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1  |  INTRODUC TION

Aging, especially when coupled with unhealthy lifestyles, is the lead-
ing contributor to most physical dysfunctions and chronic diseases 
in humans, whereby senescent cells defined as division-arrested 
normal cells progressively accumulate in tissues (Childs et al., 2015; 
Collado et al., 2007). While gradual cellular senescence throughout 
the whole aging process was identified by Hayflick and Moorhead 

in 1961, to date, rare anti-aging and age-associated disease medi-
cine has been developed targeting these biological aging processes 
at the cellular level. Moreover, unhealthy lifestyles, such as physical 
inactivity, unhealthy diets, and cigarette smoking, have been found 
to be associated with the accumulation of senescent cells in humans 
independent of chronological age (Liu et al., 2009; Song et al., 2010; 
Tchkonia et al., 2010). Importantly, cellular senescence also partic-
ipates in other vital biological processes, not only aging but tumor 
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Abstract
Cellular senescence, a state of irreversible growth arrest triggered by various stress-
ors, engages in a category of pathological processes, whereby senescent cells ac-
cumulate in mitotic tissues. Senolytics as novel medicine against aging and various 
diseases through the elimination of senescent cells has emerged rapidly in recent 
years. Exercise is a potent anti-aging and anti-chronic disease medicine, which has 
shown the capacity to lower the markers of cellular senescence over the past decade. 
However, whether exercise is a senolytic medicine for aging and various diseases re-
mains unclear. Here, we have conducted a systematic review of the published litera-
ture studying the senolytic effects of exercise or physical activity on senescent cells 
under various states in both human and animal models. Exercise can reduce the mark-
ers of senescent cells in healthy humans, while it lowered the markers of senescent 
cells in obese but not healthy animals. The discrepancy between human and animal 
studies may be due to the relatively small volume of research and the variations in 
markers of senescent cells, types of cells/tissues, and health conditions. These find-
ings suggest that exercise has senolytic properties under certain conditions, which 
warrant further investigations.
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suppression, tumor promotion, and tissue repair (Rodier & Campisi, 
2011). Therefore, while cellular senescence is a promising therapeu-
tic target of multiple diseases, especially aging-related diseases and 
cancer, the consequences and safety of up- or downregulating these 
complex biological processes should be taken into consideration.

Senescent cells are the hallmark and therapeutic target of cel-
lular senescence involved in a wide range of biological processes, 
including tumor suppression, embryonic development, wound heal-
ing	and	tissue	repair,	and	aging	(Van	Deursen,	2014).	Although	se-
nescent cells are detrimental to the body during aging and can lead 
to chronic diseases, such as obesity, diabetes, and sarcopenia, they 
also suppress cancer and fibrosis (Muñoz-Espín & Serrano, 2014). 
Under the complex functions, there are two major senescent path-
ways: p53/p21Cip1 and p16INK4a/RB;	 and	both	p21Cip1 and p16INK4a 
are	 the	 key	 markers	 of	 senescent	 cells	 (Ben-Porath	 &	Weinberg,	
2005). Moreover, other markers of senescent cells have been re-
ported, including senescence-associated heterochromatic foci 
(SAHFs),	ARF,	DNA	segments	with	chromatin	alterations	reinforcing	
senescence	 (DNA-SCARS),	 senescence-associated	 beta-galactosi-
dase (SA-β-Gal), shorter telomere length, lower proliferation, and se-
nescence-associated secretory phenotype (SASP) (He & Sharpless, 
2017). Exploration of these senescent markers as targets might con-
tribute to the development and testing of anti-senescent cell thera-
peutic strategies.

Senolytics is a new class of medicines that target senescent 
cells, which has emerged rapidly in the past few years (Kirkland 
et al., 2017). Preclinical studies on rodents have been applied to 
explore the potential targets of senescent cells and the prelimi-
nary	effects	of	senolytic	medicine	in	vivo.	In	2011,	an	INK-ATTAC	
transgenic	mouse	with	 a	 BubR1	 progeroid	 background	was	 first	
established and showed restored aging-associated dysfunctions 
following	 ablation	 of	 senescent	 cells	 by	 AP20187	 (Baker	 et	 al.,	
2011). Moreover, another transgenic line, p16-3MR, was gener-
ated, where senescent cells can also be eliminated via ganciclovir 
and further mitigated the post-traumatic osteoarthritis and age-re-
lated intervertebral disk degeneration (Jeon et al., 2017; Patil et al., 
2019). In addition to transgenic mice, senolytic drugs, including da-
satinib	and	quercetin,	ABT263,	and	SSK1,	also	showed	the	thera-
peutic effects on senescent cells and alleviated the radiation and 
age-related symptoms and pathology (Cai et al., 2020; Chang et al., 
2016; Zhu et al., 2015). A combined treatment of senolytic med-
icines in transgenic mice also presented the therapeutic effects 
on obesity-induced metabolic dysfunction and fibrotic pulmonary 
disease (Palmer et al., 2019; Schafer et al., 2017). Strikingly, two 
small clinical trials on senolytic treatments with dasatinib and 
quercetin were completed last year and reported therapeutic ef-
fects for patients with diabetic kidney disease (N = 9) and idio-
pathic pulmonary fibrosis (N = 14) (Hickson et al., 2019; Justice 
et al., 2019). More recently, other novel senolytic agents such as 
ABT-737,	 navitoclax,	 flavone,	 fisetin,	 A1331852,	 and	 A1155463	
have been developed; ongoing research will determine their ef-
fects against various diseases in the future (Yosef et al., 2016; Zhu 
et al., 2015, 2017).

Physical exercise is widely recognized as a safe, effective, and 
cost-effective “medicine” for a broad range of age-related diseases. 
Moreover, a lack of exercise is a major contributing factor to ac-
celerated aging and age-associated chronic conditions, including 
cancer,	 obesity,	 and	 cardiovascular	 diseases	 (Booth	 et	 al.,	 2011).	
World	 Health	 Organization	 (WHO)	 thus	 encourages	 adults	 aged	
18–64 years to engage in over 150 min of moderate-intensity physi-
cal activity each week to reduce the risk of these chronic conditions. 
Unfortunately, 23% of men and 32% of women worldwide failed to 
meet	this	recommendation	according	to	data	from	WHO,	(Guthold	
et al., 2018). Therefore, a clearer delineation of anti-aging and an-
ti-disease effects and underlying mechanisms of exercise is needed. 
While the accumulation of senescent cells has been identified as the 
mechanism of aging and multiple diseases for decades, senolytics 
targeting senescent cells has just been developed in recent years. 
In addition, exercise has shown its capacity to lower the marker of 
senescent cells over the past decade. In the current systematic re-
view of all available literature, we explored the potential senolytic 
effects of exercise in both human and animal models under healthy 
or disease states. We aimed to improve the understanding of the 
cellular senescence-based mechanisms underlying exercise as an-
ti-aging medicine. This may impel people to engage in more exercise 
and lead to the development of more precise “exercise prescriptions” 
and “exercise mimetics” for the aging population and patients with 
various age-related diseases (Li & Laher, 2015).

2  |  RESULTS

2.1  |  Study characteristics

The systematic search in the database and manually searching the 
reference list yielded 2182 articles. After the exclusion of duplicates, 
1704	articles	were	screened	for	the	abstract	and	title.	Of	these,	60	
articles were further screened for full text and finally included 21 
articles in this review, which contained eight human studies, twelve 
animal studies, and one study included both human and animal ex-
periments (Figure 1). The total number of included participants in 
human studies was 535 (Table 1). Participants, including sedentary 
or active volunteers, athletes, and patients, aged 18–81 years were 
recruited. Four out of nine were cohort studies, while three of them 
were intervention studies.

Overall,	 most	 human	 studies	 used	 p16INK4a and T lympho-
cyte as markers of senescent cells and targeted tissue or cell, 
respectively. For physical exercise, habitual physical activity (via 
questionnaire) was determined in most human studies, while re-
sistance training and an acute bout of moderate-high intensity 
cycling	were	applied	as	 the	exercise	 intervention.	On	 the	other	
hand, mice (nine studies) and rat (five studies) were utilized as 
animal models to investigate the senolytic effects of exercise on 
senescent cells (Table 2). Wild-type and spontaneous or acceler-
ated	aging	animals	were	used	 in	most	studies.	Overall,	p16INK4a, 
p21Cip1, and/or SA-β-Gal were applied as markers of senescent 
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cells in various tissues or cells. For chronic exercise training, 
long-term running, including both wheel/voluntary and tread-
mill/forced running, was reported in most animal studies, while 
swimming was also applied as the exercise intervention in three 
studies.

2.2  |  Qualitative description of study findings

Of	all	21	articles,	16	articles	reported	senolytic	effects	of	exercise	
on the markers of senescent cells characterized by declined levels of 
specific molecular machinery (p16INK4a, p21Cip1, and SA-β-Gal), while 
five and three articles reported no and opposite effects of exer-
cise on senescent cells, respectively. Interestingly, exercise showed 
distinct effects on different senescent markers (e.g., p16INK4a and 
p21Cip1) in one study.

For human studies (Table 1), the level of habitual physical ac-
tivity is negatively associated with the level of p16INK4a in immune 
cells of healthy untrained participants aged 18–80 years (Liu et al., 
2009; Song et al., 2010; Tsygankov et al., 2009), but not in older cor-
onary bypass patients aged 56–81 years (Pustavoitau et al., 2016). 
In addition, chronic exercise training reduced the level of p16INK4a or 
p21Cip1 in mononuclear cells or vascular endothelial cells of healthy 
middle-age athletes (marathon runners or triathletes) and healthy 

older trained participants compared to sedentary controls (Rossman 
et	al.,	2017;	Werner	et	al.,	2009).	On	the	other	hand,	chronic	resis-
tance training reduced the level of p16INK4a in aged and overweight/
obese women (4 out of 8 participants underwent caloric restriction 
during training were excluded) (Justice et al., 2018). A single bout of 
resistance training acutely lowered the level of p16INK4a in healthy 
recreationally active college students (Yang et al., 2018), but an 
acute bout of moderate-high intensity cycling failed to reduce the 
level of SA-β-Gal in the muscle of healthy recreationally active young 
men (Wu et al., 2019). Collectively, physically active people have 
lower levels of p16INK4a-positive senescent cells than sedentary peo-
ple, while resistance training contributed to a lower level of p16INK4a.

For animal studies (Table 2), prolonged voluntary wheel running 
decreased the level of p16INK4a in various organs/tissues or cells in 
young, old, or obese mice/rat, including heart, vessel, endothelium, 
and adipose tissue (Kröller-Schön et al., 2012; Schafer et al., 2016; 
Werner et al., 2008, 2009), while it remained unchanged in some 
other organs and tissues, such as kidney and pancreas. Moreover, 
long-term forced treadmill running showed contradictory effects on 
the markers of senescent cells, including p16INK4a, p21Cip1, and SA-
β-Gal	 (Bao	et	al.,	2020;	Jang	et	al.,	2019;	Wong	et	al.,	2019;	Yoon	
et al., 2019; Zhang et al., 2016), although four out of five studies 
showed senolytic effects of exercise in specific tissues under obe-
sity or aging conditions. Conversely, studies on an acute bout of 

F I G U R E  1 PRISMA	flowchart	of	search	strategy
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downhill running and prolonged swimming reported an increased 
level of p21Cip1 and SA-β-Gal in fibro/adipogenic progenitors (Saito 
et al., 2020), and liver and brain (Huang et al., 2013; Liu et al., 2019), 
respectively, while another swimming study indicated a reduced 
level of SA-β-Gal in the muscle (Fan et al., 2017). In summary, 10 out 
of 13 animal studies showed a senolytic effect of exercise, but this 
effect was influenced by the form and dosage of exercise, type of 
senescent tissue or cells, and healthy or aging/disease conditions.

2.3  |  Meta-analysis

Overall,	 16	 out	 of	 21	 articles	were	 included	 in	 the	meta-analysis.	
However, two studies were excluded because of a lack of essen-
tial data (Wu et al., 2019; Zhang et al., 2016), one studies were ex-
cluded because of less than two data with similar outcomes and 
design (Saito et al., 2020), one study was excluded because the data 
were taken from cohort reported in another study (Tsygankov et al., 
2009), and one study was excluded because of the fact that exercise 
was not an independent factor (Yang et al., 2018).

For cross-sectional studies in humans, a negative correlation be-
tween habitual physical activity and the level of p16INK4a in T lympho-
cytes (r	=	−0.30,	95%	CI	=	−0.54,	0.01,	I2 = 84%, p = 0.04), subgroup 
by healthy participants (r	=	−0.30,	95%	CI	=	−0.53,	−0.34,	 I2 = 0%, 
p < 0.001) and patients (one article) were identified (Figure 2a). 

Moreover, exercise training significantly reduced the level of p16INK4a 
in	humans	(−64%,	95%	CI	=	−72%,	−55%,	I2 = 0%, p < 0.001) (Figure 2b). 
While both habitual physical activity and exercise training studies 
supported the senolytic effects of exercise on p16INK4a-positive se-
nescent cells, more studies on various exercise and markers of senes-
cent cells in different populations are still required.

On	 the	 other	 hand,	 diverse	 effects	 of	 exercise	 on	 the	 level	
of senescent cells were observed in animal studies. p16INK4a and 
p21Cip1 were conventional markers of senescent cells used in pre-
vious animal studies. Specifically, no significant effects of exercise 
on p16INK4a were found in animal studies with high heterogeneity 
(−11%,	 95%	CI	 =	 −31%,	 10%,	 I2 = 99%, p = 0.32) (Figure S1). To 
identify the source of the high heterogeneity, studies were sub-
grouped by tissues, including heart, vessel, muscle, fat, skin, brain, 
liver,	pancreas,	and	kidney.	Of	these,	a	senolytic	effect	of	exercise	
was	 observed	 in	 vessel	 with	 a	 lower	 heterogeneity	 (−56%,	 95%	
CI	=	−72%,	−39%,	I2 = 73%, p < 0.001), while no significant effect of 
exercise	was	found	in	muscle	(42%,	95%	CI	=	−51%,	136%,	I2 = 59%, 
p = 0.37). For p21Cip1, a significant senolytic effect of exercise was 
observed in animal studies, though a high heterogeneity was ob-
served	(21%,	95%	CI	=	−32%,	−9%,	I2 = 92%, p < 0.001) (Figure 3). 
To identify the source of the high heterogeneity, studies were sub-
grouped by healthy states, including healthy and young, aged, and 
HFD-induced	obesity.	 Strikingly,	 no	 effect	 of	 exercise	 on	 p21Cip1 
was	found	 in	a	healthy	state	 (−5%,	95%	CI	=	−14%,	4%,	 I2 = 45%, 

F I G U R E  2 Forest	plots	of	the	meta-analysis	for	the	effect	of	exercise	on	the	level	of	p16INK4a in human studies. A: association of habitual 
exercise and the level of p16INK4a	in	T	lymphocyte	with	subgroup	analysis.	(a)	healthy	participants;	(b)	patients.	B:	the	effect	of	exercise	
training on p16INK4a
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p = 0.32). In contrast, a significant senolytic effect of exercise on 
senescent	cells	was	found	in	obese	(−57%,	95%	CI	=	−69%,	−46%,	
I2 = 62%, p < 0.001) but not aged animals (p = 0.44). SA-β-gal, an-
other marker of senescent cells, was also examined in the animal 
studies; however, high heterogeneity was observed together with 
the senolytic effects of exercise, which cannot be reduced by sub-
group	(−40%,	95%	CI	=	−64%,	−16%,	 I2 = 99%, p < 0.001) (Figure 
S2). In summary, senolytic effects of exercise were observed in the 
vessel (p16INK4a) and obese animals (p21Cip1), but not in the muscle 
(p16INK4a) or healthy animals (p21Cip1). In this context, the senolytic 
effects of exercise remain unclear, especially in various organs or 
tissues and states. More studies with similar outcomes and designs 
are needed due to the high level of heterogeneity observed in 
these studies.

2.4  |  Study quality

The quality scores of each study included in this systematic review 
are shown in the supplemental materials. For human cross-sec-
tional	studies,	the	score	of	Newcastle-Ottawa	quality	assessment	

ranged from 6 (satisfactory studies) to 8 (good studies) (Table S2). 
Moreover,	AUB	KQ1	risk	of	bias	assessment	of	human	intervention	
studies reported a low risk of random sequence generation (80%), 
allocation concealment (60%), incomplete outcome data (100%), 
selective outcome reporting (100%), and other bias (100%), but 
not blinding of patients and personnel (20%) and blinding of out-
come	assessment	(20%)	(Table	S3).	On	the	other	hand,	the	median	
number	of	CAMARADES	checklist	score	for	animal	studies	was	4	
ranged from 3 to 6 (Table S4). Although the quality assessment of 
animal studies was provided, the risk of bias remained unclear in 
these studies due to the lack of sufficient details for assessment 
that has long been identified as the limitation of animal research.

2.5  |  Publication bias

Publication bias was examined for outcomes with over nine data/
studies	 by	 the	 asymmetry	 of	 funnel	 plots.	No	major	 bias	was	 de-
tected in animal studies on p16INK4a (Figure S3) or p21Cip1 (Figure S4), 
while some asymmetry was observed in the funnel plots, but this 
was unlikely to be due to publication bias.

F I G U R E  3 Forest	plots	of	the	subgroup	meta-analysis	for	effect	of	exercise	on	the	level	of	p21Cip1 in healthy and young animals. 
Subgroup	by	healthy	states:	(a)	health;	(b)	aging;	(c)	high-fat-diet	(HFD)-induced	obesity.	Schafer	et	al.	(2016)	a-h	(various	organs	and	tissues):	
a, visceral fat; b, subcutaneous fat; c, liver; d, gastrocnemius (muscle); e, pancreas; f, kidney; g, heart; h, aorta
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3  |  DISCUSSION

Our	systematic	review	and	meta-analysis	were	the	first	to	inves-
tigate the senolytic effects of exercise on senescent cells in both 
human	 and	 animal	 studies.	 Despite	 the	 limited	 number	 of	 stud-
ies, the evidence on the senolytic effect of exercise on senescent 
cells in humans and animals appears convincing. A higher level 
of habitual physical activity and exercise training decreased the 
level of p16INK4a in humans. In addition, high heterogeneity was 
observed in animal studies, probably due to study design and sam-
ple heterogeneity rather than a real heterogeneity in results. A 
further subgroup analysis revealed that exercise reduced the level 
of p21Cip1	 in	 various	 organs/tissues	 under	 high-fat-diet	 (HFD)-
induced obesity. In contrast, no senolytic effect of exercise on the 
level of p21Cip1 was found in the healthy state. The evidence for 
other outcomes and conditions is less clear. Thus, more human and 
animal studies investigating the senolytic effects of exercise on 
senescent cells are required.

Cellular senescence serves pleiotropic roles in aging, chronic dis-
eases,	and	cancer	(Van	Deursen,	2014).	In	addition	to	advancing	age,	
unhealthy lifestyles, such as physical inactivity, unhealthy diets, and 
cigarette smoking, also contribute to the accumulation of senescent 
cells in the body, especially during aging, and subsequent accelerated 
aging and chronic diseases (Liu et al., 2009; Song et al., 2010). In this 
context, the elimination of senescent cells (senolytics) is a potential 
therapy for aging and chronic diseases, such as obesity, type 2 diabe-
tes, and atherosclerosis (He & Sharpless, 2017). Senolytic medicine 
has been developed in recent years and some of them are currently 
undergoing clinical trials, which may require years to be clinically 
available	(Hickson	et	al.,	2019;	Justice	et	al.,	2019).	Our	systematic	
review and meta-analysis found evidence that exercise has senolytic 
properties in healthy humans, where a higher level of habitual phys-
ical activity or physically active (Liu et al., 2009; Song et al., 2010) 
and chronic exercise training (Justice et al., 2018; Rossman et al., 
2017; Werner et al., 2009) reduced the level of p16INK4a in various 
tissues/cells, especially the senescent lymphocytes. These findings 
supported the hypothesis that exercise can be a senolytic medicine, 
although there was only very limited evidence demonstrating a neg-
ative association between habitual exercise/exercise training and 
the	 level	of	senescent	markers.	Besides,	 the	optimal	or	the	 lowest	
effective dose of exercise remains unclear (Eijsvogels & Thompson, 
2015). Therefore, studies on the different forms (e.g., exercise alone 
or together with other senolytics such as dasatinib and quercetin) 
and dosages of exercise on senescent cells in various cells/tissues, 
populations, and health conditions are urgently needed. Moreover, 
exercise may have potential anti-tumor properties (Pedersen et al., 
2016), which raises the question of whether exercise is beneficial 
for cancer patients in the context of senescent cells as an emerging 
target of cancer (Lee & Schmitt, 2019). Collectively, physical exercise 
shows promise as a senolytic medicine against aging and multiple 
diseases, which calls for more preclinical and clinical studies.

On	the	other	hand,	animal	studies	on	the	senolytic	effects	of	ex-
ercise provided more evidence about its effects on various tissues 

and organs in detail, which cannot be directly investigated in hu-
mans. A recent systematic review and meta-analysis reported that 
the expression levels of selected markers of senescent cells varied 
from different tissues during aging (Tuttle et al., 2020). Similarly, 
we found no significant change of p16INK4a in animal studies with 
high heterogeneity. However, a significant decline of p16INK4a was 
detected in the vessels (Kröller-Schön et al., 2012; Schafer et al., 
2016; Werner et al., 2009) but not the muscle (Saito et al., 2020; 
Schafer et al., 2016; Yoon et al., 2019) after subgroup analysis 
by tissues. In accordance with a previous study that p16INK4a ex-
pressed in various organs and tissues, such as the brain, liver, and 
spleen, but not in the muscle, during aging (Idda et al., 2020), while 
senescent cells may be the therapeutic target of cardiovascular 
diseases (Childs et al., 2018). It suggested that senolytic medicine, 
including exercise, may only be suitable to target the aging and dis-
ease states for certain tissues and organs. The comprehensive cel-
lular senescence-based effects of exercise on various organs and 
tissues remain to be investigated; the results of these studies may 
contribute to the development of more precise exercise therapeu-
tic strategies in the future.

In addition to p16INK4a, p21Cip1 is another conventional marker 
of senescent cells. Unlike p16INK4a which is involved in the main-
tenance of senescent phenotype, p21Cip1 is essential for establish-
ing senescence (Stein et al., 1999). Strikingly, we found exercise 
showed no effect on the level of p21Cip1 in healthy and young an-
imals (Huang et al., 2013; Schafer et al., 2016; Yoon et al., 2019). 
Since cellular senescence serve vital roles in health maintenance 
and cancer suppression (He & Sharpless, 2017), a lack of significant 
senolytic effects of exercise on p21Cip1 in healthy animals may imply 
potential safety of using exercise as senolytic medicine, since exer-
cise may only “remove” excess senescent cells induced by patholog-
ical	stressors.	On	the	contrary,	in	the	HFD-induced	obesity,	exercise	
reduced the level of p21Cip1 in obese animals after subgroup anal-
ysis by the disease states, including aging and obesity, while more 
studies are required to understand its effects on senescent cells in 
aged animals (Jang et al., 2019; Schafer et al., 2016). Cellular senes-
cence is considered to be involved in and serves as the therapeutic 
target of obesity and metabolic dysfunction (Palmer et al., 2019). 
However, few disease states have been examined in previous ani-
mal studies. Exercise may be a potent and safe senolytic medicine 
against a specific disease, especially for senescent cells character-
ized by p21Cip1.

While the senolytic effects of exercise have been identified in 
the current review, the underlying mechanisms are less well un-
derstood. Previous studies have reported that exercise regulated 
DNA	 damage	 (Radák	 et	 al.,	 2002),	 telomere	 erosion	 (Puterman	
et al., 2010), oxidative stress (Gomez-Cabrera et al., 2008), in var-
ious tissues and cells, are the major drivers of cellular senescence. 
On	the	other	hand,	exercise-induced	autophagy	(He,	Bassik,	et	al.,	
2012; He et al., 2012) and apoptosis (Phaneuf & Leeuwenburgh, 
2001), which have been shown to elicit regulating effects on cellu-
lar senescence (Kang et al., 2015; Vicencio et al., 2008), might also 
be involved in the senolytic effects of exercise. A clearer picture 
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of mechanisms underlying senolytic effects of exercise may con-
tribute to the discovery and development of “exercise mimetics” 
or “exercise pills” against senescent cells (Li & Laher, 2015) and 
encourage people to engage in more exercise to tackle physical in-
activity	as	one	of	the	 leading	health	problems	 in	the	world	 (Blair,	
2009; Kohl et al., 2012) and to develop exercise as an effective 
treatment for specific diseases.

The present systematic review and meta-analysis provide an up-
to-date summary of the senolytic effects of exercise on senescent 
cells based on both human and animal studies. However, there are 
some limitations that should be mentioned. The major limitation of 
this study is the limited number of studies included in this review, 
though the effects of exercise on senescent cells have been studied 
for over a decade. In addition, the relatively high heterogeneity was 
observed among studies due to the complexity of research on cellu-
lar senescence, such as the types of cells/tissues and markers of se-
nescent	cells.	Besides,	the	search	strategy	was	limited	to	the	articles	
written in English, which may lead to a language bias and a potential 
loss of studies met other items of inclusion criteria.

The findings of this systematic review and meta-analysis pro-
vided some evidence that exercise may be a senolytic medicine for 
p16INK4a-positive senescent cells in humans and for p21Cip1-positive 
senescent cells in obese but not healthy animals. Future studies 
should examine the optimal form and dosage of exercise, targeted 
cells/tissues, different disease states, and the underlying cellular 
mechanisms in humans and animals. A greater understanding of the 
senolytic effects of exercise can lead to significant clinical and public 
health impact.

4  |  METHODS

4.1  |  Search strategy and data sources

A systematic search of the literature was conducted on May 20, 2020, 
in	three	databases:	MEDLINE	(OVID),	EMBASE	(OVID),	and	Web	of	
Science using the Medical Subject Headings (MeSH) terms “exercise” 
and “cellular senescence” without date limit (a full list of search items 
used in systemic search is listed in Table S1). Articles were imported 
into Mendeley reference management software (Elsevier, USA), and 
the duplicates were identified and removed. Titles and abstracts of 
all identified records were independently screened by two reviewers 
to exclude irrelevant articles. The specific inclusion criteria were as 
follows: (a) original study; (b) peer-reviewed article; (c) articles writ-
ten in English; (d) full text available; (e) animal or human studies; (f) 
“senescence” or “senescent” means “cellular senescence”; (g) “exer-
cise” means physical exercise. Subsequently, full text of the remain-
ing articles was retrieved and reviewed by the same independent 
reviewers with the following additional inclusion criteria: (a) markers 
of senescent cells (p16INK4a, p21Cip1, SA-β-Gal, and lipofuscin) were 
reported; (b) exercise as a sole intervention/contributing factor; (c) 
for immunosenescence, articles were included if cellular senescence 
in immune cells was reported.

4.2  |  Study quality assessment

The quality of included studies was assessed independently by two 
reviewers	using	(a)	Newcastle-Ottawa	quality	assessment	scale	for	
cohort	studies,	(b)	AUB	KQ1	risk	of	bias	assessment,	and	(c)	collab-
orative approach to meta-analysis and review of animal data from 
experimental	studies	(CAMARADES)	checklist	(Anon	n.d.)	for	(a)	ha-
bitual physical activity studies in humans, (b) exercise training stud-
ies in humans, and (c) animal studies, respectively. The information 
of each article was then summarized after independent assessment 
and the disagreement was resolved by discussion.

4.3  |  Extraction of data

Data	 were	 extracted	 independently	 by	 the	 same	 reviewers.	 Any	
disagreement was resolved by discussion or a third reviewer. The 
following study characteristics were extracted onto a pre-designed 
data collection form: author, publication year, participant or animal 
characteristics (e.g., age, health and exercise status, type of ani-
mal), sample size, types of exercise, physical activity level/training 
protocol, types of organ, tissue or cell, markers of senescent cells 
and their responses to exercise, senolytic effect (yes, no, or oppo-
site). For analysis purposes, means, standard deviation, and sam-
ple size were collected for each study. If the data were reported 
in graphical form, means and standard deviation were extracted 
using	WebPlotDigitizer	(Rohatgi,	2011).	Studies	were	excluded	if	the	
mean, standard deviation or sample size was not available or equal 
to 0. If the sample size was provided as a range, we utilized the small-
est value. To examine the effects of exercise in different markers of 
senescent cells, these data were extracted separately. Moreover, to 
determine whether the senolytic effects of exercise were specific to 
certain disease state, data from healthy/young samples and disease 
/old samples were extracted separately as well. Therefore, the total 
number of data points included in the meta-analysis was greater 
than the number of articles.

4.4  |  Data analysis

For all meta-analyses, review manager (RevMan) version 5.3 
(Copenhagen:	 The	 Nordic	 Cochrane	 Center)	 was	 used	 where	 at	
least two studies of similar study design had reported the same out-
comes (i.e., markers of senescent cells). For each study, the mean 
differences based on the changes from control to exercise group, 
or from baseline to post-exercise, were calculated and pooled using 
the random-effects model. Correlation coefficient (r) was used to 
calculate the effect size after transforming to Fisher's z in meta-
analysis Fisher's z was then transformed back to r for presentation. 
Heterogeneity was determined using Cochran's chi-square test and 
Higgins's I2 test while publication bias was explored using funnel 
plots. To assess the specific senolytic effects of exercise on senes-
cent cells in animal studies, we pre-defined the following subgroups 
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for analyses: markers of senescent cells, healthy and young/disease 
or old, and organ/tissue. Sensitivity analysis was performed by re-
moving the lowest quality study among included studies from the 
analysis.
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