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Anisotropic scaling for 3D 
topological models
S. Rufo1,2,3,5*, M. A. R. Griffith1,2,3,5, Nei Lopes4 & Mucio A. Continentino3

A proposal to study topological models beyond the standard topological classification and that 
exhibit breakdown of Lorentz invariance is presented. The focus of the investigation relies on their 
anisotropic quantum critical behavior. We study anisotropic effects on three-dimensional (3D) 
topological models, computing their anisotropic correlation length critical exponent ν obtained from 
numerical calculations of the penetration length of the zero-energy surface states as a function of the 
distance to the topological quantum critical point. A generalized Weyl semimetal model with broken 
time-reversal symmetry is introduced and studied using a modified Dirac equation. An approach to 
characterize topological surface states in topological insulators when applied to Fermi arcs allows to 
capture the anisotropic critical exponent θ = νx/νz . We also consider the Hopf insulator model, for 
which the study of the topological surface states yields unusual values for ν and for the dynamic critical 
exponent z. From an analysis of the energy dispersions, we propose a scaling relation νᾱzᾱ = 2q and 
θ = νx/νz = zz/zx for ν and z that only depends on the Hopf insulator Hamiltonian parameters p and q 
and the axis direction ᾱ . An anisotropic quantum hyperscaling relation is also obtained.

Landau’s theory of phase  transitions1 provides the standard approach to describe transitions between different 
states of matter in condensed matter and statistical physics. However, it is not suitable to describe systems that 
separate phases of matter containing different electronic Bloch states  topology2–6, also called topological phase 
transitions (TPTs). In this case there is no symmetry breaking associated with an ordered phase when the sys-
tem undergoes a  TPT6. For this reason, many different approaches have been proposed recently to identify the 
universality classes of topological transitions using scaling  ideas6–18.

In addition, in the late 1990s, it was established the classification table.
1 warning for topological insulators (TIs) and superconductors (SCs)19,20 that contributed to make this topic 

a fruitful and exciting area of research. Nevertheless, it is worth to emphasize that there are still many open 
questions, such as, the fact that some topological phases are beyond this standard classification. For instance, the 
gapless topological phase and the intrinsic topological (IT)  phases21. The latter only preserves U(1) charge conser-
vation symmetry and possesses translational symmetry that makes momentum-k a good quantum  number22,23. 
IT materials also can exhibit exotic excitations what makes them a very interesting and attractive branch of 
 research22–28.

This research topic is closely related to applications since the discovery of new materials can lead to the devel-
opment of new devices. Nowadays, there are many technological proposals based on topological  materials29–31. 
The most prominent applications for TIs rely on their properties of carrying an electric current only at the edges 
or surfaces in two (2D) and three-dimensional (3D) case respectively, while the bulk remains an  insulator2,4.

Beyond the standard topological materials, we point out the Dirac semimetals (DSMs) that present band 
touching at some points in their band structures. These are protected by time-reversal symmetry (TRS) and/
or inversions symmetry (IS)32. For this reason, DSMs are recognized to be an intermediate phase between a 
usual insulator and a TI phase. After a breaking of TRS the Dirac nodes are divided into two nodes, which are 
called Weyl  nodes33. In a Weyl semimetal crystal, the chiralities associated with the Weyl nodes (Fermi points) 
can be understood as topological charges. These leads to monopoles and anti-monopoles of Berry curvature in 
momentum space, which serve as the topological invariant of this  phase34. Another property, induced by the 
projection of the bulk Weyl nodes is the appearance of Fermi arcs in the surface of the Brillouin  zone34,35. A 
non-trivial value of the sectorial Chern number C (kz) guarantees that there are chiral surface states. These form 
Fermi arcs that connect the projections of two Weyl points with opposite topological charges onto the surface 
of the Brillouin  zone34.
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Although Dirac semimetals also exhibits Fermi arcs, in the Weyl case these are bulk related while in the Dirac 
case this is not always  true36. The Weyl nodes with zero energy observed in Weyl semimetal materials (WSMs) 
can be described as low-energy fermion excitations using the Dirac  equation37–39.

The band touching in topological semimetals usually exhibits a linear behavior. Nevertheless, Ref.40 shows that 
SrSi2 is a WSM that exhibits a quadratic dispersion. This result inspires us to investigate non-linear band touch-
ing, i.e., that exhibits a breakdown of Lorentz  invariance6,7 and consequently is in a different universality class. In 
this case, the notion of anisotropic scaling becomes fundamental. This is characterized by the ratio θ = ν///ν⊥ , 
where ν// and ν⊥ denote the correlation length critical exponents along different  directions2,41.

There is another class of topological materials that is not protected by any discrete symmetry (time reversal, 
chiral and particle-hole symmetries), represented by IT materials. A special case arises for two band systems, 
which may realize a Hopf insulator phase. Due to this non-symmetry protected character, a non-trivial Hopf 
mapping, for m filled and n empty bands m = n = 1 , makes the Grassmannian manifold Gm,m+n(C) = G1,2(C) 
topologically equivalent to S222,42,43. From this mapping procedure arises two parameters p and q for which there 
is a corresponding tight-binding  Hamiltonian22. If p and q are integers prime to each other (greatest common 
divisor equal to one) this Hamiltonian describing the Hopf insulator can be explicitly  obtained22,44.

In this work, we identify different universality classes for anisotropic 3D topological models beyond the 
standard topological classification, such as, the Weyl  semimetal39 and the Hopf insulator  model22. We also intro-
duce an generalized Weyl semimetal model to investigate the correlation length exponent ν along any direction. 
Considering these models, we perform a study of topological surface states to determine the correlation length 
critical exponent ν , and the dynamic critical exponent z. The former is obtained directly from numerical calcu-
lations of the penetration length of the surface states. This length is the characteristic length of the topological 
phase transition and can be identified as the correlation length. It depends on the distance to the transition and 
diverges as ξ ∝ |M|−ν where M is the distance to the topological critical  point6,17.

We use a modified Dirac  equation45, containing quadratic corrections in momentum, to show that the study 
of topological surface states is adequate to describe anisotropic features, even for 3D topological models. We 
show that the only requirement, once there is a non-trivial wave-function solution, is that the surface states only 
decay into the bulk.

In special, for the Hopf insulator model we investigate the energy dispersion relations and propose a scal-
ing law νᾱzᾱ = 2q , where the critical exponents ν and z depend on only on the parameters p and q and the axis 
( ̄α = x, y, z ) that holds the decaying surface state. We also obtain the anisotropic critical scaling exponent in the 
form θ = νx/νz = zz/zx . We observe that very exotic critical exponents may be possible depending on each pair 
[p, q]. This is confirmed numerically from the decay of the topological surface state, that for the pair [p, q] = [1, 3] 
yields νx = 3 and zx = 2.

In general, our results exhibit a connection between the properties of zero-energy surface states and the 
critical phenomena in the bulk for TPTs beyond the standard classification.

Weyl semimetal model
The Weyl semimetal model with broken time-reversal symmetry T is well-known34,37,46. In a cubic lattice, it can 
be described by the Dirac equation as follows,

where ti are the hopping terms, τi are the Pauli matrices in orbital space and γ is the control parameter of the 
TPT. Eq. (1) describes two Weyl nodes at positions k0 = {0, 0,±k0} where k0 = cos−1 γ with −1 < γ < 1 . When 
γ = 1 , k0 = 0 and the two Weyl points merge at a topological phase transition.

Expanding Eq. (1) around the Weyl point k0 , following Eq. (17) (refer to ’Methods’ section for details) we 
obtain the energy projections in ky and kz directions.

For the projection in ky direction, we take kx = 0 , and at the phase transition point γ = 1 we have

This implies a linear crossing behavior of Eq. (2), that is, E(ky) ∝ tyky , as we approach the phase transition, 
since the quartic term k4y goes to zero more quickly than the quadratic one k2y . The form of dispersion at the 
transition defines the dynamic exponent zy by E ∝ kzy and we can identify the dynamic exponent zy = 1.

On the other hand, in the kz direction, for ky = 0 , the energy projection becomes

Note that, we can rewrite the energy dispersion in Eq. (3) as E(kz) = A1(kz − k0)+ A2(kz − k0)
2 with 

A1 = tz sin k0 and A2 = −tz
cos k0
2

 . Accordingly, in a way similar to what happens in the extended SSH model in 
Ref.6, close to the critical point γ = 1 the coefficients are A1 = 0 while A2  = 0 . This means that the quadratic 
term dominates and ensures a quadratic behavior E(kz) ∝ tz

2
(kz − k0)

2 in the vicinity of the phase transition. 
This relation also allows to identify the dynamic critical exponent zz = 2.

In Fig. 1 we call attention to this anisotropic band-crossing behavior, linear along the ky (Fig. 1a) and quadratic 
along kz direction (Fig. 1b). It is well known that this anisotropic way of behaving has impact over the critical 
exponents along each direction. For this reason, we study the penetration depth of the surface states of the Weyl 
semimetal model in order to obtain the critical exponents ν and z.

(1)H(k) = tx sin kxτx + ty sin kyτy + tz(γ + 2− cos kx − cos ky − cos kz)τz

(2)E(ky) = ±

√

t2y k
2
y + t2z

k4y

4
.

(3)E(kz) = ±tz

[

sin k0(kz − k0)−
cos k0

2
(kz − k0)

2

]
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Topological surface states study. To obtain the topological surface states behavior, we need to consider 
the presence of quadratic terms in k in Eqs. (2) and (3) that make explicit the anisotropic behavior of the band-
crossing. Then, to deal with Eq. (1) it is useful to consider the modified Dirac equation in  3D45

where, p = �k ( � ≡ 1 ), v = 1 , with αi and β are the Dirac matrices, M is the rest mass, B carries the quadratic 
correction in k and p2 = p2x + p2y + p2z . In addition, the elements M and B allow to distinguish between the trivial 
( MB < 0 ) and non-trivial ( MB > 0 ) topological  states45.

Next, we put Eq. (1) in the same form of Eq. (4), in terms of γ and expanding directly around the critical 
wavevector k0 = (0, 0, 0) , we have

where M = tz(γ − 1) , B = − tz
2

 . From now on, tᾱ > 0 ( ̄α = x, y, z ) and for this reason B is negative. This means 
that we have trivial and non-trivial topological phases for M > 0 and M < 0 , respectively. In fact, the non-trivial 
M < 0 phase region shelters the two Weyl nodes. The point M = 0 , or γ = 1 is the critical point at which the 
topological transition occurs. The Dirac matrices were replaced by the Pauli matrices in Eq. 5 because the problem 
has just orbital degrees of freedom and we have two decoupled  equations49,50.

The investigation of the topological surface states along each direction, requires choosing one direction at 
a time and considering open-boundary conditions for it. It is important to note that the anisotropy among the 
momentum directions provides different wave-function behavior as well as different penetration lengths of the 
surface states in each case.

Surface state conditions. We obtained similar behavior for the wave-functions and penetration depths 
for open-boundary conditions along x and y directions. This is expected since in Eq. (5) these directions are 
equivalent. On the other hand, no non-trivial wave-function for the surface state is obtained when z is under 
open-boundary conditions, see Eq. (34) (refer to ’Methods’ section for details). It is reasonable, since this last 
direction shelters the Weyl points and any projection on a perpendicular plane returns a point.

So, here we consider open-boundary conditions along the x direction (refer to ’Method’ section for details). 
In Eq. (30), we present the proper wave-function and its characteristic decay length ξ± = �

−1
±  , see Eq. (26). 

In order to specify which quantity ξ± truly represents the penetration length of the surface state, we study the 
limiting behavior of these lengths in the vicinity of the critical point. From Eq. (26), for γ −→ 1 and k2 −→ 0 
we obtain �+ → tx

B  and �− → 0 . Since the correlation length must diverge at the phase transition, the length to 
be identified as the penetration depth or correlation length is ξ− = �

−1
− −→ ∞.

If the surface state only decays in the bulk, the penetration depth ξ− must be a purely real and positive quan-
tity. This means that Eq. (26) must satisfy

that returns a narrow interval for k̄2 = k2y + k2z given by

Beyond that, the surface states are propagating excitations with energy ε = ±tyky.

(4)H(p) = vpxαx + vpyαy + vpzαz + (Mv2 − Bp2)β

(5)H(k) = txkxτx + tykyτy +
[

M − B
(

k2x + k2y + k2z

)]

τz ,

(6)
tx

2|B|



1−

�

1− 4MB

t2x
+ 4B2k̄2

t2x



 >0

(7)t2x − 4MB+ 4B2k̄2 >0

(8)1− 2γ < k2y + k2z < 2(1− γ ).

Figure 1.  Anisotropic bands dispersion at the critical point γ = 1 for kx = 0 . (a) Along ky and (b) along kz with 
linear and quadratic band-crossing,  respectively47,48.
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In Fig. 2, we show the Weyl points (top figure) and the surface states in momentum space ky − kz for open-
boundary conditions along the x direction (bottom figure). Each blue plane represents the perspective of momen-
tum space with respect to real space, denoted by the gray shape. Along the blue plane, we present the evolution 
of the surface states in red, pink and yellow colors, as a function of γ . In red color, we have the region where each 
pair ( ky , kz ) corresponds to a surface state that only decays into the bulk. For this, the condition of Eq. (8) must 
be satisfied, i.e., �− = a is real and positive. In pink color, we have the situation where the surface states decay 
and oscillate with �− = a± ib , where a > 0 and b > 0 ensure the decay and oscillatory behavior, respectively. 
The yellow stripes also denote surface states which are purely decaying in the bulk, but distinctively from the 
region in red these are zero energy states. Accordingly to Fig. 2, as we approach the critical point γ = 1 , the 
region of surface states decreases until becomes a point. Along this process, we also identify a change of behavior 
at γ = 0.5 . As γ increases beyond this point, the pink area is no longer observed and just the red region and the 
yellow stripes, both associated with surface states that only decay into the bulk, remain.

Surface states and critical exponent ν. Notice from Fig. 2 that the only point in the domain of surface 
states that persists from γ = 0.5 to the critical point γ = 1 is the pair (ky , kz) = (0, 0) . So, this is the only point 
that allows to verify the behavior of the penetration depth in the vicinity of criticality.

Accordingly, to perform a study of the topological surface state for this TPT we consider the probability 
density |ψ |2 and obtain the site n in the x direction where this has decayed to e−1 of its value at the surface ( n = 1

)6. This allows to obtain the penetration length ξ− as a function of the distance to criticality and consequently to 
determine the critical exponent ν that controls its divergence.

Figure 3, shows the penetration depth ξ− as a function of the distance M to the critical point with open-
boundary conditions along the x direction. In the plane M − ξ , the behavior of the penetration depth ξ− (red 
diamonds) as a function of M can be fitted perfectly well by the expression ξ = |M|−ν with the correlation length 
exponent assuming the value ν = 1 (gray curve). This determines unambiguously that ν = 1 along the x-direction.

We plot the planes ξ −M and |ψ |2 − x in perspective to show clearly the connection between the divergence 
of the penetration depth (plane M − ξ ) with the degree of delocalization of the surface state, (plane x − |ψ |2 ). 
As we approach the critical point the surface state becomes less delocalized. Then we have identified a diverging 
length at the topological transition in the Weyl semi-metal, namely the penetration depth of the surface state in 
the non-trivial topological phase.

Figure 2.  Weyl points and surface states with energy ε = ±tyky from γ = −1 (creation of Weyl points) to 
γ = 1 (annihilation of Weyl points) (bottom blue arrow). (top figure) Bulk band energy for γ = −1, 0, 1 , 
where d is the distance between the Weyl points. (bottom figure) The gray shape represents the material in real 
space coordinates x, y, z. Accordingly, there are two momenta space planes ( ky − kz ) ( kx − kz ) for x (y) open-
boundary conditions, where each plane holds the surface state related to the edge of the material along this open 
direction. In perspective, to exemplify the x open-boundary conditions case, we depicted the momentum space 
ky − kz . In this momentum space, we have solutions where the surface states only decay with �− = a real and 
positive (red region) which is satisfied for 1− 2γ < k2y + k2z < 2(1− γ ) Eq. (8), solutions where the surface 
states decay and oscillate with �− = a± ib for a > 0 (pink region), as well as, solutions where the surface states 
only oscillate (blue region). We also have decaying zero-energy surface states along ky = 0 (yellow stripes). In 
special, at γ = 0.5 the pink color region vanishes and we observe surface states that only decay. We note, as 
γ −→ 1 that the radius of the circle containing the surface states decreases until becomes a point at the critical 
point γ = 147,48.
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Generalized Weyl model: emergence of Fermi arcs in all surfaces
In previous sections, we were able to obtain the critical exponents νx = νy = 1 from the study of the penetration 
length of the topological surface states. The dynamic exponents, zx = zy = 1 were, in turn, obtained from an 
analysis of the dispersion relations at the topological transition, Eq. (2). The numerical calculation of the cor-
relation length exponents require the use of open-boundary conditions along the isotropic x and y directions. 
However, in the z-direction there is no non-trivial wave function solution of the Dirac equation. Although the 
analysis of the energy dispersion in the z direction, Eq. (3) yields a dynamic critical exponent zz = 2 , we are not 
able to evaluate the correlation length exponent νz along this direction.

In order to overpass this, based on the Weyl Hamiltonian of Eq. (1) we propose an generalized Hamiltonian 
given by,

where HWeyl(k) recovers the Weyl Hamiltonian of Eq. (1). Since we have just added the term ta sin kz to the τx 
in the Weyl Hamiltonian, see Eq. (1), this addition does not break any additional symmetry (refer to ’Methods’ 
section for details). For this reason, Eq. (9) still describes two Weyl nodes but along a different plane, as we will 
discuss below. In special, we choose ta =

√| 1− γ | that does not affect the anisotropic character of the energy 
spectrum and ensures the same critical parameter as before, γ = 1 . This additional term allows us to obtain a 
non-trivial wave-function in all three directions under open-boundary conditions, including the z-direction. As 
a consequence, we can obtain Fermi arcs along all surface planes in momentum space, see Fig. 4.

In Fig. 4, we compare the emergence of the Fermi arcs for the Weyl semimetal model, Eq. (1), in Fig. 4a with 
the Fermi arcs for the generalized Weyl model, Eq. (9), in Fig. 4b. We represent the Weyl points as the blue and 
red spheres to evidence the positive and negative topological charges, respectively. In Fig. 4a, we can observe the 
projections of the Weyl points only along the plane kx − kz and ky − kz (four light blue planes), since the Weyl 
points are along the z direction. On the other hand, in Fig. 4b, we also can see the projections along the plane 
kx − ky (two light red planes), besides the other planes. This happens because the Weyl points now belong to the 
plane x − z (for y = 0 inside the cube), and they are not aligned along the z direction, as before. The presence of 
the term ta sin kz ensures the rotation of the Fermi arcs around the ky direction. We highlight in Fig. 2 the Fermi 
arcs as yellow stripes, which account for all zero energy, purely decaying surface states.

Next, we perform an analysis of the topological surface states in the generalized Weyl model. This now yields 
decay exponents �± for open-boundary conditions along any direction (refer to ’Methods’ section for details). 
The main change in �± occurs for open-boundary conditions along x and z directions, where an additional 
term shows up inside the square root in Eqs. (38) and (39), respectively. In both cases the energy remains 
ε = ±sgn(B)tyky and therefore the zero-energy surface states preserve the linear behavior along ky = 0 , as 
obtained for the Weyl semimetal model. Otherwise, for y open-boundary conditions �± is the same of Eq. (32) 
and the change occurs at the energy of the surface states now given by ε = ±sgn(B)(txkx + takz) (refer to ’Meth-
ods’ section for details). The zero-energy solutions correspond to the tilted Fermi arc along the plane kx − kz in 
Fig. 4b with linear coefficient −(tx/ta) . We also verify that these Fermi arcs correspond to the zero-energy surface 

(9)H(k) = HWeyl(k)+ ta sin kzτx ,

Figure 3.  Decay of the probability density in the bulk and the penetration depth ξ− as function of the distance 
to the critical point. In the plane x − |ψ |2 , we present the decay behavior of the wave-function into the bulk 
along x direction, for the distances to the critical point M = 0.1, 0.05, 0.02 , in green, blue and magenta solid 
lines, respectively. From these plots we can extract ξ− , using |ψ |2(x = ξ−) = e−1 . In the plane M − ξ , we plot 
these values of the correlation length (red diamonds) as a function of the distance to the critical point M and 
note that this is well described by ξ− = M−ν with ν = 1 (gray solid line). For clarity in the plane M − ξ we use 
the same color scheme of the plane x − |ψ |2 to highlight the corresponding red diamond  symbol47,48.
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states obtained numerically by diagonalization of the Hamiltonian of Eq. (9), for a lattice with 800 sites, γ = 0.0 
and open-boundary conditions for one direction at a time, see Fig. 10 (refer to ’Methods’ section for details).

Physically, the term that distinguishes between Eqs. (1) and (9) restores the penetration depth of the surface 
state along the z direction with open-boundary conditions. Thereby, the projection of the Weyl points can be 
found in all planes. The collision between the Weyl points, as the control parameter γ changes, occurs in the plane 
kx − kz for ky = 0 (into the bulk), that contains simultaneously the red and blue spheres in Fig. 4.

To better understand the trajectory of the Weyl points in plane kx − kz shown in Fig. 4b, we track in Fig. 5 the 
path followed by each of these points until the critical point at γ = 1 . These points reaarange their trajectories, 
such that they can collide along the kz direction.

In order to characterize the topological phases and the topological phase transitions, we use the invariant 
sector Chern  numbers51,52 C (kx) , C (ky) and C (kz) . This invariant is given by C (kµ) =

∫

BZ dkρdk�Fµ with 
Berry curvature Fµ = 1

4π
ǫµ,ν,τhµ∂ρhν∂�hτ /E

3
+ (refer to ’Methods’ section for details). Here, the indexes ρ and � 

are the orthogonal directions to the µ , ǫµ,ν,τ is the Levi-Civita antisymmetric tensor and BZ denotes the Brillouin 
Zone. The topological phases are distinguished by the Chern numbers, C = (C (kx),C (ky),C (kz)) . In our 
case, depending on γ , kx , ky and kz the sector Chern number can be equal to C (kµ) = 0,−1, 1 , see Fig. 6. Fig-
ure 6a,b show three different topological regions, the blue region possesses C (kz) = 1 (non-trivial), the gray 
region C (kz) = −1 (non-trivial) and the white region has C (kz) = 0 (trivial).

Note that, in Fig. 6 the edges of the region blue in Fig. 6a and the region gray in Fig. 6b correspond to the 
coordinates of kz and kx , respectively, of the Weyl points for each fixed γ . Accordingly, the projection of these 
coordinates on the surface delimits the Fermi arc extension, as represented in Fig. 4. Therefore, the topological 
regions in Fig. 6 are intimately related with the existence of the surface states. For instance, the surface states 

(a) (b)

Figure 4.  Schematic representation of the zero-energy Fermi arcs. (a) Fermi arcs for the Weyl semimetal 
model Eq. (1), with Weyl point projections only in the planes kx − kz and ky − kz (four light blue planes). (b) 
Fermi arcs for the generalized model Eq. (9), where the Weyl point projections are now present in all planes 
in momentum space, including the projection along the plane kx − ky (two light red planes). Note that, the 
additional term ta sin kz promotes a rotation of the Weyl point projection around the ky direction. This allows 
the calculation of the penetration depth also in the z direction in case (b). For simplicity, we show only the 
projections along the three independent  planes47,48.

Figure 5.  Trajectory of the Weyl points along the kx − kz plane for y direction with open-boundary conditions. 
The blue and red circles denote the Weyl points with positive and negative topological charges, respectively, 
and the solid lines indicate the corresponding Weyl trajectories. The arrows indicate the paths of the Weyl 
points from γ = −1.0 , going through γ = 0.12 , until the critical point at γ = 1.0 where the Weyl points collide 
(purple circle)47,48.
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obtained for open-boundary conditions along x direction arise only for ky = 0 and for kz given by the blue region 
in Fig. 6a. This solution for the surface states corresponds on the Fermi arcs in Fig. 4 localized at ky = 0 where 
the plane kx − kz shelters the Weyl points projection (yellow stripe). On the other hand, the surface states with 
open-boundary conditions only along z direction arise only for ky = 0 and for kx given by the gray region in 
Fig. 6b. Finally, we also consider open-boundary conditions along y direction to obtain the Fermi arcs numeri-
cally. These zero energy solutions are highlighted by the yellow stripe in Fig. 10c (refer to ’Methods’ section for 
details), and depicted in Fig. 4b along the plane kx − kz (light blue plane).

In order to study the penetration depth ξ of the zero energy Fermi arcs, we consider the region parameter 
around the critical point γ = 1 for open-boundary conditions along the anisotropic x and z directions. In Fig. 7, 
we present the density probability |ψ |2 obtained applying open-boundary conditions in both directions (middle 
figure). In cubic perspective, we highlight the density probability for z open-boundary conditions in red color 
and for x open-boundary conditions in blue color. The decay behavior is drastically different, which is reflected 
in the penetration depth quantities ξz and ξx . In the left figure for z open, we can observe the penetration depth 
ξz (red diamonds) as a function of the distance to the critical point M. The exponent νz = 1

2
 gives an excellent 

fit with ξz = ξ0|M|− 1
2 (black solid line). Otherwise, in the right figure, for x open, the decay of the penetration 

depth ξx inside the bulk (blue diamonds) is very well fitted by ξx = ξ0|M|−1 (black dashed line), i.e., with νx = 1 . 
So, we are able to identify the anisotropic critical  exponent41 as θ = νx/νz = 2 , where x and z are the current 
anisotropic directions.

Universality class for Hopf insulators: beyond z = 2 dynamic critical exponent
The Hopf topological insulator is a truly 3D topological insulator. It is an example of IT phases, which do not 
require any other symmetry protection beyond the U(1) charge conservation that is present in all kinds of  TIs22,23. 
It is important to note that the Hopf insulator can only be realized in a two band Hamiltonian due to its non-
trivial mapping from three-sphere to the two-sphere22,42. From the point of view of the Wannier representation, 
the two-band Hopf insulator can be recognized as a fragile topological  system53 since, simply adding other bands 

(a) (b)

Figure 6.  Phase diagrams and sector Chern number C . (a) C (kz) and (b) C (kx) where the blue area stands for 
C = 1 and the gray one for C = −1 . The C (kx) = 0 denotes a trivial topological  phase47,48.

Figure 7.  Probability density |ψ |2 and penetration depth ξz and ξx as a function of M × 10−3 for the 
Hamiltonian Eq. (9). (middle figure) In cubic perspective, we show the density probability decay behavior 
for the cases with open-boundary conditions along x (light blue color) and z (light red color) directions, as 
indicated by the axis that represent the sites along each direction. (left figure) The results from open-boundary 
conditions along the z direction ξz (red diamonds) are well described by a correlation length ξz ∝ M−νz with 
νz = 1

2
 , as shown by the black solid line. (right figure) The correlation length ξx with open-boundary conditions 

along the x direction (blue diamonds) is in turn well described by νx = 1 , see the black dashed  line47,48.
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while preserving gap and symmetries trivializes it. On the other hand, in Ref.54 the authors provide a Hopf multi-
band generalization that is topological under the addition of the C ′ generalized particle-hole symmetry, such 
that J−1HJ = −H∗ . We also verify the presence of the C ′ for the two-band case, but it is absolutely inherent 
to the non-trivial mapping that characterizes the Hopf insulator in the first place. Note that, the Hopf insulator 
remains a no-symmetry protected topological insulator due to the dependence on mapping parameters p and 
q, as we discuss below. Remarkably, the C ′ symmetry is claimed to protect the surface states in the multi-band 
generalization, while this is not the case in the two-band model. For instance, consider a general band Hamil-
tonian with m and n, filled and empty bands, respectively. In this case for m and n different from unit, the space 
Hamiltonian is mapping into its topologically equivalent Grassmannian manifold and consequently follows the 
homotopy group Grassmannian  classification43. For 2 dimensions the homotopy group is π2[Gm,m+n(C)] = Z 
and classified by the Chern number. For 3D dimensions and when no additional discrete symmetries are required, 
the homotopy group is π3[Gm,m+n(C)] that corresponds only to the identity element. For this reason there is 
no winding number correspondence in 3D space  dimensions20,55. However, for the special case of a two band 
Hamiltonian, i.e., m = n = 1 the topologically equivalent space is S2 . In this way, for the two band case we have 
an accidental winding number since the mapping comes from T3 , a 3D Brillouin Zone torus, to the Grasmann-
ian space parameter S220,22. The non-trivial mapping construction has direct impact on the topological invari-
ant called Hopf index χ42,56. In Ref.22, the authors show that all Hopf insulators can be realized by the following 
Hamiltonian, H = h(k) · σ , where

with

Here, for each pair [p, q] we have a counterpart tight-binding Hamiltonian in real space which is also able 
to describe a Hopf insulator model if p and q are prime to each other. We have performed a study of the energy 
spectra for values of p, and q from [p, q] = [1, 1] to [8, 8]. For all cases, we identify the gap-closing points at critical 
parameter hc = −3,−1, 1, 3 following the high-symmetry points of Eq. (40). The Hopf index is expected to be 
χ = 0 for |h| > 3 , χ = ±pq for 1 < |h| < 3 and χ = ±2pq for |h| < 122. The non-zero Hopf indexes ensure the 
presence of gapless surface states in the Hopf insulator phase.

Accordingly, if the dispersion still depends on the critical exponents z and ν , as well as the distance to the 
critical point M = h− hc we can write

for each, ᾱ = x, y, z.
In order to study the gap-closing behavior as M → 0 , we put all k wavevectors at the corresponding high-

symmetry points for a specific hc in Eq. (13). This yields E = Mνᾱzᾱ , and we obtain, for all [p,q] values studied,

This is a critical exponent relation, independent of hc , as expected. For instance, we get νᾱzᾱ = 2 for 
[p, q] = [1, 1], [4, 1] and νᾱzᾱ = 4 for [p, q] = [1, 2], [3, 2] , as we can check in Eqs. (41) and (42) for [p, q] = [1, 1] 
and [1, 2], respectively. To evaluate each zᾱ , for example zx , we put h = hc , δky = 0 and δkz = 0 to study the 
behavior only along x direction, which leads to E ∝ δkzxx  . So, in general we expect E ∝ δk

zᾱ
ᾱ  for each direction 

where zᾱ is the dominant term around the critical point. We expand the energy around the critical values of h, 
for [p, q] = [1, 1] and [1, 2] (refer to ’Methods’ section for details). In each case we can check the dominant term 
for each direction and we get zx = 2 for both cases. If we know zx we are able to evaluate νx from Eq. (14). In 
this way we obtain νx = 1 and νx = 2 for [p, q] = [1, 1] and [1, 2], respectively. We perform the same steps for all 
[p, q] studied here and summarize the results in Fig. 8. The heatmap in Fig. 8 presents the νx for the correspond-
ing [p, q]. Beyond that, we always find the symmetry νx = νy and νz = 1 . We also observe that the values of νx 
follow another critical exponent relation given by,

For the present Hopf model, the anisotropic critical  exponent41 can be written as θ = νx/νz = 2 for q < p/2 
and θ = νx/νz = q/p for q ≥ p/2 , since νz = 1 in both cases. Once again, x and z are the current anisotropic 
directions.

We also obtain an anisotropic scaling relation for the Hopf insulator, θ = νx/νz = zz/zx (refer to ’Methods’ 
section for details), where the x − y plane corresponds to ( ⊥ ) and the z direction to ( ‖ ). We derive an anisotropic 
quantum hyperscaling relation given by, 2− α = ν⊥(z⊥ + d)− ν⊥(1− θ) (Eq. (46)) (refer to ’Methods’ section 

(10)hx =Re

[

2n
p
↑n

q
↓

]

(11)hy =Im

[

2n
p
↑n

q
↓

]

(12)hz =|n↑|2p − |n↓|2q,

n↑ = sin kx + it sin ky

n↓ = sin kz + i(cos kx + cos ky + cos kz + h).

(13)E =
√

M2νᾱzᾱ + δk
2zᾱ
ᾱ ,

(14)νᾱzᾱ = 2q.

(15)νx =
{

1/2, for q < p/2;
q/p, for q ≥ p/2.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22524  | https://doi.org/10.1038/s41598-021-01888-x

www.nature.com/scientificreports/

Figure 8.  Heatmap of νx as a function of p and q values. Inserted values indicate νx for each pair [p, q], from 1 
to 8. For q <

p
2
 , νx = 1/2 while for q ≥ p

2
 we have νx = q/p . For all values investigated, νx = νy and νz is always 

equal to unit. The green circles indicate the values related to the topological Hopf insulator phase, i.e., p and q 
prime to each  other57.

(a) (b)

Figure 9.  Penetration depth for the Hopf Hamiltonian. (a) For [p, q] = [1, 1] the best fit indicates νx = 1 , 
and (b) For [p, q] = [1, 3] the best fit suggests νx = 3 . These values of νx obtained numerically confirm the 
corresponding critical exponents given in Fig. 8.

Figure 10.  Fermi arcs obtained numerically for the generalized Weyl semimetal  model47.
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for details). This relation connects the free energy critical exponent α , to the dimension d, the correlation length 
critical exponent ν⊥ , the dynamic exponent z⊥ and the anisotropic critical exponent θ.

Figure 8 gives very unusual values for the correlation length exponents. In order to verify these results, we 
obtain the penetration depths of the surface states. In Fig. 9a,b we give numerical evidence for νx = 1 and the 
more unusual value νx = 3 , respectively. In order to illustrate the most suitable fit for these cases, we present in 
Fig. 9 some representative curves for different νx values using the expression ξx = ξ0M

−νx (label of Fig. 9). For 
instance, we have νx = 0.5, 1, 2 and 3 for blue, orange, green and red solid lines. For the case [p, q] = [1, 1] , the 
best fit in Fig. 9a is for νx = 1 (orange circles). In a similar way, for the case [p, q] = [1, 3] , the best fit in Fig. 9b 
occurs for νx = 3 (red circles).

The Hopf surface states are zero-energy modes topologically protected and, as we see, present unusual values 
for the correlation length critical exponent ν . We recall that this model corresponds to a tight-binding Hamilto-
nian, as long as p and q are integers prime to each other. The Hopf surface states also penetrate into the bulk, with 
a characteristic length that diverges at the critical point of the topological transition. In addition, it is expected 
that a larger Hopf index χ yields a larger number of surface states, but this correspondence remains  unclear42,58.

Discussion
The main purpose of the present work is to extend and characterize the critical behavior of topological materials 
that do not belong to the topological table of classification. We have studied two kinds of topological materials, 
the gapless Weyl semimetal and the no-symmetry protected, intrinsic topological material, the two-band Hopf 
insulator. The natural spacial anisotropy present in these models allow us to investigate an anisotropic scaling 
law from energy analysis and the penetration depth of the zero-energy surface states.

The first case we studied of an anisotropic band touching comes from the Weyl semimetal model, where 
the energy dispersions indicate zy = 1 and zz = 2 for the dynamic critical exponents along y and z directions, 
respectively. We proposed a modified Dirac equation that better translates this anisotropic aspect to calculate 
the wave-function of the surface states and its decay exponent. This investigation reveals a trivial, zero wave-
function with open-boundary conditions along the z direction that contains the Weyl points. This precludes the 
evaluation a critical length exponent ν in this direction.

To overcome this difficulty, we propose a generalized Weyl semimetal model that includes the term ta sin kzτx 
to the original model. This addition does not affect the anisotropic behavior, on the contrary, it promotes a rota-
tion of the Weyl points around the ky axis, which enables the presence of Fermi arcs in all planes of the momen-
tum space. The immediate consequence is the possibility to study the penetration depth with open-boundary 
conditions along all directions. From this, we verify νx = νy = 1 and νz = 1/2 , in agreement with previous results 
zx = zy = 1 and zz = 2 . We also can determine the anisotropic critical exponent θ = νx/νz = 2 . In general, 
additional terms in the Weyl Hamiltonian HWeyl(k) of Eq. (1) can change the values of the critical exponents, 
as in the case of different energy dispersion relations at the touching of the bands. However, as long as the aniso-
tropic character of the Hamiltonian is preserved, the scaling law for the anisotropic critical exponent θ = νx/νz 
remains valid. The obtained non-zero sector Chern numbers evidence the non-trivial topological character of 
these systems. Furthermore, the boundary of region with a non-trivial Chern number in the phase diagram of 
Fig. 6 is associated with the extension of the Fermi arcs.

In order to go further, we investigate the Hopf insulator model. The non-trivial mapping leads to a tight-
binding Hamiltonian for each pair of parameters [p, q], as long as p and q are integers prime to each other. From 
an analysis of the energy dispersion relations, we were able to determine the critical exponents νᾱ and zᾱ for each ᾱ 
direction. The values of νx are presented in Fig. 8 and we discover they follow a pattern summarized in the scaling 
relation, νᾱzᾱ = 2q . Also we find that the x − y plane is isotropic, such that νx = νy = ν⊥ = 1/2 for q < p/2 and 
νx = νy = ν⊥ = q/p for q ≥ p/2 , while in the z-direction we always have νz = ν� = 1 . The anisotropic critical 
exponent is obtained as θ = νx/νz = ν⊥/ν� = zz/zx and leads to a quantum hyperscaling relation given by 
2− α = ν⊥(z⊥ + d)− ν⊥(1− θ) . In this hyperscaling relation, α is the exponent characterizing the singular 
behavior of the free energy ( f ∝ |δ|2−α ). Notice, that these results depend only on the Hamiltonian parameters 
p and q and the anisotropic directions. Indeed, this scaling law holds only for the two-band Hopf insulator, since 
any additional term may immediately disrupt the very restrict non-trivial mapping that characterizes this model.

Far away from the usual, we obtain exotic values for the critical exponents of the Hopf insulator. For instance, 
consider p = 1 and q = 3 where the heatmap of Fig. 8 predicts νx = 3 . In fact, we can check this result obtaining 
the penetration depth and confirm that νx = 3 as shown in Fig. 9b. From the proposed scaling relation, we obtain 
νxzx = 3 · zx = 6 that renders zx = 2 . Accordingly, using this Hopf scaling law, together with the table of Fig. 8, 
it is possible to find zᾱ = 2, 4, 6, 8, 10 and even higher values can arise if we extend the table for high values of 
p and q. In principle, we have not found an upper limit for the Hamiltonian parameters.

We can affirm, based on our results, that even the TPTs beyond the standard classification may support a 
connection with the theory of quantum critical phenomena. Furthermore, although surface states with non-zero-
energy can exist, only the zero-energy states that are those obeying the bulk-boundary correspondence, allow 
to make the bridge between the TPT and critical phenomena. The properties of these states are unique and they 
can yield the set of critical exponents ν and z associated with the spacial and temporal correlations, respectively.

Methods
Low energy Weyl model. The expansion of the Weyl model close to the critical point of the topological 
transition yields,
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From Eq. (16) the energy dispersion is given by,

Topological surface state study for Weyl model. Surface state wave‑function along x direction. We 
can introduce open-boundary conditions in x direction. In this case, it is interesting to treat the terms that de-
pend on x (real space) as a problem in one-dimension, while the terms depending on ky and kz as a perturbation 
to the one-dimension problem. From Eq. (5), Since kx is the direction we apply open-boundary conditions, we 
isolate the Pauli matrices terms that include kx

The first term corresponds to the one-dimensional Hamiltonian Hky ,kz (x) = H1D(x) . The choice to include 
the quadratic terms on H1D(x) represents an ansatz so that the wave-function decays in the 1D open direction 
while oscillating in the other high dimensions considered. For this purpose, we propose the ansatz for the wave-
function solution as

Then, applying this trial wave-function to Eq. (18), we have

where k̄2 = k2y + k2z and

For Eq. (20) we take the zero-energy solutions, while in Eq. (21) we have a surface energy ε.
To solve Eq. (20), we multiply both sides by τx and put kx = −i∂x (open-boundary conditions for x direc-

tion). This leads to

To avoid a trivial solution ϕ(x) , we assume that ϕ(x) = χηφ(x) since τyχη = ηχη with η = ±1 , i.e., χη is an 
eigenvector of τy . Then, Eq. (22) becomes

The part of the wave-function that depends on x must possess a decay behavior, so φ(x) = e−�x where � > 0 
ensures the decay. Following this, the equation for the characteristic length is given by

Then, the solutions for � are

Since � > 0 and assuming that ti ( i = x, y, z ) are always positive, we have η = sgn(B) . Thus,

So, we take the general solution for φ(x) that satisfies the Dirichlet boundary conditions, i.e., φ(±∞) = 0 
and φ(0) = 0,

where �± = ξ±−1 to recover the usual representation of the penetration depth ξ±.
The eigenvector χη for η = sgn(B) is given by

The solution for ϕ(y, z) can be found through Eq. (21). Since τyχη = ηχη , we have

(16)H(k) = txkxτx + tykyτy + tz

[

k2x
2

+
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2
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2
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(18)H(k) =
{

txkxτx +
[

M − B
(

k2x + k2y + k2z

)]

τz

}
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that returns ε = ±sgn(B)tyky , the energy of surface state that reveals a current along the y direction with velocity 
vy = ∂ǫ

∂ky
= ±sgn(B)ty . So, for the present model along the plane yz we have a current just along the y direction 

which is consistent with the Fermi arcs results. This also indicates that ϕ(y, z) = ϕ(y) , i.e., it does not depend on 
z. Thus, the wave-function with open-boundary conditions in x direction assumes the form

Surface state wave‑function along y direction. In a similar way, for open-boundary conditions along y direction, 
we obtain the wave-function

where, χη,yo = 1√
2

(

−sgn(B)
1

)

 and

for k̄2 = k2x + k2z.

Surface state wave‑function along z direction. Inspired by Eqs.  (30) and (31), for open-boundary condition 
along the z direction, we propose

Evaluating the Schrödinger equation for this wave-function at Dirichlet boundary conditions, i.e., 
H(k)ψ(z, ky , kz) |z±∞= 0 where kz = −i∂z , we have

From the determinant of Eq. (34) the non-trivial solution returns �+ = �− or equivalently ξ+ = ξ− . Follow-
ing this, we can conclude that there is no decay wave-function with open-boundary conditions along z direction 
ψ(z, kx , ky) = 0.

Generalized Weyl semimetal: symmetries. The generalized Weyl model of Eq. (9) can be rewritten as

where hx = tx sin kx + ta sin kz , hy = ty sin ky and hz = tz
(

γ + 2− cos kx − cos ky − cos kz
)

.
For the inversion symmetry, we have H → I H(−k)I −139 where I = τz that yields

So τzH(−k)τ−1
z = H(k) and the Inversion symmetry is still preserved for the generalized Weyl model.

For the time-reversal symmetry, the symmetry operation reads H → TH(−k)T−1 . Since T = IK̂ , where 
I is the identity matrix and K̂ is the complex conjugate operator, we have

Therefore, TH(−k)T−1 �= H(k) and the time-reversal symmetry is still broken.
The stability of the two Weyl points requires one of these two symmetries to be broken. If this is not the case, 

and the material preserves simultaneously I and T we loose this stability and the two Weyl points with opposite 
topological charges merge leading to a zero total topological  charge39.

Topological surface state study for the generalized Weyl model. For the generalized Weyl model 
of Eq. (9) and following the same procedure adopted for open-boundary conditions along x direction, we have 
the presence of takzτx in Eq. (20). This yields �+ �= �− in Eq. (34). For this reason, we can obtain non-trivial 
wave-functions for open-boundary conditions along any direction. From this, we can write �±(ky , kz) in Eq. (38) 
and �±(kx , ky) in Eq. (39), that stands for open-boundary conditions along x ad z directions, respectively. For 
these cases, the surface state energy remains ε = ±sgn(B)tyky , as for the Weyl semimetal model with open-
boundary conditions along x.
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Accordingly, for open-boundary conditions along y direction, the �±(kx , kz) preserve the same form obtained 
for the Weyl model under the same conditions. On the other hand, in this last case the surface state energy 
assumes the form ε = ±sgn(B)(txkx + takz) . We also obtain the Fermi arcs numerically for the generalized Weyl 
model from the diagonalization of the Hamiltonian, Eq. (9), for a lattice with 800 sites, see Fig. 10. We report 
that the numerical results are in agreement with those obtained via the topological surface state study above. In 
fact, Fig. 10a,b present the zero-energy ε = ±sgn(B)tyky = 0 for ky = 0 that describe the Fermi arc as expected. 
However, in Fig. 10c the zero-energy mode occurs for ε = ±sgn(B)(txkx + takz) = 0 that yields kz = −(tx/ta)kx , 
where −(tx/ta) is the angular coefficient of the linear Fermi arc in the plane kx − kz for tx = 1 , ta =

√|1− γ | = 1 
and γ = 0 . It is important to emphasize, that the extension of the Fermi arcs still depends on the conditions that 
require that the correspondent � must be a real and positive quantity.

Berry curvature components. The components of the Berry Curvature are

where ta =
√|1− γ | , Si = sin ki and Ci = cos ki.

Hopf insulator p and q analysis. The Hopf insulator model can admit the following critical points hc at 
the high-symmetry points:

Expanding the energy dispersion relation close to the critical values hc , we obtain the exponents of each 
δkᾱ = k − kᾱc in all ᾱ directions. From this, we are able to evaluate which order of δk dominates close to the 
critical point for each ᾱ direction in Eq. (13).

For instance, for a pair [p, q] = [1, 1] (for a general hc ) and [p, q] = [1, 2] (at hc = −3 ) we get,

• p = 1 ; q = 1

where, + stands for kᾱc = 0 and − for kᾱc = π.

• p = 1 ; q = 2
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]

+ 1

4

[

δk4x + δk4y + δk4z

]

.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:22524  | https://doi.org/10.1038/s41598-021-01888-x

www.nature.com/scientificreports/

where hc = −3 . The energy equation for a general hc is more complicated to observe as q > 1.

Quantum hyperscaling in anisotropic systems. Consider a Hopf insulator, with two isotropic direc-
tions in k-space, say kx and ky and with one special direction, the kz axis. Let us consider all constant equal to 
1. The dispersion relation close to gap closing point and taking into account only the dominant powers can be 
written as:

where ⊥ stands for the directions in the plane and ‖ for the anisotropic direction. This equation can be rewritten as

which in turn yields

Defining,

such that the anisotropy exponent is

we get

where F(x,y) is a scaling function. Notice that, ξ⊥ = |δ|−ν⊥ and ξ� = |δ|−ν� . Also notice from Eq. (44) that 
ν�z� = ν⊥z⊥ . The total ground state energy is given by,

Proceeding we obtain,

Finally,

The anisotropic quantum hyperscaling relation is given by,

or

Finally, using Eq. (44) we get

(42)

En[0,0,0] =(h− hc)
4 − [2(h− hc)

3 − 1]δk2x
− [2(h− hc)

3 − t2]δk2y − 2(h− hc)
3(h− hc − 1)δk2z

+ 3

2
(h− hc)

2
[

δk4x + δk4y

]

+ 1

2
[(h− hc)

2 + 2(h− hc − 1)2]δk4z

− 1

3
(h− hc)

(

δk6x + δk6y

)

− 1

2
(h− hc − 1)δk6z

+ 1

16

(

δk8x + δk8y + δk8z

)

(43)E(k) = |δ|ν⊥z⊥ + k
z⊥
⊥ + k

z�
�

E(k) = |δ|ν⊥z⊥
(

1+ k
z⊥
⊥

|δ|ν⊥z⊥ +
k
z�
�

|δ|ν⊥z⊥

)

,

E(k) = |δ|ν⊥z⊥


1+
�

k⊥
|δ|ν⊥

�z⊥

+





k�

|δ|
ν⊥z⊥
z�





z�

.

(44)ν� =
ν⊥z⊥
z�

,

θ = ν�/ν⊥ = z⊥/z�,

(45)E(k) = |δ|ν⊥z⊥F
(

k⊥ξ⊥, k�ξ�
)

Etot =
∑

k

E(k) = |δ|ν⊥z⊥
∫

dk⊥dk�F
(

k⊥ξ⊥, k�ξ�
)

.

Etot =
∑

k

E(k) = |δ|ν⊥z⊥
ξd−1
⊥ ξ�

∫

d(k⊥ξ⊥)dk�ξ�F
(

k⊥ξ⊥, k�ξ�
)

.

Etot =
∑

k

E(k) = |δ|ν⊥z⊥+(d−1)ν⊥+ν�
∫

dXdYF(X,Y).

2− α = ν⊥z⊥ + (d − 1)ν⊥ + ν�

2− α = ν⊥(z⊥ + d)− ν⊥ + ν�
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The exponent α gives the singular behavior of the free energy at the topological transition ( f ∝ |δ|2−α).
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