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Insulin-like growth factor-binding protein-2 (IGFBP-2) is a pleiotropic polypeptide that

functions as autocrine and/or paracrine growth factors. IGFBP-2 is the most abundant

of the IGFBPs in the cerebrospinal fluid (CSF), and developing brain showed the highest

expression of IGFBP-2. IGFBP-2 expressed in the hippocampus, cortex, olfactory lobes,

cerebellum, and amygdala. IGFBP-2 mRNA expression is seen in meninges, blood

vessels, and in small cell-body neurons (interneurons) and astrocytes. The expression

pattern of IGFBP-2 is often developmentally regulated and cell-specific. Biological

activities of IGFBP-2 which are independent of their abilities to bind to insulin-like

growth factors (IGFs) are mediated by the heparin binding domain (HBD). To execute

IGF-independent functions, some IGFBPs have shown to bind with their putative

receptors or to translocate inside the cells. Thus, IGFBP-2 functions can be mediated

both via insulin-like growth factor receptor-1 (IGF-IR) and independent of IGF-Rs. In

this review, I suggest that IGFBP-2 is not only involved in the growth, development

of the brain but also with the regulation of neuronal plasticity to modulate high-level

cognitive operations such as spatial learning and memory and information processing.

Hence, IGFBP-2 serves as a neurotrophic factor which acts via metaplastic signaling

from embryonic to adult stages.

Keywords: IGFBP-2, IGF-IR, CNS, growth and repair, learning and memory, information processing

INTRODUCTION

The insulin-like growth factor (IGF) system is a mitogenic protein family that includes IGF-I
and IGF-II and six binding proteins (IGFBP-I–IGFBP-6) and is involved in functions from
embryonic growth to cell differentiation to homeostasis, mostly mediated by IGF-lR (1–3). In
the central nervous system (CNS), this system performs various functions, including neurotropic,
neuromodulatory, and neuroendocrine ones during embryonic, and postnatal development.
This system is responsible for the regulation of brain mass homeostasis and neural stem cell
differentiation and proliferation (4–9). In addition, IGFs regulate the growth and differentiation of
fetal neurons in culture, and, in addition to promoting synapse formation; IGFs stimulate myelin
synthesis and regulate neuronal cytoskeletal protein synthesis with modulation of the expression of
immediate early genes (10–13). IGF-system also regulates metabolic functions, including glucose
uptake in glial cells, and demonstrates neuromodulatory activities, including enhanced serotonin
biosynthesis, inhibition of norepinephrine reuptake by neurons, and maintenance of the Na+/K+

pump in synaptosomes (14). IGF-ll is involved with memory enhancement and consolidation (7).
IGF-l signaling yield through the phosphoinositide 3-kinase (PI3K)-AKT and RAS-extracellular
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signal-related kinase (ERK) cascades via IGF-IR (15) while the
IGF-IIR induces signaling through G proteins that activate
protein kinase C (PKC) and phospholipase C (PLC), ultimately
regulates Ca2+ homeostasis (16).

In the systemic circulation, the bioavailability, and functions
of IGF-l and IGF-ll are mainly regulated by six high-affinity
IGFBPs. Though IGFBPs share common sequence homology and
functions to regulate IGFs actions, individual proteins (IGFBP-
1-6) each have their own unique properties and functions. It
has been suggested that overexpression of IGFBPs could be a
good model to elucidate the physiological functions of individual
IGFBPs (17, 18). IGFBP-2 is most abundant in the CSF (19) and
highly expressed in the developing brain. In terms of structure,
IGFBP-2 consists of three regions: the N-terminal cysteine-rich
region, the middle or linker region, and the C-terminal cysteine-
rich region (20, 21). Interestingly, IGF-I and IGF-II bind with
the N-terminal and C-terminal regions of IGFBP-2 indicates
that the high-affinity interactions are mediated by those terminal
regions (22, 23). NMR analysis showed that C-terminal region is
more prominent in binding with IGF-I and IGF-II and therefore
prevent their binding with IGF-IR (24). IGFBP-2 binds with IGFs
to control their bioavailability and localization. Thus, IGFBP-
2 may act as an important modulator of IGFs signaling in the
CNS. Interestingly, local activity-dependent release of IGFs in the
CNS also reported. Thus, most important biological functions
of either IGFBP-2 or IGFs would be mediated independently
in the CNS but passively by IGFBP-2/IGFs complex. Binding
of IGFBP-2 to glycosaminoglycans depends on IGFBP-2/IGFs
complex (25), however, opposite effect of IGFBP-2 and IGF-I
was observed in follicle-stimulating hormone (FSH)-dependent
aromatase expression. Thus, deepening on certain physiological
conditions, cell type, and tissue/organ, in order to interact
with cell surface or ECM, IGFBP-2 may or may not require
binding with IGFs. IGFBP-2 also possesses a nuclear localization
signal (NLS) sequence within its linker region to interact with
Importin-α (26).

In addition, IGFBP-2 possesses several binding domain and
among them the two important binding domains (27, 28) are:
the Arginine, Glycine, and Aspartate domain (RGD) and the
heparin-binding domain (HBD).The RGD domain consists of
the sequence Arg-Gly-Asp at peptide position 265RGD267 (the
numbering used excludes the signal peptide sequence) in humans

Abbreviations: IGFBPs, insulin-like growth factor binding proteins; IGFBP-

2, insulin-like growth factor binding protein-2; CSF, cerebrospinal fluid; IGFs,

insulin-like growth factors; IGF-I, insulin-like growth factor-1; IGF-II, insulin-like

growth factor-2; HBD, heparin binding domain; IGF-IR, insulin-like growth factor

receptor-1; IGF-IR, insulin-like growth factor receptor-2; CNS, central nervous

system; RGD domain, Arginine-Glycine-Aspartate tripeptide; DG, dentate

gyrus; MS, multiple sclerosis; ECM, extracellular matrix; GTPase, guanosine

triphosphatase; BBB, blood brain barrier; mRNA, messenger ribonucleic acid; AD,

Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; Bcl-2, B-cell lymphoma

2; Akt, serine/threonine-specific protein kinase; IL, interleukin; TNF-a, tumor

necrosis factor alpha; IFN-g, interferon gamma; AMPAR, α-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid receptor; GABAR, gamma-aminobutyric acid

receptor; NMDAR, N-methyl-D-aspartate receptor; ECS, electroconvulsive seizure

therapy; APP, amyloid precursor protein; LTP, long term potentiation; CRF,

corticotrophin releasing factor; CRF-lR, corticotrophin releasing factor receptor

1; IH, intermittent hypoxia; CA1, Cornu Ammonis-1; PNs, pyramidal neurons.

and at 246RGD248 in the rat (20, 29) and other species, at
C-terminus region (30), and it is responsible for recognition
by integrin receptors (31). The RGD domain of IGFBP-2
mediates association with integrins on the cell membrane (32–
35). The HBD domain of IGFBP-2 has a consensus sequence
for glycosaminoglycan, and, this recognition via HBD is
represented by the sequence 160PKKLRP166 in rat IGFBP-2
and 179PKKLRP184 in human IGFBP-2 protein (36). Moreover,
the HBD domain in IGFBP-2, the HBD-1, is unique and is not
present in other IGFBPs. HBD-1 mediates the binding of IGFBP-
2 to cell surface receptor proteins such as tyrosine phosphatase β

(37). An additional pH-sensitive heparin-binding site, the HBD-
2, shares sequence similarity with other HBD containing IGFBPs
such as IGFBP-3 and IGFBP-5 and has been located within the
C-terminal region and thyroglobulin type-1 domain of IGFBP-2
[Figure 1; (38)].

Thus, IGFBP-2 is amultifunctional protein that contains IGF-,
integrin-, and heparin-binding domains (39), indicating complex
regulation and functions of this protein. It has been reported
that IGFBP-2 can be cleaved proteolytically, and the smaller
fragments that contain HBD still possess the biological activity
necessary to bind with extracellular matrix proteins (ECM) and
to bind with low affinity to IGF-l (39, 40). Khan et al. (41) showed
that the HBD domain of IGFBP-2 independently activates
glutamate receptors that translate into enhanced information
processing in the hippocampus in a cell type-specific manner,
which is crucial for cognitive development at early life in rodents.
In addition, IGFBP-2 binding to cell surface proteoglycan in
rat olfactory bulb is solely mediated by HBD and not by RGD
peptides (39). Mice lacking the RGD domain in IGFBP-2 showed
growth impairment compared to wild-type control mice (42)
and decreased chondrocyte differentiation, proliferation, and
apoptosis in enchondral ossification (43). Moreover, IGFBP-2
enhanced glioma tube formation via RGD domain by interacting
with integrin α-5 or β-1 (44). Thus, biological activities of IGFBP-
2 can be independent of their abilities to bind to IGFs and these
IGF-independent actions can be mediated via the HBD or RGD
domains of IGFBP-2.

Transgenic mice overexpressing IGFBP-2 showed reduced
body weight without affecting organ mass except in spleen,
suggesting that IGFBP-2 is a negative regulator of postnatal
growth (45). On the contrary, IGFBP-2 knockout mice revealed
no change in body weight, including no effect on brain size
or morphology. Targeted inactivation of the IGFBP2 gene in
mice resulted in only subtle phenotypic changes, potentially
due to functional compensation by other IGFBPs (46). In
addition, IGFBP-1, IGFBP-3, and IGFBP-4 levels were increased
in IGFBP-2 knockout mice, suggesting the existence of a
compensatory mechanism in the absence of IGFBP-2 (46),
a further extension to the complexity of IGFBP-2 functions.
In rat brain olfactory bulb, IGFBP-2 has been detected with
proteoglycans in the interstitial space and on cell membranes
of the mitral cell layer (39, 47). Via the HBD domain, IGFBP-2
can bind to different glycosaminoglycans: chondroitin-4 and−6
sulfate, keratan sulfate, aggrecan, heparin, vitronectin, laminin,
collagens, and fibronectin, a probable mechanism for IGFBP-2
to bind with ECM proteins prior to complex formation with
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FIGURE 1 | Structure and domains of IGFBP-2. IGFBP-2 consists of N-terminal and C-terminal regions linked by a linker domain. Both the N- and C-terminal have

one IGF-binding domain. There is a proteolytic cleavage site between the two terminals. The HBD-1, HBD-2, and RDG domains are located in the cysteine-rich

C-terminal region. The nuclear localization domain is adjacent to the HBD1 domain.

IGF-I/II (25, 39, 48, 49), suggesting IGFs-independent functions
of IGFBP-2 mediated by the HBD domain. Interestingly,
proteolytic degradation of IGFBP-2 can occur on the neuronal
surface (39), may be the probable mechanism by which the HBD
may directly bind with IGF-IR or other receptors (AMPAR,
NMDAR, GABAR) on neurons (41, 50). IGFBP-2 also exerts
its functions within cells since it has been detected within the
nucleus, nuclear surface, and cytoplasm (51). Thus, IGFBP-
2 has both extracellular and intracellular functions. Unlike
other IGFBPs, IGFBP-2 does not glycosylate. IGFBP-2 is
phosphorylated at serine 106 at an analogous position out of
the HBD domain, but phosphorylation levels are significantly
lower than that of other IGFBPs (e.g., IGFBP-5) (52). Besides
the regulation of IGFs functions (53), several IGFBPs have
been shown to reveal IGF-independent functions, especially in
bone formation (39). However, in the CNS, IGF-independent
functions of IGFBP-2 mostly remain unknown.

EXPRESSION PATTERN OF IGFBP-2 IN
CNS

In the postnatal period, IGFBP-2 is most abundant in the CNS
(53) and the second most abundant IGFBP in circulation (39).
During early fetal development, IGFBP-2 is expressed in the
neuroepithelium of the telencephalon, whereas in later stages of
fetal development, it is concentrated in astroglial cells adjacent
to IGF-I expressing projection neurons in the retina, cerebellar
cortex, and sensory relay centers such as thalamus (53). In
the embryonic CNS, IGFBP-2 is expressed in three types of
non-neuronal tissues, such as the epithelium of the choroid
plexus which is responsible for the production of CSF; the
floor plate which is responsible for neuronal outgrowth from

spinal cord commissural neurons; and the infundibulum which
is responsible for the production of the posterior pituitary (54).

After birth, IGFBP-2 levels significantly decrease in glial
cells, although levels have been reported to increase with age
(55). Moreover, IGFBP-2 in the CSF is thought to be locally
synthesized by the epithelium of the choroid plexus, rather than
derived from plasma crossing the blood-brain barrier (BBB)
(56), although it may possible that IGFBP-2 may cross the BBB
(1). Interestingly, in humans, central and peripheral expressions
of IGFBP-2 differ considerably. The highest concentrations of
plasma IGFBP-2 were shown at birth. IGFBP-2 levels declined
with age during the early years of life in humans but had little
change after puberty (57). On the other hand, Ho and Baxter
showed a positive correlation between IGFBP-2 levels in serum
with age in healthy individual (58). Moreover, IGFBP-2 levels
were found no change throughout the puberty aged 7–20 (59),
while Blum et al. showed lower levels of IGFBP2 at puberty
(60). Similarly, IGFBP-2 is also differentially expressed in the
CNS. Neonatal rat CSF contained more IGFBP-2 than adult CSF.
IGFBP-2 found in CSF may also be synthesized locally by glia
and neurons (19). In addition, IGFBP-2 differed substantially
between serum and plasma (57). Males showed slightly higher

values of IGFBP-2 in serum than females (57). Moreover, it
may also be possible that IGFBP-2 expression also differs in
humans and rodents. During mouse adulthood, IGFBP-2 and

IGF-II levels in the CNS and CSF remain elevated (61, 62),

in contrast to IGF-I levels which generally decline throughout

the CNS following development, except in the olfactory bulb,

suggesting that IGFBP-2 may regulate the function of IGF-II
in the CNS.

Developing rats with malnutrition showed decreased levels of

IGF-I in circulation, but IGF-I and IGF-IR in the hypothalamus
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and cerebellum were increased with the concomitant reduction
of IGFBP-2 in the hypothalamus (63). This suggests independent
functions of IGFBP-2 in the CNS to maintain brain mass
homeostasis. It is also reported that none of the major sites of
IGFBP-2 mRNA accumulation in the CNS contain detectable
IGF-II mRNA (54), further suggesting IGFBP-2 mediated
developmental processes may be independent of IGFs binding.
IGFBP-2 is also expressed by Bergmann glia in the cerebellum
and Muller cells and astrocytes of the retina (55). Interestingly,
at later stages of brain development, IGFBP-2 expression is
directly proportional to the expression of IGF-I (55) in the
cerebellum, retina, and developing sensory networks (Figure 2).
However, in the developing hippocampus and neocortex,
IGFBP-2 expression, particularly in astrocytes, is not directly
proportional to the expression of IGF-I (53), suggesting that
IGFBP-2 may play a crucial role in the hippocampus that is
independent of IGF binding.

NEUROTROPIC AND REGENERATIVE
FUNCTIONS OF IGFBP-2 IN CNS

It is been reported that a variety of neurological insults can

enhance IGFBP-2 expression. For example, cerebral hypoxic-
ischemia in the neonatal rat results in a loss of IGFBP-2 and

IGF-IR expression. In addition, prolonged hypoxia decreased the

expression of IGFBP-2, whereas shorter hypoxia insult showed
an increase above control. In another study, prolonged hypoxia

led to enhanced expression of IGFBP-2 with extensive neuronal

loss in the ligated hemisphere as compared to the control

hemisphere. Therefore, hypoxia leads to alterations in IGFBP-
2 expression (41, 64). Different patterns of IGFBP-2 expression
associated with different degrees of injury suggest that IGFBP-2
may contribute to neuronal rescue and/or brain repair processes
[Figure 3; (65)]. Similarly, cryogenic spinal cord injury in the
rat causes an increase in IGFBP-2 and IGF-IR expression in
oligodendrocytes (66). IGFBP-2 and IGF-II expression were
enhanced but IGF-IIR expression was decreased after cytotoxic
lesion of the rat dentate gyrus (DG). Likewise, a marked increase
of IGFBP-2 is observed in astrocytes, neurons, and monocytic
cells after brain injury (67). Another rat contusion model
showed an increase in both IGFBP-2 and IGF-I adjacent to the
injured area (68). The same phenomenon is also observed in
perineuronal astrocytes following facial nerve transaction (69).
In the case of cryogenic spinal cord injury, at 3 days IGF-I
mRNA expression was detected. After 14 days of the lesion,
both IGF-I and IGFBP-2 expression was detected, suggesting
that both of these peptides have independent and cooperative
functions at different stage of repair process. At 28 days after
lesion, IGF-IR was detected indicating its role at the later
stage of repair process. Thus, the nature of interaction between
IGFBP-2/GF-IR may be the “fine-tuning” of healing (66). In
another study of cerebral wounds, IGF-I, IGFBP-2, and IGF-IR
were detected at 1–7 days post-lesion, suggesting a “cooperative
nature” of interaction may exist between IGFBP-2 and IGF-
IR (67). In hypoxic-ischemic injury model, IGFBP-2 levels
significantly enhanced after 2 days but no noticeable change
observed in IGF-IR levels, suggesting an independent of IGFBP-2
in repair process (68). Thus, the nature of IGFBP-2 functions and
interaction depend on the type of injury. Together, these findings

FIGURE 2 | Localization of IGFBP-2 in the brain. IGFBP-2 is abundantly expressed in the hippocampus, neocortex, olfactory bulb, and cerebellum. IGFBP-2 is also

found in the meninges, choroid plexus, thalamus, hypothalamus, and amygdala.
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FIGURE 3 | The neurotropic function of IGFBP-2. (A) IGFBP-2 is involved in neurite outgrowth. (B) IGFBP-2 plays a crucial role in CNS injury and repair.

suggest that IGFBP-2 interaction with IGF-IR may participate
in neuronal regeneration in the CNS depending on the nature
of injury.

It has been reported that transgenic mice overexpressing
IGFBP-2 lacking a specific heparin-binding domain (HBD-
1) showed severe deficits in brain growth throughout their
lifetime. In addition, these mice when young (12–21 days)
had reduced levels of GTPase dynamin-I, and 12 weeks old
mice showed weight reduction in the hippocampus, prefrontal
cortex, cerebellum, and olfactory bulb, concomitant with reduced
myelin basic protein in the cerebellum (17). These data imply
that IGFBP-2 is not only involved in brain development but
also with information processing and cognition. In addition
to supporting neuronal regeneration, IGFBP-2 actions include
the ability to promote neurite outgrowth via IGF-IR (70). Shen
et al. reported that IGFBP-2 enhances neural stem cells (NSCs)
proliferation andmaintenance. Moreover, knockdown of IGFBP-
2 significantly reduced the expression of cell cycle, differentiation,
Notch pathway genes in NSCs (71).

It was found that mice with chronic immobilization stress-
induced depressive-like behavior showed reduced expression
of IGFBP-2 in the central amygdala (70) and prenatal stress
resulted in decreased expression of IGFBP-2 in the hippocampus
and frontal cortex in adult male rats (72). When relatively
higher concentrations of IGFBP-2 were administered with IGF-
II, there was an increased percentage of neurite-bearing cells
and an increased average of neurite length (70). Such neurite
outgrowth is mediated by IGF-IR associated signaling. During
hippocampal neurogenesis at the embryonic stage, there was a
dynamic change of gene expression in response to leaf extract of
Ginkgo biloba (73). The mRNA level of IGFBP-2 was increased
in the fetal hippocampus by prenatal exposure to Ginkgo biloba
extract, suggesting that IGFBP-2 may be involved in brain
development by acting as both a survival and a differentiation
factor for the neural cells (73). High expression of IGFBP-
2 in the DG indicates that this protein may be involved
in hippocampal neurogenesis. Evidence also suggests that the
expression of IGFBP-2 may enhance regenerative sprouting
and contribute to neuronal repair in a sensory spinal axonal

injury model in the rat (74). On the other hand, mitochondrial
dysfunction in Alzheimer’s disease (AD) may be associated
with enhanced expression of IGFBP-2 (75). AD patients have
elevated levels of plasma and CSF IGFBP-2 compare to normal
old individuals and plasma IGFBP-2 associated with AD-
like brain atrophy (76, 77). Moreover, blood protein analysis
showed that IGFBP-2 levels enhanced in serum before the
onset of clinical features of AD (78). However, there is a
relation between IGFBP-2 and CSF Aβ-42 was observed in
the hippocampus. Interestingly, smaller hippocampal volumes
associated with higher IGFBP-2 levels only in the amyloid
negative individuals (79). Thus, in an age-dependent manner,
IGFBP-2 may differentially modulate normal physiological and
pathological functions (6, 80).

The ability of IGFBP-2 to promote neuronal survival is
associated with its ability to prevent apoptosis. The Bcl-2
(B-cell lymphoma 2) family of proteins is important in the
regulation of apoptosis, and BCL-2 mRNA is localized in the
hippocampus at the same sites of IGF/IGFBPs expression
(81). The IGF/IGFBPs system and the pro-survival Bcl-2
proteins protect cells from apoptosis and play a key role in
brain development. Moreover, IGFBP-2 expression is markedly
increased around the site of injury (82), thus providing evidence
that IGFBP-2 may inhibit neuronal apoptosis. Baker et al.
(83) showed that IGFBP-2 exerts anti-apoptotic effects in
developing mouse brain probably via Bcl-2 overexpression. This
resulted in the induction and overexpression of IGFBP-2 in
mitral cells, demonstrating a previously unknown mechanism
for cell survival by Bcl-2 via IGFBP-2 in developing brain
(83). On the other hand, IGFBP-2 may have some link with
psychiatric disorders. For example, serum IGFBP-2 level was
significantly higher in schizophrenic patients than control
(84, 85). Serum IGFBP-2-protein and -mRNA expression
was downregulated in patients with bipolar disease (86, 87),
and serum IGFBP-2 protein levels were lower in patients
with atypical and melancholic depression than in controls
(88). Moreover, it has been reported that the brains of
individuals with schizophrenia showed faster aging than
normal (89). Mitochondrial dysfunction plays a key role
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FIGURE 4 | The autocrine and paracrine action of IGFBP-2 in myelination. IGFBP-2 is involved in myelination and myelin repair via autocrine and paracrine

mechanisms both in CNS and PNS neurons.

in neuropsychiatric disorders including schizophrenia (90).
Thus, senescent cells may have mitochondrial dysfunction
and elevated IGFBP-2. On the other hand, fibrotic lung
disease is characterized by the presence of senescent cells,
where IGFBP-2 expression was moderately high (91). Stress-
induced cellular senescence often recognized by the expression
of p16Ink4a accumulates in various tissues. Senescence
positive cells showed higher expression of IGFBP-2 (92). Thus,
IGFBP-2 may associate with cellular senescence related to
psychiatric disorders.

The number of IGFBP-2-positive cells was decreased in
the hippocampus of a mouse model of amyotrophic lateral
sclerosis (ALS) (93). IGF-l is a growth facilitator that propels
axon regeneration and can restore corticospinal axon function
(94). Chromatin remodeling via histone methylation is critical
for peripheral nerve myelination by Schwann cells. Knock-out
of Schwann cell-specific subunit of the polycomb repressive
complex-2 (PRC-2) called Eed, which catalyzes methylation
of histone H3 Lys27 causes hypermyelination of axon. In
addition, such knock out of Eed was responsible for enhanced
Akt phosphorylation accompanied by decreased expression of
IGFBP2 gene (95). Thus, these data in addition to down-
regulation of IGFBP-2 in the distal stump of sciatic nerve cut
model mice (c-Jun deleted in Schwann cells) (96), implying that
IGFBP-2 is a potential factor in the epigenetics pathway for
mature myelinated axons.

BIDIRECTIONAL EFFECT OF IGFBP-2 ON
CNS MYELINATION

It has been reported that IGF-I increases myelination, while
IGFBP-1 suppresses myelination (97). Immunoreactivity of IGF-
II and IGFBP-2 colocalized on oligodendrocyte membrane and
myelin sheaths (98). It may possible that IGFBP-2 is transported
on myelin tracks from its sites of synthesis. In another study,
IGFBP-2 and IGF-II colocalized in sites remote from their
expression sites, especially in the myelin sheaths of axons and
nerve tracts in the brain [Figure 4; (99)]. This spatial discrepancy
between the sites of synthesis and the sites of localization suggests
a bidirectional role of IGFBP-2: transport of IGF-II to its target
cells and IGFBP-2’s own independent functions. In addition,
during encephalomyelitis, IGFBP-2 expression in reactive
astrocytes targets oligodendrocytes, expressing IGF-I and IGF-
IR, which are responsible for remyelination (100). In contrast,
in vitro treatment of primary astrocytes with IGF-I/IGFBP-
2 complexes revealed no inhibitory effect on IGF-I induced
proliferation, but the same complexes significantly inhibit
IGF-I induced survival of oligodendrocytes (101). In addition,
peripheral nerve myelination is mediated by IGFBP-2 via Akt
activation in Schwann cells (95, 102). Thus, IGFBP-2 may follow
differential mechanisms for central and peripheral myelination.

Interestingly, gray matter astrocytes express high levels of
IGFBP-2, whereas IGF-I mRNA and IGF-I peptide are not
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detected. This dissociated astrocytic expression suggests that
IGFBP-2 and IGF-I responses may be regulated differentially by
neurons. In cryogenic spinal cord injury, it has been reported
that IGFBP-2 expression was significantly increased by astrocytes
(66), suggesting that IGFBP-2 may have a role in promoting
myelin regeneration. However, oligodendrocytes treated with
IGFBP-2 revealed decreased expression of myelin protein
and myelin-associated glycoprotein (103). In vitro, IGFBP-2
attenuated cell differentiation by reducing IGF-I. In contrast,
cryogenic spinal cord injury leading to demyelination and axonal
loss resulted in enhanced IGF-I and IGFBP-2 production by
astrocytes (104). In another study in the human adult brain,
IGFBP-1-6 has been shown in astrocytes but not in microglia
(101, 105). Chronic active multiple sclerosis (MS) lesions showed
enhanced expression of IGFBP-2 and IGFBP-4 in astrocytes but
not inmicroglia ormacrophages. Although the signaling pathway
for enhanced expression of IGFBP-2 in MS remains unknown,
up-regulation of IGF-I and IGF-II, including proinflammatory
cytokines, may be responsible for enhanced IGFBP-2 expression
in MS.

Moreover, cytokines and epidermal growth factor (EGF) can
induce specific IGFBPs production which plays a role in the
cell growth in human salivary cell line (HSG) (106). Thus,
Cytokines include IL-1b (interleukin-1b), IL-6 (interleukin-6);
TNF-a (Tumor necrosis factor-alpha), and IFN-g (interferon-
gamma), all of which are proinflammatory cytokines (hallmark
of persistent inflammation), responsible for enhanced expression
of IGFBP-2 in astrocytes and microglia and, a feature of
active MS (18, 107). Thus, it was hypothesized that IGFBP-
2 may protect cells from cytokine release, an effect that is
mediated by IGFs and which may enhance astrogliosis (18).
In addition, the induction of encephalomyelitis in rats resulted
in enhanced expression of IGFBP-2 and IGF-I in astrocytes
and coincided with remyelination by targeting promyelinating
oligodendrocytes (106). Thus, it is assumed that IGFBP-2 may
be a therapeutic target for MS treatment via mechanisms
where IGFBP-2 differentially modulates CNS myelination during
pathological and normal physiological conditions.

POSSIBLE FUNCTIONS OF IGFBP-2 IN
THE HIPPOCAMPUS

The components of the IGF system are highly expressed in
regions that are undergoing remodeling or enhanced plasticity,
such as the hippocampus. It was demonstrated that IGF-
IR colocalized to or near sites of IGF/IGFBPs expression in
the hippocampus. Moreover, IGFBP-2 binds to cell surface
proteoglycans (39). It is suggested, therefore, that there is an
autocrine or paracrine mode of IGFBP-2 action in the developing
hippocampus (108). Cell type specific expression and distribution
of IGFBP-2 suggest complex regulation of IGFBP-2 action in
the CNS.

IGF-IR is expressed at high levels during development bymost
regions of the CNS (1, 109). However, IGF-IR shows significantly
different structural characteristics in non-neural tissues from
those expressed by the brain. The major difference is that the

carbohydrate residues of the peripheral IGF-IR include N-linked
high-mannose and contain sialic acid molecules. On the other
hand, in the neural IGF-IR, a polymer of sialic acid is present
and is resistant to neuraminidase catalysis (110, 111). In some
cases, sialic acid residues may be absent in neuronal IGF-lR. Such
alterations may be responsible for the different affinities of the
ligands with neuronal IGF-IR, which may explain the differential
roles of the IGF/IGFBP complex in the brain. Interestingly, glial
cells express the non-neuronal type IGF-IR (109, 112), suggesting
that neurons are specialized for functions that are different from
those of glia.

In developing the hippocampus, IGF-IR mRNA is abundant
in pyramidal neurons (PNs), granule cells, and interneurons
(111). Moreover, PNs show high levels of IGF-IR gene expression
in conjunction with local IGFBP-2 expression (53, 70, 113,
114), demonstrating that IGFBP-2 may act via IGF-IR in the
hippocampus. There is relatively stable and uniform level of IGF-
IR gene expression in all neuroepithelial lineages, indicating this
pattern of receptor distribution may be the target for peripheral
IGF/IGFBPs and subserve a very basic metabolic or trophic
function, demonstrating that theremay be specific local autocrine
and/or paracrine IGF/IGFBPs actions mediated by IGF-IR in
the brain (108). IGFBP-2 has been reported to prolong and
modulate cellular functions independent of IGF-I binding (3),
and IGFBP-2 can prevent IGF-I from binding to its receptor
(20, 114). Therefore, IGF-IR activation may be required for
IGFBP-2 functions. The C-tail region of IGF-IR is the site for
binding of different signaling molecules. For IGFBPs binding
to IGF-IR, a single detergent molecule contacts residues known
to be critical (111). Proteolytic degradation of IGFBP-2 near
cell surface receptors has lower affinity for IGFs and thus by
competing with IGFs, HBD of IGFBP-2 may bind with that
detergent molecule in IGF-IR to initiate downstream signaling
via autophosphorylation of the receptor (41). Moreover, the
presence or absence of sialic acid residue in the IGF-IR may be
another factor for interaction with IGFBP-2.

Moreover, Khan et al. (41) showed that the HBD domain of
IGFBP-2 can influence AMPA and GABA receptors reflected by
enhanced miniature EPSC and IPSC frequency and amplitudes,
while treatment with IGF-IR antagonist (JB-1) significantly
reduced those events, suggesting that HBD domain may interact
with the IGF-IR. Interestingly, microinjection of IGFBP-2 in wild
type (WT) and igfbp2−/− mice showed no change in IGF-I/II
levels, indicating no needs IGFs for HBD domain of IGFBP-2
to bind with the receptors (41). It may also be possible that the
interaction between IGFBP-2 and IGF-IR may induce a rapid
and transient increase in intracellular free calcium concentration
(115), which is responsible for enhanced synaptic plasticity.
Moreover, the bath application of HBD domain of IGFBP-2
significantly enhanced and rescued long term potentiation (LTP)
in WT and igfbp2−/− mice, respectively. In spatial learning and
memory test, igfbp2−/− mice showed slower learning profile
and spent less time in the target quadrate (41). Thus, IGFBP-2
may differentially modulate both the short-term and long-term
synaptic plasticity.

In the HBD domain, IGFBP-2 possesses nuclear localization
signal (NLS) motif (116) which performs various non-IGF-IR
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FIGURE 5 | The probable mechanisms of action of IGFBP-2 in the CNS. (A) IGFBP-2 may directly bind with putative IGFBP-2 receptors on the neural membrane and

may initiate transcription. (B) IGFBP-2 may bind with IGF-IR via the HBD domain and may initiate downstream signaling via the ERK1/2-MAPK pathway. (C) After

binding with IGF-IR via the HBD domain, IGFBP-2 may transfer the signal to AMPAR, GABAR, or NMDAR to modulate neurotransmission for short term synaptic

plasticity. (D) IGFBP-2 binds with integrin receptors via the RDG-domain and initiates malignancy. (E) IGFBP-2 may directly cross the cell membrane via nuclear

localization signaling and initiate transcription.
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dependent functions such as IGFBP-2 (HBD domain) involves in
bone formation via both IGF-dependent and IGF-independent
mechanisms (117–119). Moreover, HDB domain of IGFBP-2
can rescue differentiation and the expression of osteocalcin in
igfbp2−/− mice via RPTPβ (120). Moreover, IGFBP-2 inhibits
adipogenesis and fat development without interacting with
IGFs (121). In addition, IGFBP-2 down-regulates the tumor
suppressor gene phosphatase and tensin homolog (PTEN) via
an integrin-mediated mechanism to enhance IGF-I induced Akt
pathway activation (37). It is worth emphasizing that IGFBP-2
could derive either from neurons or astrocytes (105, 122, 123),
because there may be a source independent of local autocrine
and/or paracrine action of IGFBP-2 (Figure 4) that is mediated
by IGF-IR (102) rather than by the integrin (124).

Electroconvulsive seizure therapy (ECS) is a clinically proven
treatment for depression. ECS increases the expression of specific
neurotrophic factors that could block or reverse the atrophy
and cell loss resulting from stress and depression. Research into
the mechanism of action of ECS has reported that expression
of neurotrophic-growth factors and related signaling pathways
in the hippocampus and in the choroid plexus were enhanced,
both areas where IGFBP-2 is highly expressed (125). In adult
male rats, IGFBP-2 (1 µg/kg, i.v.) increased the density of
mature dendritic spines and total spine density in the DG and

medial prefrontal cortex, which is the underlying mechanisms
explaining the therapeutic-like effects of IGFBP-2 in post-
traumatic stress disorder (PTSD) (126). In most cases, depressive
symptoms associated with PTSD (127). Intracerebroventricular
(icv) injection of NBI-31772 (10–30mg; a non-specific IGFBP
inhibitor) enhanced anxiolytic-like behavior in four-plate test
and elevated zero maze tests. On the contrary, treatment with the
sameNBI-31772 (3–30mg) showed decreased immobility time in
the tail suspension test, an indicator of antidepressant-like effects
(128). In another study, exposure to stressful stimuli showed
depression-like behavior in rats accompanied by reduced IGF-l
protein levels in the frontal cortex and in the hippocampus with
differential expression of IGFBPs. IGFBP-2 and IGFBP-3 levels
were decreased while IGFBP-4 was increased with no change in
IGFBP-1 and IGFBP-6 in those stressed rats (72). Taken together,
these data suggest that IGFBP-2 acts as an antidepressant and
anxiolytic agent by reducing stress-induced cell loss or atrophy,
which is consistent with the finding that persons with atypical
depression showed lower levels of IGFBP-2 (93).

In addition, IGFBP-2 is also involved in neurodegeneration.
It has been reported that the accumulation of high levels
of Abeta can be toxic, although the alpha-secretase cleaved
amyloid precursor protein (APP) is neuroprotective because
it increases the expression levels of several neuroprotective

FIGURE 6 | Overview of IGFBP-2 action in CNS for higher order brain functions. Probable mechanisms for the entry of IGFBP-2 across the blood-brain barrier (BBB)

to cerebrospinal fluid (CSF): Transport could happen via transcytosis through the choroid plexus where low-density lipoprotein receptor-related proteins-1/2 (LRP-1/2)

and IGF-IR may play a crucial role in IGFBP-2 entry from blood to CSF. In this type of entry, concentrations of IGFBP-2 in the blood determine entry. IGFBP-2 in the

CSF interacts with IGF-IR in the hippocampus because of its location adjacent to the ventricular system. IGFBP-2 released from astrocytes in response to any kind of

CNS insult may directly interact with IGF-IR and be involved in the CNS repair process, neural development, and growth. On the other hand, IGFBP-2 in the neurons is

released upon neuronal excitability. In this case, IGFBP-2 may directly bind with the receptors such as AMPAR, GABAR, and NMDAR in the dendrites and axon

terminals to mediate synaptic plasticity mechanisms for higher-order brain function, from information processing to cognition. In addition, IGFBP-2 may phosphorylate

different ion channels by phosphoinositide 3-kinase (PI3K) or extracellular signal-related kinases (ERKs). IGFBP-2 synthesized inside the neurons may regulate the

synthesis of synaptic proteins by direct localization into the nucleus.
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genes, including IGFBP-2. Thus, IGFBP-2 may protect
hippocampal neurons from Abeta-induced tau phosphorylation
and neuronal death in AD (129). This finding is consistent
with the notion that knocking out the IGFBP2 gene
may reduce hippocampal cell number. In addition, in
age impaired rats, G-protein coupled receptors and other
signaling processes were down-regulated in the hippocampus,
whereas IGFBP-2 expression was unaltered, suggesting that
IGFBP-2 may not be involved in G-protein-coupled receptor
signaling (130).

Dynamic synaptic plasticity is critical for learning and
memory throughout life. It has already been reported that
insulin-like peptide plays an important role in neurite outgrowth
(1). Moreover, IGFBP-2 increased total spines number in
dentate granule neurons of the hippocampus and mature
spine density in medial prefrontal cortex (MPFC) layer-V
pyramidal neurons (126). Thus, IGFBP-2 may involve in
increasing the number of functional synapses which can be
the underlying mechanism of enhanced LTP by IGFBP-2.
Interestingly, intermittent hypoxia (IH, 16% O2) enhanced
spatial learning and memory (41, 131). It was reported that
IH enhanced expression of IGFBP-2, IGF-IR, CRF, and CRF-
lR in neonatal hippocampus (41, 132). Additionally, CRF
enhanced the propagation of neuronal activity from DG to
the CA1 region (133). Thus, there may be interplay between
IGFBP-2 and CRF leading to enhanced synaptic plasticity
(41). Diabetes differentially modulates IGFBP-2 levels in
organs (134). In addition, diabetes impairs hippocampal
function through glucocorticoid (135), whereas stress (e.g.,
hypoxia) enhances IGFBP-2 levels in the hippocampus
(132, 136). Taken together, this could signal the interplay
between IGFBP-2 and stress hormones in the hippocampus
in physiological and pathological conditions. In this case,
IGFBP-2 may directly modulate neural functions independent
of IGF-IR.

CONCLUDING REMARKS AND
PROSPECTS

A variety of signaling pathways and extracellular factors such as
IGF-I/II, corticotrophin releasing factor (CRF), glucocorticoid,
TGF-beta, interleukin 1, and estradiol may influence IGFBP-2
expression (137). In addition, several physiological conditions
such as fasting, stroke, and hypoxia enhanced IGFBP-2 levels
and IGFBP-2 locally expressed in the CNS. Thus, there is a
complex regulation and mechanism of action of IGFBP-2 in
the CNS. IGFBP-2 may act by itself or via with IGF-IR or
indirectly via IGF-I and/or IGF-II. As a consequence, IGFBP-2
seems to have four or more mechanisms (Figure 5) of action in
the CNS by which it mediates its own independent functions:
(1) The binding of the IGFBP-2 via the HBD domain to
putative receptors on the cell membrane may stimulate the
signaling pathway independent of IGF-R and mediate the effect

of IGFBP-2 in a cell-type-specific manner. (2) Since IGFBP-
2 co-localized with IGF-IR in the hypothalamus (138), thus
IGFBP2 may initiate downstream signaling (1). (3) IGFBP-
2 may transport into the nucleus via its nuclear localization
signal and cause transcriptional activation of genes (116). (4)
IGFBP-2 can bind with the integrin receptor via the RGD
domain, which happens in cases of CNS malignancy but not
in the normal physiological function of neurons. Different
mechanisms are crucial for the different physiological functions
of IGFBP-2. For example, binding to a neural membrane receptor
(e.g., IGF-IR, AMPAR, GABAR, and NMDAR) via the HBD
domain may be responsible for neurotransmission and synaptic
plasticity, whereas direct transport to the nucleus may be
responsible for neurite outgrowth. In addition, it may also be
possible that these mechanisms of IGFBP-2 function may overlap
with each other and their interplay may be responsible for
the conversion of short-term plasticity to long-term memory.
IGFBP-2, therefore, exhibits spatial and temporal patterns
of action.

IGFBP-2 expression in hippocampal neurons and astrocytes
peaks during brain development, coincidently when neuron
progenitor proliferation and/or neuritic outgrowth occur, while
expression of IGF-IR appears ubiquitous. This expression pattern
of IGFBP-2 during brain growth suggests highly regulated
and developmentally timed IGFBP-2 actions on specific neural
cell populations. Several studies clearly implicate IGFBP-
2 involvement in specific higher-order brain functions via
spatial and temporal regulations. Thus, IGFBP-2 is not only
a binding protein but a crucial CNS growth factor that is
responsible for cognition and information processing in the
brain (Figure 6). Although targeting of IGFBP-2 signaling to
particular cell types remains to be established, IGFBP-2 not
only regulates brain development at early embryonic stages but
is also crucial in neuronal and adult stages for higher-order
brain functions, such as learning, memory, and information
processing. IGFBP-2 is revealing its many secrets not only in
the embryonic stage but also in other multi-faceted areas from
neuroprotection to cognitive function, thus it spans from bench
to bedside.
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