@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Di Venere M, Fumagalli M, Cafiso A, De
Marco L, Epis S, Plantard O, et al. (2015) Ixodes
ricinus and Its Endosymbiont Midichloria mitochondrii:
A Comparative Proteomic Analysis of Salivary
Glands and Ovaries. PLoS ONE 10(9): e0138842.
doi:10.1371/journal.pone.0138842

Editor: Ulrike Gertrud Munderloh, University of
Minnesota, UNITED STATES

Received: June 25, 2015
Accepted: September 3, 2015
Published: September 23, 2015

Copyright: © 2015 Di Venere et al. This is an open
access article distributed under the terms of the
Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: Funding for this work was provided by the
Ministero dell'lstruzione, dell'Universita e della
Ricerca through FIR 2013—RBFR13BWBC_001 to
Davide Sassera and PRIN 2012-2012A4F828 to
Chiara Bazzocchi.

Competing Interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Ixodes ricinus and Its Endosymbiont
Midichloria mitochondrii: A Comparative
Proteomic Analysis of Salivary Glands and
Ovaries

Monica Di Venere', Marco Fumagalli?, Alessandra Cafiso®, Leone De Marco?*, Sara Epis?,
Olivier Plantard®®, Anna Bardoni', Roberta Salvini', Simona Viglio', Chiara Bazzocchi®,
Paolo ladarola?, Davide Sassera®*

1 Department of Molecular Medicine, University of Pavia, Pavia, Italy, 2 Department of Biology and
Biotechnology, University of Pavia, Pavia, ltaly, 3 Department of Veterinary Science and Public Health,
University of Milan, Milan, Italy, 4 School of Bioscience and Veterinary Medicine, University of Camerino,
Camerino, ltaly, 5 INRA, UMR1300 Biologie, Epidémiologie et Analyse de Risque en santé animale, CS
40706, Nantes, France, 6 LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de
lalimentation Nantes-Atlantique, UMR BioEpAR, Nantes, France

* davide.sassera@unipv.it

Abstract

Hard ticks are hematophagous arthropods that act as vectors of numerous pathogenic
microorganisms of high relevance in human and veterinary medicine. Ixodes ricinus is one
of the most important tick species in Europe, due to its role of vector of pathogenic bacteria
such as Borrelia burgdorferi and Anaplasma phagocytophilum, of viruses such as tick
borne encephalitis virus and of protozoans as Babesia spp. In addition to these pathogens,
1. ricinus harbors a symbiotic bacterium, Midichloria mitochondrii. This is the dominant bac-
teria associated to /. ricinus, but its biological role is not yet understood. Most M. mitochon-
drii symbionts are localized in the tick ovaries, and they are transmitted to the progeny. M.
mitochondrii bacteria have however also been detected in the salivary glands and saliva of
I. ricinus, as well as in the blood of vertebrate hosts of the tick, prompting the hypothesis of
an infectious role of this bacterium. To investigate, from a proteomic point of view, the tick /.
ricinus and its symbiont, we generated the protein profile of the ovary tissue (OT) and of sali-
vary glands (SG) of adult females of this tick species. To compare the OT and SG profiles,
2-DE profiling followed by LC-MS/MS protein identification were performed. We detected 21
spots showing significant differences in the relative abundance between the OT and SG,
ten of which showed 4- to 18-fold increase/decrease in density. This work allowed to estab-
lish a method to characterize the proteome of I. ricinus, and to detect multiple proteins that
exhibit a differential expression profile in OT and SG. Additionally, we were able to use an
immunoproteomic approach to detect a protein from the symbiont. Finally, the method here
developed will pave the way for future studies on the proteomics of /. ricinus, with the goals
of better understanding the biology of this vector and of its symbiont M. mitochondrii.
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Introduction

Vector-borne diseases are among the leading causes of sanitary concern worldwide, being
responsible for millions of deaths every year [1]. Although most vectors (such as mosquitoes)
mainly exert their toll on developing countries, ticks are also widespread in the Northern hemi-
sphere and are indeed considered the most important disease vectors in Europe and North
America [2]. Many species of this order of obligate hematophagous parasites, the Ixodida, are
capable of transmitting numerous viral, bacterial, and protozoan pathogens through the blood
meal. Hard ticks in particular are dangerous vectors and, among them, the sheep tick Ixodes
ricinus is one of the most relevant species. The importance of I. ricinus is due to its wide area of
distribution (i.e. Europe and Northern Africa), to its low host specificity and capacity to para-
sitize humans, and to its central role in the transmission of multiple infectious agents [3]. Bor-
relia spp, the causative agent of Lyme disease, is possibly the most important microorganism
vectored by I. ricinus. This bacterium is responsible for hundreds of thousands of novel infec-
tions each year and its role in multiple chronic pathologies is currently being investigated [4].
Additionally, I. ricinus is capable of transmitting numerous other bacteria, such as Rickettsia
spp- and Ehrlichia spp., but also the flavivirus responsible for Tick Borne Encephalitis and the
etiological protozoan agents of babesiosis [5].

In addition to the aforementioned pathogens, I. ricinus harbors a recently described bacterium
named Midichloria mitochondrii [6]. The importance of this bacterial presence is testified by its
prevalence in the field, as 100% of females, eggs and immatures of I. ricinus harbor M. mitochon-
drii bacteria [7]. Additionally, the bacterial load has been found to be important, with up to 15
million bacteria counted in one single tick, localized mainly in the ovaries or ovarian primordia
[8, 9]. As all member of the bacterial order Rickettsiales, M. mitochondrii is intracellular, however
its uniqueness lays in that it was observed inside the mitochondria of the host ovarian cells [9].
Finally, M. mitochondrii has also been detected in the salivary glands of adult females of I. ricinus,
as well as in the blood of mammalian tick hosts [10, 11]. However, investigations on its potential
role as infectious agent have never provided adequate answers concerning the possible link to
pathological effects. As a consequence, new tools are required for answering this question.

With the advent of proteomics, the screening of proteins as potential biomarkers has
achieved important progresses. Detection and identification of proteins in different organs/tis-
sues, with the aim of understanding whether they represent an attractive tool for monitoring
alterations in these districts, is currently an area of increasing interest. Recently, studies have
been focused on the characterization of I. ricinus salivary glands and midgut proteomes, in a
much-needed effort to better understand the role of these organs, fundamental in the tick bite
and metabolism [12, 13].

Our plan was then to expand the knowledge of I. ricinus protein profiles by applying two-
dimensional electrophoresis (2-DE) as a tool for comparing the protein pattern of the ovary with
that of salivary glands (i.e. the sialome). The first goal of this study is to give insight into the pro-
cess of oogenesis, central to the tick life cycle. Additionally we planned to provide clues on the
symbiotic relationship between I. ricinus and its symbiont M. mitochondrii, which is highly prev-
alent in the ovaries. Moreover, to seek the best possible protocol for future studies on I. ricinus
proteomics, we focused on a careful optimization of the proteomic analysis pipeline.

Materials and Methods
Ethics Statement

I ricinus ticks were collected from roe-deer (Capreolus capreolus) in the Chize forest (Northern
France) in February 2014, in strict accordance with the recommendations in the french
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National charter on the ethics of animal experimentation and the DIRECTIVE 2010/63/EU OF
THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 22 September 2010 on the
protection of animals used for scientific purposes. The protocol was approved by the "Comité
d’Ethique en Expérimentation Animale de I'Université Claude Bernard Lyon 1" (CEEA-55;
DR2014-09). The capture of roe deers was carried out only by competent persons using meth-
ods which do not cause the animals avoidable pain, suffering, distress or lasting harm.

Ticks collection, protein and DNA extraction

One hundred and twenty semi-engorged I. ricinus ticks were collected from roe-deer (Capreo-
lus capreolus) in the Chize forest (Northern France) in February 2014. semi-engorged ticks
were selected as this stage presents the highest combined development of the two investigated
organs, ovaries and salivary glands, and also presents a high concentration of M. mitochondrii
symbionts [8]. Ticks were manually dissected under a stereomicroscope Leica (Wetzlar, Ger-
many), to collect salivary glands and ovaries. Salivary glands and ovaries from twenty ticks
were pooled in 100 uL PBS with 1.5 uL of 1x protease inhibitor (Sigma). After mechanical dis-
ruption of tissues, 20 UL of lysate were recovered for subsequent DNA extraction. The remain-
ing volume was subjected to sonication with Digital Sonifier 450 (Branson Ultrasonic
Corporation, Danbury, CT, USA), with three five-second treatments. Each sample was then
centrifuged at maximum speed for 10 min and supernatants were recovered and stored at
-80°C until use. DNA from each sample was extracted using the Qiagen DNeasy Blood and Tis-
sue Kit (Hilden, Germany) following manufacturer instructions. DNAs were eluted in 50 uL of
sterile water and stored at -20°C until molecular analysis.

PCR

The presence of common tick-borne pathogenic bacteria [14] in the extracted DNA was
screened using previously described PCR protocols for Borrelia burgdorferi [15], Anaplasma
spp., Ehrlichia spp. and Rickettsia spp. [16].Samples negative for the presence of pathogens
were subsequently analyzed for absolute quantification of M. mitochondrii content using a pre-
viously described Sybr green real-time PCR approach [8] based on the amplifications of a frag-
ment of the M. mitochondrii gyrB gene (coding for the protein gyrase B) and a fragment of the
I ricinus nuclear gene cal (coding for the protein calreticulin). Results were expressed as ratio
of gyrB/cal copy numbers.

Quantification of proteins

The Bicinchoninic Acid (BCA) assay [17] was applied to obtain the exact quantification of
each pool of proteins extracted from salivary glands and ovaries. Bovine serum albumin was
the standard protein used for the production of calibration curves, in the range of concentra-
tions between 5 and 25 pug/mL.

Two-Dimensional Electrophoresis (2-DE)

About 250 pg of extracted proteins were dissolved in 125 pL of rehydration buffer (8 M urea,
4% CHAPS (w/v), 65 mM DTE, 0.8% carrier ampholytes (v/v), 0.5% bromophenol blue) and
loaded onto 7 cm IPG strips, with nonlinear (NL) pH 3-10 or linear pH 4-7 gradient range,
Amersham Biosciences (Amersham, UK). Strips were rehydrated without applying voltage for
1 h at 20°C. The first-dimensional IEF was carried out at 15°C using an Ettan IPGphor system
(Amersham Biosciences), programmed with the following voltage gradient: 30 V for 8 h, 120 V
for 1 h, 500 V for 0.5 h, 1000 V for 0.5 h and 5000 V until a total of 25-27 kV/h was reached.
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Reduction/alkylation steps were applied between the first and the second dimension. The
focused IPG strips were incubated for 15 min at room temperature in 6 M urea, 2% (w/v) SDS,
50 mM Tris pH 6.8, glycerol 30%, containing 2% (w/v) DTE, followed by a second incubation
of 15 min in the same buffer containing 2.5% (w/v) iodoacetamide and 0.5% bromophenol
blue. At the end of the IEF step, strips were hold in place with 0.4% low melting temperature
agarose and loaded onto 8x6 cm slabs, 12.5% SDS polyacrylamide gels. Electrophoresis was car-
ried out at a constant current of 10 mA per gel in a PROTEAN II xi 2-D Cell equipment Bio-
Rad (Berkeley, California), until the buffer front line was 1 mm from the bottom of the gels.
The 2-DE gels were stained with “Blue silver” (colloidal Coomassie G-250 staining), according
to Candiano et al [18]. Digital images of stained gels were acquired using VersaDoc Imaging
Model 3000 (BioRad) and then subjected to quali/quantitative analysis using the PD Quest
(BioRad) version 8.0.1 software. Scanned images were filtered and smoothed to remove back-
ground noise, vertical/horizontal streaking and gel artifacts and then normalized to eliminate
the variability of each sample. The software then determined the amount of spots present and
calculated their intensity by applying the following algorithm: peak value (ODs/image units)
“ox" 0y (standard deviations in x and y).

Reproducibility of the study

To verify the reproducibility of the study, 2-DE maps were obtained in triplicate for each of the
analyzed salivary glands (SG) and ovary tissues (OT) pools. Those presented in this report are
the best representative gels among all generated that showed spots consistently present. Experi-
mental steps concerning sample preparation, electrophoretic run and gel staining were per-
formed “in parallel” on all samples.

In situ enzymatic digestion

Enzymatic digestion was performed as previously described [19]. Briefly, the selected spots
were carefully excised from the gel, placed into Eppendorf tubes and broken into small
pieces. This material was then washed twice with aliquots (200 pL) of 100 mM ammonium
bicarbonate buffer pH 7.8, 50% acetonitrile (ACN) and kept under stirring overnight, until
complete destaining. Gels were dehydrated by addition of ACN (100 pL). After removal of
the organic solvent, reduction was performed by addition of 50 uL of 10 mM Dithiothreitol
(DTT) solution (40 min at 37°C). DTT was replaced with 50 uL of 55 mM iodoacetamide for
45 min at 56°C. This solution was removed and the gel pieces were washed twice with 200 pL
of 100 mM ammonium bicarbonate for 10 min, while vortexing. The wash solution was
removed and gel dehydrated by addition of 200 uL of ACN until the gel pieces became an
opaque-white color. ACN was finally removed and gel pieces were dried under vacuum. Gels
were rehydrated by addition of 75 puL of 100 mM ammonium bicarbonate buffer pH 7.8, con-
taining 20 ng/pL sequencing grade trypsin (Promega, Madison, W1, USA) and digestion was
performed incubating overnight at 37°C. Following enzymatic digestion, the resultant pep-
tides were extracted sequentially from gel matrix by a three-step treatment (each step at 37°C
for 15 min) with 50 uL of 50% ACN in water, 5% trifluoroacetic acid (TFA) and finally with
50 uL of 100% ACN. Each extraction involved 10 min of stirring followed by centrifugation
and removal of the supernatant. The original supernatant and those obtained from sequential
extractions were pooled, dried and stored at -80°C until mass spectrometric analysis. At the
moment of use, the peptide mixture was solubilized in 100 pL of 0.1% formic acid (FA) for
MS analyses.

PLOS ONE | DOI:10.1371/journal.pone.0138842 September 23,2015 4/16



@’PLOS ‘ ONE

Ixodes ricinus Ovaries and Salivary Glands Comparative Proteome

LC-MS/MS

All analyses were carried out on an LC-MS (Thermo Finnigan, San Jose, CA, USA) system con-
sisting of a thermostated column oven Surveyor autosampler controlled at 25°C, a quaternary
gradient Surveyor MS pump equipped with a diode array detector, and an Linear Trap Quad-
rupole (LTQ) mass spectrometer with electrospray ionization ion source controlled by Xcalibur
software 1.4. Analytes were separated by RP-HPLC on a Jupiter (Phenomenex, Torrance, CA,
USA) Cy5 column (150 x 2 mm, 4 pum, 90 A particle size) using a linear gradient (2-60% solvent
B in 60 min) in which solvent A consisted of 0.1% aqueous FA and solvent B consisted of ACN
containing 0.1% FA. Flow-rate was 0.2 mL/min. Mass spectra were generated in positive ion
mode under constant instrumental conditions: source voltage 5.0 kV, capillary voltage 46 V,
sheath gas flow 40 (arbitrary units), auxiliary gas flow 10 (arbitrary units), sweep gas flow 1
(arbitrary units), capillary temperature 200°C, tube lens voltage —105 V. MS/MS spectra,
obtained by CID studies in the linear ion trap, were performed with an isolation width of 3 Th
m/z, the activation amplitude was 35% of ejection RF amplitude that corresponds to 1.58 V.

Data processing was performed using Peaks studio 4.5 software. An ad-hoc database was
obtained selecting from the NCBI database all the protein sequences belonging to the following
taxonomic groups: Ixodida (taxid:6935), Cervidae (taxid:9850), Borrelia (taxid:138), Rickett-
siales (taxid:766). The mass lists were searched against the SwissProt and the ad-hoc protein
database under continued mode (MS plus MS/MS), with the following parameters: trypsin
specificity, five missed cleavages, peptide tolerance at 0.2 Da, MS/MS tolerance at 0.25 Da, pep-
tide charge 1, 2, 3+, and experimental mass values: monoisotopic.

Western Blotting

Western blot analysis was effected starting from 100 micrograms of proteins extracted from
the OT and SG pool that exhibited the highest concentrations of M. mitochondrii based on
GyrB/cal gene ratio. Separated proteins were transferred onto nitrocellulose membrane by
using a Trans Blot Electrophoresis Transfer Cell (BioRad) and applying a current of 200 mA
for 1.20 h in running buffer (25 mM Tris pH 8.3, 192 mM glycine, 20% methanol). To verify
the transfer of proteins, the membrane was stained with Ponceau Red and washed with PBS
(10 ml) for 10 min. After 1h incubation in 5% milk (10 ml) diluted in PBS and three additional
washes with PBST(0,1% Tween (10 ml), the membrane was incubated overnight with th poly-
clonal antibodies against the M. mitochondrii flagellar protein FliD [10] at a dilution 1:5000 in
1% milk. After washing the membrane three times with PBST (10 ml), incubation with the sec-
ondary antibody (Dako, Glostrup, Denmark) was carried out for 1 h at room temperature with
polyclonal goat anti-rabbit immunoglobulin diluted 1:2000 in 1% milk in PBST. The mem-
brane was finally washed three times with PBS and incubated in ECL Prime solution (GE
Healthcare, Uppsala, Sweden). Immunoblots were acquired with the ImageQuant LAS 4000
analyzer (GE Healthcare).

Results
PCR

Concentration of M. mitochondrii and presence of tick-borne pathogens was assessed in all the
OT and SG pools by performing PCR on the DNA extracted from the samples. Two out of six
OT and SG pools were positive to tick-borne pathogens and were thus excluded from subse-
quent analyses. PCR for the detection of M. mitochondrii was performed on the remaining
samples and all OT and SG pools resulted, as expected, positive to M. mitochondrii. The copy
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numbers of gyrB and cal genes and the gyrB/cal x1000 ratios are provided in S1 Table of Sup-
porting Information.

Two-dimensional electrophoresis with nonlinear pH 3—10 gradient range

To identify I. ricinus proteins differentially expressed between OT and SG, as well as proteins
of the M. mitochondrii symbiont, parallel 2-DE analyses were performed on the four salivary
glands (SG) and ovary tissues (OT) of I. ricinus adult ticks that were infected by M. mitochon-
drii that resulted free from other bacterial pathogen presence. Gels were scanned and spots
were detected using the spot detection wizard tool, after defining and saving a set of detection
parameters. Following spot detection, the original gel scans were filtered and smoothed to clar-
ify spots, remove vertical and horizontal streaks, and remove speckles. Three dimensional
Gaussian spots were then created from filtered images. Three images were created from the
process: the original raw 2-D scan, the filtered image, and the Gaussian image. A match set for
each pool was then created for comparison after the gel images had been aligned and automati-
cally overlaid. If a spot was saturated, irregularly shaped, or otherwise of poor quality, then the
Gaussian modeling was unable to accurately determine quantity. In these cases, the spot was
defined in the filtered image using the spot boundary tools. Thus, for each pool, a master gel
was produced which included protein spots only if present at least in two out of the three gels.
The mean spot number in Coomassie stained gels was 235129 in SG and 221421 in OT. A set
of spots chosen from the two master gels were excised, destained, digested with trypsin, and
peptides were submitted to LC-MS/MS. The MS fragmentation data were searched against the
SwissProt and the ad-hoc designed protein databases, and the queries were performed using
the Peaks studio 4.5 software. A total of 47 proteins were identified, 20 from SG and 27 from
OT. A complete list of the identified proteins is presented in S2 Table.

The master gels from both SG and OT pools showed similar patterns of proteins such that
they could be matched to each other. This facilitated the correlation of gels and the creation of
a virtual image, indicated as high master gel (HMG), comprehensive of all matched spots
derived from master gels. The procedure described is summarized in Fig 1.

Differentially expressed proteins

Comparison of 2-DE patterns for SG and OT revealed several qualitative and quantitative dif-
ferences between the two sets of pools. In terms of presence/absence of spots, qualitative differ-
ences are represented in Fig 2. As shown, while the majority of spots were common to both SG
and OT (170 + 25, evidenced in green), some protein spots present in SG profile were absent
from the OT one and viceversa. In particular, 81 spots (marked in red) were exclusive of SG
and 57 spots (labelled in blue) were detected solely in OT.

Spot quantities of all gels were normalized to remove non expression-related variations in
spot intensity, and data were exported as clipboard for further statistical analysis. The raw
amount of each protein in a gel was divided by the total quantity of all proteins (spots) that
were included in that gel. The results were evaluated in terms of spot optical density (OD). Sta-
tistical analysis of PDQuest data allowed to assess differences in protein abundance on a pro-
tein-by-protein basis. According to guidelines for differential proteomic research, only spots
that showed a change in density at p < 0.01 (by Student's t-test) were considered “differentially
expressed” in the two pools of samples. This term was used here meaning differential protein
abundance determined by several processes, including changes in protein biosynthesis and
modification or degradation. Using these criteria, 21 spots differed by the ratio indicated above
and were selected by the statistical program as spots having significant differences in the rela-
tive abundance between SG and OT. In particular, ten among these spots (indicated by
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Fig 1. (A) 2-DE maps of three different pools of salivary gland (SG, left) and ovarian tissue (OT, right)
of I. ricinus, obtained by performing IEF on 7 cm IPG strips with 3—10 NL pH range and SDS-PAGE in
the second dimension on 8x6 cm slabs, 12.5% T gels. (B) SG and OT master gels obtained merging
the three gels for each sample type. (C) 2-DE High Master Gel created comparing the SG and OT gels.

doi:10.1371/journal.pone.0138842.g001

numbers 1 to 10 in HMG of Fig 2) showed 4- to 18-fold increase/decrease in density. A set of
panels, shown in Fig 3, was generated to highlight density variances of these spots between the
two sets of pools (i.e. SG and OT).

In these panels the region of stained gel containing the spot of interest was zoomed and up-/
downregulation graphically represented. Efforts have been devoted to the identification of
these proteins, to investigate whether they might have an involvement in the biological pro-
cesses characteristic of ovaries and salivary glands, or in the interaction between M. mitochon-
drii and I. ricinus.

These spots were thus carefully excised from the gel, destained, digested with trypsin, and
peptides were submitted to LC-MS/MS following the procedure detailed in the Materials and
Methods section. The MS fragmentation data were searched against the SwissProt and the ad-
hoc designed protein databases, and the queries were performed using the Peaks studio 4.5
software. All but two (spots 2 and 9) of the queried proteins were identified. The low abun-
dance of proteins corresponding to spots 2 and 9 most likely determined the poor quality of
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Fig 2. High Master gel, showing qualitative differences between the SG and OT 2-DE master gel patterns (NL, pH 3—10 gradient range). Labelled in
green: spots (n = 170 + 25) common to both SG and OT. Labelled in red: spots (n = 81) exclusive of SG. Labelled in blue: spots (n = 57) detected solely in OT.

doi:10.1371/journal.pone.0138842.9002

their MS signals and failure in their identification. The fact that unique proteins were identified
for all other analyzed spots suggested that, at least for these spots, spot overlap was minimized.
Detailed identification data, including accession number, theoretical pI, molecular mass,
percent of sequence coverage, number of peptides identified, and MOWSE score of each of the
nine proteins identified are reported in Table 1.
Additional information concerning the primary sequence of all peptides identified for each
protein analyzed was included in S3 Table of Supporting Information.

Western blotting

Given the aim of our study, proteins from SG and OT profiles of the pool that exhibited the
highest concentrations of M. mitochondri were transferred onto PVDF membranes and incu-
bated with the polyclonal anti-FliD antibodies, followed by anti-rabbit antibody. Based on: i)
its position (pI/Mr) on the PVDF membrane and ii) its recognition by the antibody, the protein
spot indicated by an arrow in panel A (OT pool) of Fig 4, was tentatively assigned to FliD. As
shown in panel B of Fig 4, despite the appearance of interfering spots, the hypothetical FliD
spot was undetectable in the SG profile. This result is expected and the load of M. mitochondrii
bacteria is much higher in ovaries than in salivary glands (S1 Table) [10, 11].
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Fig 3. Set of panels showing the density variances between SG and OT pools for spots 1 to 10. In each panel the region of the stained gel containing
the spot of interest was magnified (inset) and the up-/downregulation graphically represented. Pvalue indicating statistical significant density variance (T-test)

is reported in each panel.

doi:10.1371/journal.pone.0138842.g003

To achieve identification, the immunoreactive protein spot was thus excised from the origi-
nal OT gel and submitted to the LC-MS/MS procedure indicated above. The results (shown in
Table 2) confirmed what appeared evident from the visual inspection of the gel, i.e. the ana-
lyzed spot, rather than comprising a single polypeptide chain, was a mixture of at least three

components, i.e. Endoplasmic Reticulum Protein 60, putative actin 2, and an unknown protein

Table 1. Up and downregulated proteins identified by LC-MS/MS.

Spot Accession Description Mass Score Coverage Query
(%) (%) matched
1 gi|442756551|gb| Putative heat shock 70 kda protein 5 [Ixodes ricinus] 72,595 99 8,05% 5
JAA70434.1|
2 / Not detected / / / /
gi[322422107|gb| Beta actin [Ixodes ricinus] 16,038 90 6,94% 1
ADX01224.1|
4 gi|215497327|gb| Enolase, putative [Ixodes scapularis] 21,493 90 4,52% 1
EEC06821.1]
5} gi[442753241|gb| Putative enolase [Ixodes ricinus] 47,145 99 23,79% 6
JAA68780.1|
6 gi[215491972|gb| Protein disulfide isomerase, putative [Ixodes scapularis] 54,929 98 6,38% 4
EEC01613.1]
7 gi|442748259|gb| Putative 3-hydroxy-3-methylglutaryl-coa reductase 10,741 20 22,43% 2
JAA66289.1| [Borrelia spp]
8 gi|597718071|gb| Serum albumin, partial [Cervus nippon] 66,15 75 6,67% 4
AHN19768.1|
9 / Not detected / / / /
10 gi|442754645|gb| Putative heat shock protein [Ixodes ricinus] 36,782 82 4,01% 2
JAA69482.1|
doi:10.1371/journal.pone.0138842.1001
PLOS ONE | DOI:10.1371/journal.pone.0138842 September 23,2015 9/16
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A

B

Fig 4. Inmunoblotting of proteins from SG and OT profiles generated as indicated in Fig 1. PVDF membranes were incubated with the rabbit
polyclonal antibodies anti-FIliD of M. mitochondrii, followed by anti-rabbit antibody. The protein spot(s) indicated by an arrow in Panel A (OT pool) was
tentatively assigned to FliD. Panel B shows the SG profile in which the hypothetical FliD spot is undetectable.

doi:10.1371/journal.pone.0138842.g004

from Borrelia. Information concerning the primary sequence of all peptides identified for each
protein analyzed have been included in S4 Table of Supporting Information.

We hypothesized that the fact that the putative flagellar protein FliD was, most likely, less
abundant compared to the bulk of other proteins present in the spot, prevented its identifica-
tion. This hypothesis was strengthened by the poor quality of MS sequence data obtained from
third spot (or cluster of spots). This indeed made it difficult to define exactly whether the FliD
protein of was actually present within the spot(s) considered.

Two-dimensional electrophoresis with pH 4—7 gradient range:
identification of FliD

In an effort to overcome the limitations indicated above and to definitively establish (or
exclude) the presence of FliD under the spot(s) examined in the OT pool, we worked on the
optimization of the electrophoretic conditions. After performing a extensive set of trials with
various electrophoretic conditions, the best option was found to be the application of a narrow
range pH gradient (linear pH 4-7). This provided a better resolution of proteins, minimizing
potential spot overlaps (Fig 5A). The immunoreactive protein spot (indicated by an arrow in
PVDF membrane, B) was evidenced in OT profile obtained under the experimental conditions
mentioned above.

As a validation of data discussed above, no spot was reactive against the antibody in SG pro-
file (data not shown). After spot excision and tryptic digestion, LC-MS identification con-
firmed the presence of flagellar protein FliD under this spot (Table 3).

Table 2. List of proteins identified under the immunoreactive spot.

Accession

0i[442747467|gb|JAAG5893.1|
0i[556065071|gb|JAB75571.1|
0i|6841058|gb|AAF28881 1]

doi:10.1371/journal.pone.0138842.t1002

Description Mass Score (%) Coverage(%) Query matched
Putative erp60 [Ixodes ricinus] 52,115 98 6,45% 3
putative actin-2 [Ixodes ricinus] 36,27 89 9,79% 2
unknown [Borrelia hermsii] 29,518 25 3,92% 1

PLOS ONE | DOI:10.1371/journal.pone.0138842 September 23,2015 10/16



@’PLOS ‘ ONE

Ixodes ricinus Ovaries and Salivary Glands Comparative Proteome

A

- ""‘

/.

B

Fig 5. (A) 2-DE map of OT obtained by performing IEF on a 4-7 linear pH range and SDS-PAGE on a constant 12,5% T in the second dimension, to
separate proteins clustered in the single spot shown in Fig 4. (B) Inmunoblotting of the gel slab indicated in Panel A. Arrow points to spot originated

from separation and identified as FIiD.

doi:10.1371/journal.pone.0138842.g005

The primary sequence of peptides found for identification of protein analyzed was included
in S5 Table of Supporting Information.

Discussion
Analysis of common proteins differentially expressed

A recent study presented the identification of hundreds of proteins in salivary glands of I. rici-
nus in the presence of the pathogenic tick-borne spirochete B. burgdorferi, demonstrating that
the expression of proteins modulated by infection differed as a function of the various strains
of B. burgdorferi [20]. In the present study, a total of 47 spots, 27 from OT and 20 from SG
were selected for sequencing. Our results were fully congruent with those previously published,
validating our approach and confirming the high expression level of a number of proteins,
such as Heat shock protein, Protein disulfide isomerase, Enolase, Actin, Hemelipoglycoprotein
precursor (putative) etc. This sequencing effort detected only proteins that could be readily
identified as belonging to the tick proteome, or that could not be identified unambiguously, but
did not reveal the presence of proteins belonging to the bacterial symbiont M. mitochondrii. To
evaluate whether detection of symbiont proteins was possible, we thus designed a specific
immunoproteomic approach, described above and discussed below.

To explore qualitative and quantitative differences between SG and OT of I. ricinus infected
by M. mitocondrii, and to identify tissue-specific proteins, as well as proteins involved in the
interaction between the bacterium and the tick, we compared the proteomic profiles of these
tissues. The reproducible patterns generated for both tissues evidenced 170 + 25 spots shared
between SG and OT. In addition, 81 protein spots were exclusive of SG profile and 57 spots

Table 3. List of proteins that confirmed the presence of FliD.

Accession

/
0i|442747467|gb|JAAB5893.1|

doi:10.1371/journal.pone.0138842.1003

Description Mass Score (%) Coverage(%) Query matched
Flagellar protein FLID OS = Midichloria mitochondrii 100,58 84 14,64% 13
Putative erp60 [Ixodes ricinus] 52,115 98 6,45% 3

PLOS ONE | DOI:10.1371/journal.pone.0138842 September 23,2015 11/16



@’PLOS ‘ ONE

Ixodes ricinus Ovaries and Salivary Glands Comparative Proteome

were detected solely in OT. In particular, we selected and investigated the 10 proteins that
exhibited the largest changes in density (4- to 18-fold increase/decrease, see Fig 2, Fig 3 and
Table 1). Proteins under spots 1 and 10, both identified as putative heat shock proteins (HSP),
were heavily differentially expressed. Putative HSP70 detected under spot 1 was 6-fold more
abundant in SG than in OT. By contrast, the putative HSP identified under spot 10 was 11-fold
more abundant in OT than in SG. Heat shock proteins are chaperones that, together with other
stress response proteins, are well known to protect cells and organisms from environmental
stress. HSP70, is involved in many cellular processes, including folding and refolding of nascent
and/or misfolded proteins, protein translocation across membranes, and degradation of termi-
nally misfolded or aggregated proteins [21]. The role played by HSP proteins in the growth and
survival of I. ricinus is potentially very important. Being involved in the binding and presenta-
tion of antigens to the immune system, they constitute candidate molecules that could be
involved in tick immune response to pathogen infection. Interestingly, a connection may exist
between pathogen infection and tick response to stress conditions. In response to heat and
other stress (cold, hunger), nearly all ticks undergo diapause. Indeed HSPs involved in the dia-
pause of multiple species of insects were reported [22], suggesting that they may play key roles
in the physiological response to stress of other arthropods, such as ticks. HSP70 is more
expressed in salivary glands than in ovarian tissue and midgut and its expression increases with
female tick feeding, suggesting a possible role of this protein during blood ingestion and/or
digestion [23]. We speculated that this could be ascribed to the great changes in structure that
the salivary glands of hard ticks undergo during blood feeding with an increase in size and the
acceleration of protein synthesis [24]. However, the fact that HSP70 was found to be down reg-
ulated in Anaplasma phagocytophilum infected whole Ixodes scapularis ticks, guts and salivary
glands [23], may suggest that these proteins have a different function during pathogen
infection.

The protein identified under spot 3 was B-actin. The reason of its 5-fold higher expression
in SG compared to OT is still a matter of speculation. First, we hypothesized that this was a
consequence of the importance of SG in tick feeding. Actin is an important structural protein
required for exoskeleton rearrangement during tick engorgement [25] and is a common target
of many bacterial proteins. It has been shown that the cellular responses induced by a variety of
stimuli and pathogens involve changes in cell morphology and the polymerization state of
actin [26-27-28]. Studies in prokaryotes and eukaryotes demonstrated that nutrition and stress
affect the expression of housekeeping genes [29]. For example the low expression of actin
shown in the unfed first instars nymphs of I. scapularis is likely due to low nutrition levels
since they have not yet taken the blood meal and the nutrients incorporated into the eggs have
been depleted by larval development [30]. The significant differences observed during and
immediately after feeding in females are likely related to the dynamic changes that occur in the
physiology of ticks preparing for reproduction. It has also been shown that silencing the
expression of actin in the soft tick Ornithodoros moubata resulted in impairment of tick feeding
by a global attenuation of tick activity unrelated to specific function associated with engorge-
ment [29]. Finally, further aspects should be taken into consideration. I. ricinus, as I. scapularis,
are vectors of bacterial pathogens including A. phagocytophilum, and B. burgdorferi [30,31]. To
persist in their hosts, obligate intracellular bacteria have evolved a variety of mechanisms
including modulating host signaling and the actin cytoskeleton [32]. If this hypothesis proves
correct, it may be speculated that the high concentration of actin detected in SG of I. ricinus
could be the result of a sort of survival strategy developed by the symbiont M. mitochondrii to
persist in its arthropod vector.

The identification of enolase under spots 4 and 5 attracted our interest. Alpha-enolase, one
of the most abundantly expressed proteins in human cytosol, is a key glycolytic enzyme that
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converts 2-phosphoglycerate to phosphoenolpyruvate [33]. In blood-feeding arthropods this
protein is secreted in saliva and inoculated into the host during feeding. The finding of 4-fold
higher expression of enolase in SG compared to OT (spot 5) was not surprising. This result
may account for one of the pivotal roles of this enzyme. Enolase, in fact, promotes fibrinolysis
and maintains blood fluidity during blood ingestion and distribution in the tick midgut. Fibri-
nolysis is the natural process of fibrin clot solubilization and, in ticks, this process is essential
for dissolving any clot that might be formed during feeding, as well as preventing clotting of
the ingested blood meal in its midgut [34]. This said, the higher expression level in OT (10-fold
more expressed than in SG) of another putative enolase (spot 4) was a result apparently in con-
tradiction with the previous one. However, the multifunctionality of this protein in both pro-
karyotes and eukaryotes may probably account for this finding. In fact, it has been shown in
Rhipicephalus microplus [35] that, to support the energy-intensive processes of embryogenesis,
before blastoderm formation, glycogen reserves are preferentially mobilized. As a consequence,
protein degradation and gluconeogenesis intensify to supply the embryo with sufficient glucose
to allow glycogen re-synthesis. If glycogen is the main energy source during the early stages of
R. microplus embryogenesis, protein degradation increases during late embryogenesis [35].
Thus, the use of amino acids as a substrate for gluconeogenesis and the subsequent glycogen
re-synthesis play an important role during the stages of R. microplus embryogenesis. Protein
metabolism depends strongly on the substantial expression and activity of carbohydrate metab-
olism enzymes and alpha-enolase is a key glycolitic enzyme [36].

The protein identified under spot 6 was disulfide isomerase (PDI), a 55 KDa multifunctional
protein that participates in protein folding, assembly, and post-translational modification in
the endoplasmatic reticulum [37]. The fact that it was 18-fold-more expressed in SG than in
OT was not surprising. This protein, together with other saliva enzymes which are putatively
associated with antioxidant functions (i.e. glutathion-S-transferase, cytochrome c oxidase, oxi-
doreductase, NADH dehydrogenase), plays an important role in oxidative stress [38]. Tick-
feeding, in fact, induces injuries and oxidative stress leading to production of reactive oxygen
and nitrogen species (ROS and RNS) as part of the wound healing mechanism and anti-micro-
bial defenses. Several lines of research have shown that many parasites including ticks are sus-
ceptible to ROS and RN, as revealed by high expression of anti-oxidant enzymes in these
parasites or improved survival of these parasites when anti-oxidant system of their hosts are
impaired [38]. The production of antioxidant enzymes can be considered an evasion mecha-
nism of the immune response used by tick for improving the feeding efficiency, and collaterally
enhancing transmission of tick-borne diseases. It is also interesting to note that, given that the
tissue destroying effects of oxidative stress products are non-selective, there is a possibility that
tick saliva anti-oxidants are protective to host tissue [38].

Identification of FLID

One of the goals of this study was to evaluate whether it is possible to detect proteins from the
bacterial symbiont M. mitochondrii starting from protein extracts of ovaries and salivary glands
of the hard tick I. ricinus. Due to the higher symbiont load in OT we expected this to be easier
in this tissue, however none of the 2DE gel spots identified resulted to be of M. mitochondrii,
neither from the OT, nor from the SG. We thus questioned whether this was a result of the low
abundance of symbiont proteins or to some kind of technical issue. To investigate this, we per-
formed an immunoproteomic approach based on the detection of a single M. mitochondrii pro-
tein (FliD) in a blotting experiment after narrow range pH gradient (linear pH 4-7) 2DE
separation of OT and SG (see materials and methods). As shown in Fig 5, a spot potentially
corresponding to FliD, based on the chemical properties of the protein, was detected in OT
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blotting, but not in SG blotting. When analyzing the corresponding region in the original 2DE
gel, a cluster of spots was detected. Careful excision of these spots followed by LC/MS-MS
allowed the identification of erp60, as well as of the expected M. mitochondrii protein FliD.
This result indicates that symbiont proteins can indeed be identified using a proteomic
approach, but that this is impaired by low protein quantities and by clustering with I. ricinus
proteins. Specific approaches, such as the use of alternative narrow range pH gradients, immu-
noproteomic detection are thus needed to investigate the symbiosis between I. ricinus and M.
mitochondrii from a proteomic point of view.

Here we presented a methodological framework that will pave the way for future studies on
the proteomics of I. ricinus, with the goal of better understanding the biology of this vector and
of its symbiont M. mitochondrii, but also to be the basis of immunoproteomic approaches that
could prove useful for detecting novel antigenic proteins for innovative diagnostic and vaccina-
tion approaches.

Supporting Information

S1 Table. PCR results on DNA extracted from ovarian tissue and salivary glands pools.
GyrB and Cal gene copy numbers, GyrB Cal gene ratio, PCR positivity to Borrelia burgdorferi,
Anaplasma spp., Ehrlichia spp. and Rickettsia spp. are indicated.

(DOCX)

S2 Table. Complete list of the 47 identified proteins, 20 from salivary glands and 27 from
ovarian tissue.
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$3 Table. List of proteins up and downregulated with additional information such as the
primary sequence of peptides.
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S4 Table. List of proteins identified under the immunoreactive spots with additional infor-
mation such as the primary sequence of peptides.
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S5 Table. Primary sequence of peptides found for identification of analyzed proteins.
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