984). Transmission of toxoplasmosis via milk from lactating mice. *Acta Pathol Microbiol Immunol Scand B*, 92:175-6.
- Deyrup-Olsen I, Luchtel D (1998). Secretion of mucous granules and other membrane-bound structures: a look beyond exocytosis. *Int Rev Cytol*, 183:95-141.

- 65. Dubey J (1991). Toxoplasmosis: an overview. Southeast Asian J Trop Med Public Health, 22 Suppl:88-92.
- 66. Sudan V, Jaiswal AK, Shanker D (2013). Recent trends in the diagnosis of toxoplasmosis. *Clin Rev Opinions*, 5:11-7.
- 67. Switaj K, Master A, Skrzypczak M, et al (2005). Recent trends in molecular diagnostics for *Toxoplasma gondii* infections. *Clin Microbiol Infect*, 11:170-6.
- Martins TB, Hillyard DR, Litwin CM, et al (2000). Evaluation of a PCR probe capture assay for the detection of *Toxoplasma gondii*. Incorporation of uracil N-glycosylase for contamination control. *Am J Clin Pathol*, 113:714-21.
- 69. Held T, Krüger D, Switala A, et al (2000). Diagnosis of toxoplasmosis in bone marrow transplant recipients: comparison of PCRbased results and immunohistochemistry. *Bone Marrow Transplant*, 25:1257-62.

- 70. Homana WL, Vercammen M, Braekeleer J, et al (2000). Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in *Toxoplasma gondii*, and its use for diagnostic and quantitative PCR. *Int J Parasitol*, 30:69-75.
- 71. Boughattas S (2015). Commentary on:"Detection of *Toxoplasma gondii* in raw caprine, ovine, buffalo, bovine, and camel milk using cell cultivation, cat bioassay, capture ELISA, and PCR methods in Iran". *Front Microbiol*, 6:215.
- 72. Schares G, Bärwald A, Staubach C, et al (2004). Adaptation of a commercial ELISA for the detection of antibodies against *Neospora caninum* in bovine milk. *Vet Parasitol*, 120:55-63.
- Grundy MS, Cartwright-Taylor L, Lundin L, et al (1983). Antibodies against *Entamoeba histolytica* in human milk and serum in Kenya. J Clin Microbiol, 17:753-8.
- 74. Malamud D (2011). Saliva as a diagnostic fluid. Dent Clin North Am, 55:159-78.