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INTRODUCTION

Serial crystallography (SX) using X-ray free-electron lasers (XFEL) and synchrotron X-rays is an
emerging X-ray crystallography technique to determine the structure of macromolecules at room
temperature or near-physiological temperature with minimal radiation damage (Chapman et al.,
2011; Boutet et al., 2012; Chapman et al., 2014; Stellato et al., 2014; Johansson et al., 2017; Standfuss
and Spence, 2017; Nam, 2019; Nam, 2021b; Durdagi et al., 2021; Nam, 2022c). This technique is used
for studying time-resolved molecular mechanisms through pump-and-probe experiments with an
optical laser or a liquid application (e.g., substrate or inhibitors) (Spence, 2014; Schulz et al., 2018;
Schmidt, 2019; Butryn et al., 2021; Martin-Garcia, 2021). The SX technique overcomes the
experimental limitations of traditional X-ray crystallography. This technique causes minimal
radiation damage, does not need a cryogenic environment, and provides dynamic structural
information; furthermore, it provides biologically relevant structural information with accurate
visuals depicting the molecular mechanism (Chapman et al., 2011; Boutet et al., 2012; Chapman
et al., 2014; Schmidt, 2019; Orville, 2020; Pearson and Mehrabi, 2020; Nam, 2021a; Nam, 2022c).

In an SX experiment, a large number of crystals are serially delivered to an X-ray interaction point
via various sample delivery techniques, such as injectors injector (DePonte et al., 2008; Weierstall
et al., 2014), syringes with viscous medium (Sugahara et al., 2015; Park and Nam, 2019; Nam, 2020a;
Nam, 2022a), fixed-target scanning (Hunter et al., 2014; Murray et al., 2015; Lee et al., 2019; Lee et al.,
2020; Park et al., 2020; Nam et al., 2021), capillaries (Stellato et al., 2014; Nam, 2020b), convey belts
(Beyerlein et al., 2017a), and microfluidics (Knoska et al., 2020; Monteiro et al., 2020; Nam and Cho,
2021). Crystals are exposed to X-rays only once for a short period of time at the XFEL (fs level) or
synchrotron (ms level). A large number of images (ranging from thousands to millions) are collected
to determine the three-dimensional structure of macromolecules during SX data collection (Schmidt,
2019). Delivering the crystals spatiotemporally in a continuous manner at the X-ray interaction
location during SX data collection is experimentally impossible. Hence, the collected data include
images that contain diffraction information generated while penetrating X-ray crystals and other
images that do not penetrate the crystal. In general, four types of images can be collected, as follows:
1) single crystal diffraction, 2) multicrystal diffraction, 3) unwanted diffraction or scattering (salt or
crystal delivery materials), and 4) diffraction-free images (Figure 1A).

In SX technology, a “hit” denotes a diffraction pattern with the minimum number of detectable
Bragg peaks (Barty et al., 2014). As only hit images containing Bragg peaks are needed for structure
determination, hit images are filtered from whole images using image filtering programs and
employed for the next data processing step. Filtering the hit image has the following two advantages:
1) Filtering only hit images reduces the time needed for the next data processing step and aids in the
efficient utilization of available computing resources. 2) Excluding the non-hit images reduces
storage consumption and file conversion time (e.g., cxi to hdf5). Meanwhile, the hit rate (ratio) is
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obtained by dividing the number of hit images by the total
number of images collected. This hit rate provides primary
information about the number of images suitable for data
processing and the diffraction quality and density of crystals
during SX data collection. This information can be used for
preparing samples and determining the data collection efficiency.

Bragg peaks are indexed from the hit images including the
diffraction pattern to obtain information regarding three integers
(h, k, and l) (Otwinowski and Minor, 1997). Subsequently, Bragg
peaks are integrated and scaled to obtain the structure factor.
Indexed images refer to images in which the input unit cell
parameter and information about the crystal system match. The
indexing rate (ratio) is a statistic obtained by dividing the number
of indexed images that match the input crystal information by the
total number of hit images. Therefore, the indexing rate can
provide information about the crystal and data quality during
data collection and processing.

The hit rate and indexing rate provide information about
the crystal density and crystal quality, respectively, used
during data collection and aid in calculating the amount of
data sufficient for determining the crystal structure or
changing the experimental parameter. This information aids
in utilizing the beamtime efficiently. Meanwhile, SX
researchers and journal reviewers/editors often evaluate and
compare the hit rate and indexing rate numbers of
independent SX experiments. However, the hit rate and
indexing rate of independent SX experiments cannot be
compared because the rates can represent distinct values
depending on the experimental results or program
parameters. Moreover, the hit rate and indexing rate can be
increased or decreased easily by altering the settings of the data
processing program. Accordingly, I believe the hit rate and
indexing rate are just statistics that cannot be compared with
independent experiments.

FIGURE 1 | (A) Examples of collected image in serial crystallography: single crystal diffraction, multicrystal diffraction, unwanted material diffraction, and diffraction-
free images. (B) Example of change in hit rate according to the hit filtering parameter. Single crystal diffraction (high SNR/Bragg peak number), single crystal diffraction
(low SNR/Bragg peak number), multiple crystal diffraction (high SNR/Bragg peak number), multiple crystal diffraction (low SNR/Bragg peak number), unwanted
diffraction (for example, salt), and non-diffraction images are indicated by images outlined in red, yellow, orange, green, purple, and blue, respectively.
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DISCUSSION

Hit Rate
The hit rate is an important statistic for determining the data
acquisition efficiency and planning beamtime utilization in
experiments. For example, when the crystal hit rate is low
during data collection, researchers can replace the sample with
fresh crystals or increase the crystal density, whichmay increase the
hit rate and yieldmore hit images containing the diffraction pattern
for the remaining beamtime. Meanwhile, although obtaining a
large number of hit images is important to increase the SX data
collection efficiency, when the crystal hit rate is high with intense
multiple crystal diffraction patterns during data collection,
researchers may decrease the density of the crystal sample. This
reduces the hit rate, but it offers the advantage of avoiding the
incorrect indexing of the Bragg peaks and the incorrect signal-to-
noise ratio (SNR) related to the background noise.

Crystal density is calculated based on the sample deliverymethod
(e.g., sample volume) and X-ray properties (e.g., exposure time,
repetition rate, and beam size) to obtain an appropriate hit rate. The
crystals are delivered continuously to an X-ray location to collect
diffraction data. In an ideal experiment, new crystals (or larger
crystals with a new volume) would be delivered continuously at
every X-ray exposure point, resulting in a 100% hit rate. However,
providing crystals precisely each time both spatially and temporally
through which X-rays are transmitted is experimentally impossible.
The collected SX data include the diffraction image in which X-rays
pass through the crystal and the image information in which the
crystal is not hit. In addition, unwanted diffraction from salt crystals
and the sample delivery material may occur experimentally during
data acquisition. This unwanted diffraction can be sorted as a Bragg
peak and processed as a hit image by the filtering program, leading
to an increase in the hit rate.

Programs such as Cheetah (Barty et al., 2014),
NanoPeakCell (Coquelle et al., 2015), and Psocake (Thayer
et al., 2017) can be used to filter hit images from the collected
SX data. These programs filter hit images that meet the criteria
for selection as hit images, including parameters such as the
number of Braggs peaks, minimum SNR, and number of
connected pixels above the minimum SNR. These filtering
parameters can affect the number of hit images, as
researchers can change settings based on data quality
(Figure 1B). For example, if researchers lower the criteria
for filtering parameters such as the SNR and peak number
to include low Bragg peak intensities, the hit rate will increase.
Conversely, if the researchers raise the criteria for the filtering
parameters to only use data with high Bragg peak intensities,
the hit rate will be lower. Therefore, hit rates are variables that
can exhibit differences based not only on sample quality but
also on the filtering program settings. Hence, a direct
correlation between data collection efficiency and hit rate
cannot be established. Therefore, hit rates of independent
experiments cannot be compared and evaluated.

Indexing Rate
The hit images including the Bragg peaks are indexed, integrated,
and scaled to provide the final three-dimensional structural

information. The accurate indexing of crystal diffraction
patterns in the first data processing step is essential to provide
an accurate structure factor. In general, higher indexing rates
provide better data statistics in terms of using more diffraction
patterns. Factors affecting the indexing rate include the quality of
the acquired image, optimization of the detector geometry,
indexing program used, and technical skills. In terms of data
quality, the following factors can decrease the indexing rate: 1)
several space groups of crystal forms existing in the crystal
sample, 2) Bragg peaks with low SNR levels, 3) salt peaks or
unwanted intensities, and 4) mis-indexing because of multicrystal
diffraction patterns.

Information about the detector geometry, including the X-ray
energy, crystal-to-detector distance, and detector specifications is
essentially required to index the diffraction patterns from hit
images in the SX experiment. The indexing efficiency varies based
on the accuracy of the detector geometry information. For
example, segmented detectors consist of several small detector
modules tiled together, such as Cornell-SLAC Pixel Array
Detectors (CSPAD) (Moeller et al., 2012), multi-port charge-
coupled devices (MPCCD) (Kameshima et al., 2014), adaptive
gain integrating pixel detectors (AGIPD) (Allahgholi et al., 2019),
Percival (Marras et al., 2019), and adJUstiNg Gain detector FoR
the Aramis User station (JUNGFRAU) (Leonarski et al., 2020)
detectors. Geometry optimization may be necessary for each
panel during data processing because the pixels in each
module may not be perfectly aligned on a regular grid. A
previous geometry study showed that the indexing rate of Gd:
lysozyme, cathepsin B, DgkA, and rhodopsin-arrestin data sets
collected from different SX experiments were improved by 3–60%
after geometry refinement (Yefanov et al., 2015). Therefore,
geometric optimization is required for efficient indexing of
diffraction patterns, and the indexing rate may differ
depending on the accuracy of the detector geometry optimization.

Moreover, the indexing rate may vary depending on the
indexing programs used for data processing, indexing
algorithms, or indexing parameters (Nam, 2022b). Currently,
various indexing programs such as CrystFEL (White et al., 2016;
White, 2019), dials. index in DIALS (Gildea et al., 2014),
Computational Crystallography Toolbox (cctbx) (Brewster
et al., 2015), FELIX (Beyerlein et al., 2017b), SPIND (Li et al.,
2019), XGANDALF (Gevorkov et al., 2019), Pattern-matching
indexing (Dejoie and Tamura, 2020), SPIND-TC (Li et al., 2020)
and MCDPS (Zhou et al., 2021) have been developed for SX data
analysis, and they analyze diffraction patterns using their
unique approaches with various algorithms. Each of these
indexing algorisms exhibits different indexing rates and data
statistics even when processed using the same indexing
parameters, including the detector geometry. Furthermore,
the indexing rate can be increased using a combination of
several indexing algorithms, which may provide good
statistical values with a high indexing rate. However, this
does not necessarily result in better structure refinement
statistics. In addition, the indexing rate changes during data
processing optimization according to the changes in the
indexing parameters (e.g., unit cell parameter tolerance, SNR
cutoff, and integration radius).
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Consequently, the indexing rate varies depending on the
quality of the collected data, program used, - technical skills of
the individual during processing, and setting of the indexing
parameters, even when the procedure for indexing the Bragg
peaks in a diffraction pattern is the same. Meanwhile, in general
SX data processing, researchers process data by increasing the
indexing rate; however, if sufficient diffraction images are
collected, increasing the indexing standard and using only
excellent data will provide better structural information. On
the other hand, since the structure factor is obtained from the
correctly indexed images, more important feedbacks than the hit
rate during experiments are the accumulated numbers or
increasing rate of valid images (indexable patterns).

CONCLUSION

In the SX experiment, the hit rate and indexing rate can be used
to evaluate the sample quality, data collection strategy, and

beamtime efficiency during data collection and processing.
However, these rates can be increased or decreased
according to the processing parameters used. Hence, hit rate
and indexing rate cannot be used to analyze the SX
experimental results.
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