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Abstract

Background

This study observes changes in levels of seminal nitric oxide (NO), nitric oxide synthase

(NOS), macrophage migration inhibitory factor (MIF), sperm DNA integrity, chromatin con-

densation and Caspase-3in adult healthy men after scrotal heat stress (SHS).

Methods

Exposure of the scrotum of 25 healthy male volunteers locally at 40–43°C SHS belt warm-

ing 40 min each day for successive 2 d per week. The course of SHS was continuously

3 months. Routine semen analysis, hypo-osmotic swelling (HOS) test, Aniline blue (AB)

staining, HOS/AB and terminal deoxynucleotidyl transferase-mediated d UDP nick-end

labeling (TUNEL) were carried out before, during and after SHS. Seminal NO and NOS con-

tents were determined by nitrate reduction method. The activated Caspase-3 levels of sper-

matozoa and MIF in seminal plasma were measured by the enzyme-linked immunosorbent

assay (ELISA) method. Statistical significance between mean values was determined using

statistical ANOVA tests.

Results

The mean parameters of sperm concentration, motile and progressive motile sperm and

normal morphological sperm were significantly decreased in groups during SHS 1, 2 and

3 months compared with those in groups of pre-SHS (P<0.001). Statistically significant dif-

ferences of sperm DNA fragmentation, normal sperm membrane, and Caspase-3 activity

as well as the level of NO, NOS and MIF in semen were observed between the groups

before SHS and after SHS 3 months and the groups during SHS 1, 2 and 3 months

(P<0.001). After three months of the SHS, various parameters recovered to the level before
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SHS. WBC in semen showed a positively significant correlation with the levels of NO, NOS,

MIF and Caspase-3 activity. The percentage of abnormal sperm by using the test of HOS

showed a positively significant correlation with that of HOS/AB.

Conclusions

The continuously constant SHS can impact the semen quality and sperm DNA and chroma-

tin, which may be contributed to the high level of NO, NOS, MIF and Caspase-3 by SHS.

Introduction
In most mammals, male germ cells should be maintained below body temperature for proper
development. Transient scrotal heat stress (SHS) or transient scrotal hyperthermia may cause
alteration of sperm parameters and testicular germ cell apoptosis [1–4]. Previous studies on
azoospermia or oligozoospermia induced by SHS mainly focused on germ cell apoptosis [5–7];
no data regarding their possible effect on nitric oxide (NO), nitric oxide synthase (NOS) and
macrophage migration inhibitory factor (MIF) in semen are available. NO, NOS and MIF are
important regulators in many physiologic processes. NO is synthesized through the enzymatic
conversion of L-arginine to L-citrulline by the action of one of the isoenzymes known as nitric
oxide synthase (NOS), and is concerned with physiological functions in the human male repro-
ductive tracts [8,9]. Low concentrations of NO are necessary to complete a group of male
reproductive functions such as spermatogenesis, spermiogenesis, sperm motion, acrosome
reaction, sperm/oocyte fusion and sperm capacitation [10], however, high concentrations of
NO have injurious effects on sperm properties such as motility, morphology and DNA stabil-
ity, and to increase apoptosis and block all sperm functions [11–13]. MIF is a T-cell cytokine
and present in large quantities in human semen, and is one of the proteins transferred to sper-
matozoa during the epididymal transit [14,15]. MIF secreted in the epididymis and correlated
with sperm maturation and stability [14,15]. However, it is unknown how MIF influences
sperm function and apoptosis after scrotal heat stress. Up to the present, the effect of NO, NOS
and MIF on human sperm concentration, motility, morphology and DNA stability has not
been elucidated clearly.

The hypo-osmotic swelling (HOS) test and the Eosin Y (EY) staining can evaluate sperm
alive or dead and detect the integrity of the tail membrane of sperm [16–18]. The terminal
deoxynucleotidyl transferase-mediated d UDP nick-end labeling (TUNEL) [19], single cell gel
electrophoresis (COMET) assay [20], the sperm chromatin dispersion (SCD) test, and aniline
blue (AB) staining [21] are all simple, less expensive procedures and can be performed in a
short period of time, and chromatin condensation is vital for the function of the spermatozoon
as the motile carrier of the paternal genome. However, the vitality and the integrity of the same
sperm membrane could not be determined using these tests [16–19].

Caspase (Cysteine-requiring Aspartate Protease) is a protease family, which plays an impor-
tant role in apoptosis process. Caspase-3 is a key enzyme in apoptosis process. Of all the Cas-
pases, Caspase-3 is the most studied in mammalian cells. Activated Caspase-3 and loss of the
integrity of the DNA fragmentation are other markers of terminal apoptosis expressed by a
varying proportion of ejaculated sperm [22–24]. It has been hypothesized that sperm cell death
is associated with male infertility. However, the exact mechanisms of its involvement and ele-
vated intra-testicular temperature remain to be elucidated.
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The objective of this study was to evaluate whether semen parameters, seminal NO, NOS
and MIF, and sperm DNA integrity, chromatin condensation and activity of sperm Caspase-3
are altered in 25 adult healthy men after scrotal heat stress (SHS). On the other hand, the corre-
lations between the levels of NO, NOS, MIF in seminal plasma and methods of determining
sperm DNA integrity, sperm chromatin condensation and Caspase-3 were explored.

Materials and Methods

Development of Scrotal Heat Stress Device (SHSD)
SHSD involved water bag, electric heating system, timer and temperature controller, and tem-
perature probe (Fig 1). The water bag was attached to the underpants by 4 belts. The input and
output Voltage of the SHSD’s electric heating system were 200 V and 12 V, respectively. The
time was 1–60 min. The temperature ranges were from 40.0°C to 43.0°C.

Equipment and Reagents
Computer-aided sperm analysis (CASA) machines (WLJY-9000, Weili, Beijing, and Fangzheng
Beijing University, China) were used for kinematic analysis of spermatozoa. A Leica micros-
copy (DM4000B; Leica, Wetzlar, Germany) and a phase-contrast microscopy (IX51, Olympus,
Japan) were used to observe sperm and cells. Ultraviolet and visible spectrophotometer (TU-
1810, Beijing Perkinje General Instrument Co., LTD, PGENERAL) was determined for seminal
nitric oxide (NO) and nitric oxide synthase (NOS). The Caspase-3 activity was determined by
the Microtiter Plate Reader (ELISA-reader, SMP500-18410-EMKX Versa Max, Molecular
Devices Corporation, USA). Sperm Morphology Staining Kit (Diff Quik, YZB-0058-2011) and
Aniline Blue Kit were purchased from Hua Kang (YZB-0058-2012, Hua Kang Co. LTD. Shen-
zhen, China). The TUNEL In-Situ Cell Death Detection Kit, Nitric Oxide (NO) Kit, Nitric
Oxide Synthase (NOS) Kit and Caspase-3 Activity Assay Kit were purchased from Bioengi-
neering Institute of Nanjing Jiancheng (Nanjing, Jiangsu, China).

Volunteers
Between February 2012 and November 2014, twenty-five healthy adult male volunteers, who
already had previously fathered at least one child, were recruited into our study. The mean age

Fig 1. Designed sketch of SHSD.No. 1 and 7 show the fixed belts, No.2 shows the water bag, No. 3 shows
the electric heating pad, No. 4 shows the protective layer of the water bag, No. 5 shows the thermal insulation
layer and No. 6 shows the temperature probe which links with a digital display. (a) vertical section map of
SHSD, (b) cross-section map of SHSD.

doi:10.1371/journal.pone.0141320.g001
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of them was 34.6 ± 4.5 years (range, 27–43 years). Prior to this study, subjects were informed of
the investigations and provided consent. This study has been approved by the Institutional
Review Board (IRB) and reviewed by the Ethics Committee of Shandong Provincial Institute of
Science and Technology for Family Planning in China. Each of the 25 subjects had provided
semen samples for this study. The approval of the institutional research ethics committee and
signed written consent of every subject included in the study were obtained. A detailed medical
history was taken and physical examination was performed. Subjects currently on any medica-
tion or antioxidant supplementation were not included. Physical examination of subjects
before, during and after the SHS included the secondary sexual character, scrotum, penis, sper-
matic cord, vas deferens, testis and epididymis. In addition, subjects were also asked about
their sex life and with or without erectile dysfunction, anejaculation or other symptoms. The
identification information of each subject in this study was kept confidential and was protected
from the public.

Volunteers were chosen for the experiments of wearing 40–43°C SHS, two days per week,
and 40 min per day, for a period of 3 consecutive months. Semen was collected at 2 and 1
weeks before, and 1, 2 and 3 months during heat treatment and 1, 2 and 3 months after the last
SHS.

Routine Semen Analysis
Semen samples from the 25 healthy subjects were collected by masturbation and ejaculated
into sterile glass cups after 3 to 5 days of abstinence before being were analyzed on-site for both
macroscopic and microscopic characteristics within one hour of collection. Information
regarding the semen source was withheld from the technologists who performed the semen
analysis. Sperm count, percentage of total and progressive motility sperm were determined by
using a CASA system. Management of semen aliquots and CASA system operation was real-
ized by a specialized technician experienced in the handling of semen. At least 500 sperm were
evaluated per sample (*8–10 fields), and means for each of the motility parameters [total
motility (grade a + b +c %), progressive motility (a +b %)] and sperm concentration were
recorded. Density count of leukocytes in seminal plasma was referred to peroxidase dyeing
method, recommended by the World Health Organization (WHO) criteria. Sperm morphol-
ogy was assessed using the strict (WHO) after Diff-Quik staining [25,26].

Hypo-osmotic Swelling (HOS) Test
HOS test was performed to determine sperm vitality and as previously reported [16–18].

TUNEL Assay
The TUNEL assay was performed using the In-Situ Cell Death Detection Kit. The fixed slides
were rinsed in PBS, pH 7.4, and then permeated with 2% Triton X-100. The terminal deoxynu-
cleotidyl transferase-labeled nucleotide mixture was added to each slide, and these were incu-
bated in a humidified chamber at 37°C for 60 min in the dark. Next, the slides were rinsed
3 times in PBS, with each rinse lasting 5 min, and then converter peroxidase solution was
added to the samples. The slides were incubated in a humidified chamber for 30 min at 37°C,
rinsed 3 times in PBS, and were then incubated in the presence of diaminobenzidine substrate
for 10 min at 15°C to 25°C. The slides were further rinsed 3 times with PBS and counterstained
with 2% methyl green. A total of 500 sperm per patient were assessed by the same examiner
using bright-field microscopy. First, the total number of sperm per field that were stained with
methyl green was counted. Next, the number of brown cells (TUNEL positive) was then
counted, and this number was expressed as the percentage of the total sperm cells. Negative
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(omitting the enzyme terminal transferase) and positive (incubation with deoxyribonuclease I,
1 U/mL for 20 min at room temperature) controls were performed for each experiment. The
final percentage of sperm with fragmented DNA was referred to as the percentage of TUNEL-
positive sperm.

Aniline Blue (AB) Staining and HOS (HOS/AB)
After the HOS test had been performed, the AB test was carried out immediately to evaluate
the sperm chromatin condensation of the 25 subjects. A total of 0.5 mL of the semen sample
(mixed with hypoosmotic medium) from the HOS test was centrifuged at 500 g for 5 min, and
then the supernatant was discarded and the sperm pellet was resuspended in 0.1 mL of a hypo-
osmotic solution. To perform AB staining, sperms were stained with AB as described in a pre-
vious report [27,28]. The slides were prepared by smearing 10 μL of each HOS semen sample.
The slides were air-dried and then fixed with a solution of methanol (Hua Kang Co. LTD.
Shenzhen, China) in 0.2M phosphate buffer (pH = 7.2) for 1.5 min at room temperature. Slides
were then stained with 5% aqueous aniline blue solution mixed with 4% acetic acid (pH = 3.5)
for 5 min. This was followed by rinsing and air drying of the slides. For each stained smear, 200
spermatozoa were evaluated with light microscope in oil immersion magnification (100 × objec-
tive) (DM4000B; Leica, Wetzlar, Germany). Spermatozoa with unstained (no or light aniline
blue-stained) nuclei are considered as normal (clear, mature chromatin) while those blue
stained (intermediate and dark aniline blue-stained) were abnormal (immature chromatin)
(Fig 1). Results were expressed as the percentage of nuclear unstained and stained sperm. An
ejaculate with a rate of blue-stained nucleus sperm less than 20% was considered normal.

The patterns observed for the HOS/AB test were classified as follows (Fig 2): AB1, mature
sperm, having completed histone transition protein–protamine replacement, stained lightly or
unstained and swollen tails, membrane intact and no chromatin defects; AB2, spermatozoa
with lightly or unstained head and unswollen tails (membrane damaged and no chromatin
defects); AB3, spermatozoa with intermediate or dark aniline blue-stained head and swollen
tails (chromatin defects and membrane intact); and AB4, spermatozoa with intermediate or
dark aniline blue-stained head and unswollen tails (chromatin defects and membrane dam-
aged, severely immature sperm).

Fig 2. The hypo-osmotic swelling test and aniline blue (AB) staining (HOS/AB) of the same sperm.
Patterns observed for the HOS/AB test: (a) AB1, sperm unstained and swollen tails; (b) AB2, sperm
unstained and unswollen; (c) AB3, sperm darkly stained and swollen tails; (d) AB4, sperm darkly stained and
unswollen.

doi:10.1371/journal.pone.0141320.g002
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Caspase-3 Activity
Caspase-3 activity was detected with assay kit of the manufacturer's protocol (Nanjing Jian-
cheng, China). About 3–5×106 sperms from the semen samples were collected. After centrifu-
gation (2 000 rpm, 5 min), the supernatant was carefully removed, making sure that no cells
are removed by suction, the pellet was washed with 300 μl PBS once. The previous process was
repeated once before adding lysis buffer to the pellet according to the ratio of 50 μl lysis buffer/
2 million cells. Pellet was resuspended and cleaved 30 min in the ice bath with shaking 3~4
times, 10 sec each time, or freezing and thawing 2–3 times. Then the sperm samples were cen-
trifuged for 10–15 min at 4°C (12 000 rpm). The supernatant (containing protein cleavage) was
transferred to fresh tubes and put on ice and added 0.5 μl DTT to per 50 μl lysate, incubated
for 1 h. Then 5 μl of DEVD-pNA (Asp-Glu-Val-Asp-p-nitroanilide) was added, incubated at
37°C for 4 h. The activated Caspase-3 levels were determined with amicrotiter plate reader,
which can detect the absorbance of 400- or 405-nm. A negative control (sample with 50 μl
PBS) and a positive control (sample treated with 10 μMH2O2 for 1 hour at 37°C) were used in
all experiments.

Determination of Nitric Oxide (NO) and NO Synthase (NOS) in Seminal
Plasma
Total NO was measured spectrophotometrically as the manufacturer’s instructions using a
commercially available kit (Jiancheng, Nanjing, Jiangsu, China). The kit involves the enzymatic
conversion of nitrate to nitrite by the enzyme nitrate reductase, followed by colorimetric detec-
tion of nitrite. NO is synthesized from L-arginine in a reaction catalyzed by nitric oxide
synthase (NOS), and then NO combines with a nucleophilic substrate to produce a chromo-
phore that absorbs light at 530 nm. The assay for NOS is based on the quantitative conversion
of oxyhemoglobin to methemoglobin by NO, which can be followed spectrophotometrically as
a decrease in absorbance [29]. Unit definitions:One unit is defined as the amount of enzyme
that will produce 1.0 nmol of NO per min at 37°C in 1.0ml seminal plasma. Calculation for-
mula:

Total� NOS ðU=mlÞ ¼ OD tNOS � OD Blank
nanomole extinction coefficient of chromophore at 530nm

� Df

� 1

nanomole extinctlight path pathreactiontim

Df ¼ total volume of the reaction solutionðmlÞ
volumeof the sample usedðmlÞ

Measurement of the Concentration of Macrophage Migration Inhibitory
Factor (MIF) in Seminal Plasma
The concentration of MIF in seminal plasma was assessed by using a specific human enzyme-
linked immunosorbent assay (ELISA) kit (Jiancheng, Nanjing, China). Seminal samples were
centrifuged for 10 min at 300 × g and then filtered with a 0.22 μm sterile Milex filter (Millipore,
Billerica, MA). Forty μl of seminal samples, 10 μl of MIF-antibody and 50 μl of streptavidin-
HRP were added into each test well. The plate was sealed with sealing memberance, and incu-
bated for 60 min at 37°C. After removed the memberance carefully, the plate was washed five
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times. The chromogen solution (A) 50 μl and the chromogen solution (B) 50 μl were added
into each well. To stop the reaction, 50 μl of stop solution were added into each well. Samples,
MIF-antibody and Stretaptavidin-HRP were not added into the blank well, only chromogen
solution (A) and chromogen solution (B) were added. Fifty μl of standard solution, 50 μl of
streptavidin-HRP, chromogen solution (a) and chromogen solution (B) were added into each
standard well, samples and MIF-antibody were not added. Take blank well as zero, the optical
densit (OD) was measured under 450 nm wavelength within 10 min after adding the stop solu-
tion. According to standards’ concentration and the corresponding OD values, the standard
curve linear regression equation was calculated out, and then the sample’s MIF concentration
was calculated to base on the OD values of the sample.

Statistical Analysis
All data were analyzed by one-way analysis of variance (ANOVA) using the SPSS 13.0 package
software (SPSS Inc, Chicago, IL, USA). Differences between groups were verified by one way
ANOVA. All the data were presented as mean ± SD. For results of HOS and HOS/AB, Paired-
Samples t test was used. Two-tailed Pearson correlation test was used to assess the correlations
between groups. A significant statistical difference was accepted when the P value was<0.05.

Results

Changes in Semen Parameters before, during and after SHS
Table 1 shows the changes in the sperm concentration, progressive motility (grade “a” + “b”),
morphologically normal sperm and white blood cells (WBC) in semen, before, during and
after SHS in 25 subjects. Before the SHS experiment, the range of sperm concentration was
24.27–167.53 × 106/ml, the progressive motility rate (a + b) was 30%-84%, and the rate of the
normal morphological sperm was 13%-45%. One month after SHS, the parameters were signif-
icantly altered: sperm concentration less than15 ×106/ml in 6 subjects, and one dropped to 0;
the rate of sperm progressive motility (a + b %) less than 20% in 7 subjects, the rate of morpho-
logically normal sperm less than 5% in 9 subjects. Significant differences were observed in
parameters of sperm concentration, motility, normal morphology and WBC between the pre-
SHS group and the group during the SHS 1, 2 and 3 months (P<0.001). There was no signifi-
cant difference in the semen volume between the SHS 1- and 2-month group and the pre-SHS
group (P>0.05). The low semen volume observed in the pre-SHS group and the 3-moth SHS
group (P = 0.018). After three months of recovery (stopped SHS), the semen parameters

Table 1. Analysis of variances of sperm density, progressive motility, morphology andWBC before, during and after SHS in 25men using One
Way ANOVA.

Variables Pre SHS
(n = 25)

SHS 1M
(n = 25)

SHS 2M
(n = 25)

SHS 3M
(n = 25)

After SHS 1M
(n = 25)

After SHS 2M
(n = 22)

After SHS 3M
(n = 20)

F
value

P
value

Semen volume (ml) 2.77 ± 0.56 2.65 ± 0.78 2.52 ± 0.59 2.30 ± 0.58 2.68 ± 0.72 2.92± 0.90 2.80 ± 0.67 2.030 0.065

Sperm
concentration
(×106/ml)

87.41±39.11 48.35±26.99 38.77±23.39 39.26±25.44 51.14±29.69 74.81±33.92 91.07 ±49.36 10.429 0.000

Progressive
motility (a+b %)

56.6 ± 13.0 24.4 ± 19.9 18.8 ± 14.8 19.3 ± 14.0 33.4 ± 17.1 45.1 ± 18.2 43.1 ± 16.3 20.072 0.000

Normal
morphology (%)

22. 6± 7.7 9.3 ± 6.7 4.9 ± 3.8 5.1 ± 4.7 16.6 ± 5.6 18.5 ± 5.7 22.4 ± 8.3 37.070 0.000

WBC in semen
(×106/ml)

0.27 ± 0.15 0.56 ± 0.25 0.72 ± 0.25 0.74 ± 0.29 0.46 ± 0.24 0.28 ± 0.17 0.27 ± 0.13 20.826 0.000

doi:10.1371/journal.pone.0141320.t001
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gradually returned to normal levels. Fig 3 shows sperm concentration, progressive motility
(grade “a” + “b”), motile sperm, morphologically normal sperm and white blood cells (WBC)
in semen, before, during and after SHS in 25 subjects.

Results of Aniline Blue (AB) Staining, HOS (HOS/AB) and TUNEL Assay
The average percentages of AB1, AB2, AB3 and AB4 sperm from the HOS/AB test, unstained
and stained sperm with AB and swollen and unswollen sperm with HOS for 25 subjects are
shown in Table 2. There were no significant decreases between the sum percentages of AB1
plus AB2 and the percentage of unstained (normal) sperm with AB staining alone (P> 0.05),
and between the percentages of AB3 and AB4 (abnormal) and the percentage of stained
(abnormal) sperm with AB staining alone (P> 0.05), and between the percentages of AB3 and
AB1 and the percentage of swollen sperm with HOS test. The sum of percentages of AB2, AB3
and AB4 sperm with HOS/AB was higher than that of stained sperm with AB alone (P< 0.05)
and unswollen sperm (abnormal) with HOS test (P< 0.05).

Fig 3. Sperm concentration, progressive motility (grade “a” + “b”), motile sperm, morphologically
normal sperm and white blood cells (WBC) in semen, before, during and after SHS in 25 subjects.
Concentration (× 106/ml), Motile sperm = grade (“a” + “b” + “c”)%, Progressive = grade (“a” + “b”)%, Normal
morphological sperm (%), WBC (× 106/ml). From SPSS 13.0. Mean ± SEM.

doi:10.1371/journal.pone.0141320.g003

Table 2. Patterns of the AB, HOS and HOS/AB test in 25 subjects before SHS.

Unstained (normal) 83.1±5.3 a Swollen 83.8±4.2 c AB1 (normal) 79.1±5.8

AB2 (abnormal) 4.3±1.3

AB3 (abnormal) 4.2±1.4

Stained (abnormal) 16.9±5.2 b Unswollen (abnormal) 16.2±4.2b AB4 (abnormal) 12.4±4.9

Note: HOS/AB was observed for the same sperm. AB was only aniline blue for spermatozoa staining.
a P<0.05, Paired-Samples t test, vs AB1;
b P<0.01, Paired-Samples t test, vs AB4;
c P<0.01, Paired-Samples t test, vs AB1.

doi:10.1371/journal.pone.0141320.t002
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Results of Abnormal Sperm DNA Fragmentation, Chromatin
Condensation, sperm Membrane Integrity and Caspase-3 Activity, and
Levels of NO, NOS and MIF in Seminal Plasma
The percentage of sperm DNA fragmentation with TUNEL assay, abnormal sperm chromatin
condensation with HOS/AB, normal sperm membrane and vitality with HOS, as well as Cas-
pase-3 activity, and levels of NO, NOS and MIF in seminal plasma were compared before, dur-
ing and after the use of SHS in 25 subjects (Table 3).

Statistically significant differences of sperm DNA fragmentation, normal sperm membrane
and vitality, Caspase-3 activity, and levels of NO, NOS and MIF were observed between the
groups before SHS and the groups of during SHS 1, 2 and 3 months (P<0.001). The prevalence
of abnormal sperm DNA, abnormal sperm chromatin condensation, normal sperm membrane
and vitality, and Caspase-3 activity did not show any statistically significant difference between
the groups before SHS and after SHS 3 months (P>0.05). Fig 4 shows the percentage of sperm
DNA fragmentation with TUNEL assay, abnormal sperm chromatin condensation with HOS/
AB, normal sperm membrane and vitality with HOS, as well as Caspase-3 activity, and levels of
NO, NOS and MIF in seminal plasma were compared before, during and after the use of SHS
in 25 subjects.

Correlation among Sperm Parameters of the Conventional Semen
Analysis, Sperm DNA Fragmentation, Abnormal Sperm Chromatin
Condensation, Normal Sperm Membrane and Vitality, Caspase-3
Activity, and the Level of NO, NOS and MIF
A total of 167 semen samples were collected in 25 subjects before, during 1, 2 and 3 months,
and after 1, 2 and 3 months of SHS. Three samples in the group with 2 months SHS treatment
and five samples in the group with 3 months SHS treatment were not collected. Sperm concen-
tration, motile sperm, progressive motility (grade “a” + “b”), normal morphology, and normal
sperm by HOS test were negatively correlated with the percentage of abnormal sperm by using

Table 3. Compared analysis of sperm DNA fragmentation, sperm chromatin condensation, the hypoosmotic swelling, level of NO, NOS, MIF as
well as Caspase-3 activity before, during and after SHS in 25 men using OneWay ANOVA.

Variables Pre SHS
(n = 25)

SHS 1M
(n = 25)

SHS 2M
(n = 25)

SHS 3M
(n = 25)

After SHS 1M
(n = 25)

After SHS 2M
(n = 22)

After SHS 3M
(n = 20)

F value P
value

TUNEL assay
abnormal
sperm (%)

11.7 ± 2.3 60.9 ± 28.1 70.0 ± 24.8 70.4 ± 25.1 19.8 ± 7.3 14.8 ± 4.0 12.4 ± 3.8 60.747 0.000

HOS/AB
abnormal
sperm (%)

20.9 ± 5.8 75.1 ± 23.7 80.2 ± 23.2 82.6 ± 20.6 29.4 ± 10.9 21.9 ± 6.2 21.1 ± 6.1 85.073 0.000

HOS normal
sperm (%)

83.8 ± 4.2 33.1 ± 20.2 27.0 ± 14.9 27.6 ± 14.0 58.5 ± 8.2 80.7 ± 4.4 81.2 ± 6.0 115.837 0.000

Level of NO
(μmol/L)

26.0 ± 11.2 38.7 ± 17.0 53.9 ± 21.6 59.8 ± 20.4 39.9 ± 14.4 30.0 ± 8.7 26.0 ± 13.4 16.511 0.000

Level of NOS
(U/ml)

2.49 ± 1.65 3.96 ± 1.86 5.56 ± 2.57 6.32 ± 2.75 3.17 ± 1.82 2.41 ± 1.22 2.20 ± 1.31 16.168 0.000

Level of MIF
(ng/ml)

380.8 ± 139.6 516.3 ± 154.6 557.6 ± 161.4 633.1±
204.4

451.4 ± 166.3 420.0 ± 149.4 420.5 ± 125.6 8.197 0.000

Caspase-3
activity (U/106

sperms)

1.81 ± 0.88 3.07 ± 1.42 3.63 ±1.05 3.54 ± 0.86 2.29 ± 0.73 2.41 ± 1.23 1.90 ± 1.03 12.291 0.000

doi:10.1371/journal.pone.0141320.t003
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the test of TUNEL and HOS/AB, the levels of NO, NOS, Caspase-3 activity and MIF (P�

0.001). WBC in semen and Caspase-3 activity were negatively correlated with the percentage of
normal sperm by using the HOS test (P� 0.001). Abnormal sperm with HOS/AB andWBC in
semen showed a positively significant correlation with the level of NO, NOS and MIF, and Cas-
pase-3 activity (P� 0.001) (Table 4).

Discussion
Previous researches revealed a negative correlation between scrotal temperature and spermato-
genesis has been demonstrated [30–32]. Local testicular heat treatment with 43°C water
induced reversible oligospermia or azoospermia in rodents and monkeys with increased germ
cell apoptosis [31–36], and when the heat treatment stopped after 30 days, the sperm quantity
could recover to the original level. The heat treatment of the scrotum was mainly through the
impact on the metabolism and apoptosis of spermatogenic cells to decline the fertility of many
kinds of animal models; moreover, this impact was temporary and reversible [32–40].

In this study, we designed the SHSD with electric warming which was attached to the under-
pants for men, the temperature was 40–43°C and heating time was 40 min. After SHS 1 month,
the parameters of sperm concentration, motile sperm and progressive motility (grade “a” +
“b”), normal morphologic sperm were significantly decreased compared with that before SHS,
and the WBC in semen was significantly increased. Moreover, the semen volume significantly
decreased in samples from the group of SHS treated 3 months. After three months of recovery,
the semen parameters gradually returned to the level before SHS treatment. These suggest that
the scrotal heat stress in human for a short period of time may be affected to semen quality and
may be a reversible process.

Fig 4. The percentage of sperm DNA fragmentation (%) with TUNEL assay, abnormal sperm
chromatin condensation (%) with HOS/AB, normal spermmembrane and vitality (%) with HOS, as well
as Caspase-3 activity (U/106 sperms), and levels of NO (μmol/L), NOS (U/ml) and MIF (ng/ml) in
seminal plasma were compared before, during and after the use of SHS in 25 subjects. From SPSS
13.0. Mean ± SEM.

doi:10.1371/journal.pone.0141320.g004
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The testicular hyperthermia could cause a rapid and transient suppression of spermatogene-
sis and sperm DNA damage. In man, raised scrotal temperature can result in a negative corre-
lation between high scrotal temperature and sperm output with sperm concentration being
decreased 40% per 1°C increment of median day time scrotal temperature in a study of 99 men
[41]. The heat stress not only directly induced the apoptosis of spermatogenic cells, but also
impacted the cell division of the Sertoli cells to promote the apoptosis of spermatogenic cells
[42–45]. In present study, when the SHS treatment was carried out 1, 2 and 3 months, the rate
of the hypotonic swelling spermatozoa (the normal rate of HOS) were significantly declined,
and the rate of the DNA-damaged sperm and abnormal chromatin condensation sperm as well
as Caspase-3 activity also markedly increased than that before SHS (P<0.001). Three months
after SHS treatment, the above-mentioned indicators were restored to the level before the SHS
experiment. It prompts that the spermatogenesis might be a transient damage, when the SHS
experiment stopped for a period of time, the spermatogenesis will recover. Wang et al [46]
reported that after heat stress treatment, Caspase-3, -8, -9 enzyme activities in newt testis were
significantly elevated after heat shock (40°C 2 h). When eight-week-old mice exposed to a sin-
gle scrotal heat treatment (42°C for 25 min), the testes displayed severe damage, with multinu-
cleated giant cells, nuclear condensation and germ cell loss in the seminiferous epithelium, and
the number of cleaved Caspase-3-positive germ cells per tubule was dramatically increased
[2,42].

Table 4. Correlation among sperm parameters of the routine semen analysis, sperm DNA fragmentation, abnormal sperm chromatin condensa-
tion, normal spermmembrane and vitality, and Caspase-3 activity, and levels of NO, NOS and MIF in seminal plasma (n = 167).

Variables Sperm
Concen-
tration (×106/
ml)

Progressi-
ve motility

Normal
mopholo-gy
(%)

Abnorm-al
HOS/AB
(%)

Nor-mal
HOS
(%)

Caspas-e
3 activity

Level of
NO
(μmol/L)

Level of
NOS (U/
ml)

WBC
(×106/
ml)

Level of
MIF (ng/
ml)

Concentrat-ion
(×106/ml)

r = 1

Progressive
motility (a+b %)

r = .459* r = 1

Normal
mophology (%)

r = .540* r = .701* r = 1

Abnormal HOS/
AB (%)

r = .502* r = -.633* r = -.732* r = 1

Normal HOS (%) r = .558* r = .724* r = .747* r = -.864* r = 1

Caspase-3
activity

r = -.296* r = -.292* r = -.396* r = .452* r =
-.455*

r = 1

Level of NO
(μmol/L)

r = -.228* r = -.263* r = -.390* r = .469* r =
-.470*

r = .416* r = 1

Level of NOS (U/
ml)

r = -.327* r = -.395* r = -.461* r = .504* r =
-.520*

r = .584* r = .416* r = 1

WBC (×106/ml) r = -.335* r = -.385* r = -.524* r = .584* r =
-.603*

r = .410* r = .428* r = .495* r = 1

Level of MIF (ng/
ml)

r = -.298* r = -.395* r = -.491* r = .404* r =
-.447*

r = .291* r = .267* r = .405* r =
.665*

r = 1

TUNEL assay
abnormal sperm
(%)

r = -.516* r = -.632* r = -.632* r = .901* r =
-.842*

r = -.433* r = .411* r = .486* r =
.579*

r = .409*

Pearson Correlation. r, correlation coefficient.

* Correlation is significant, P � 0.001 (2-tailed).

doi:10.1371/journal.pone.0141320.t004
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In present study, we studied the sperm DNA fragmentation and sperm chromatin conden-
sation using TUNEL and aniline blue (AB) assays. Sperm membrane integrity and vitality were
used by HOS. We observed that sperm concentration, motility and normal morphology were
negatively correlated with the percentage of abnormal sperm by using the test of TUNEL and
HOS/AB, and with the level of seminal NO, NOS and MIF. Seminal NO, NOS, MIF, WBC and
Caspase-3 activity were negatively correlated with the percentage of normal sperm by using the
HOS test. Abnormal sperm with HOS/AB showed a negatively significant correlation with nor-
mal sperm by HOS test, and WBC showed a positively significant correlation with Caspase-3
activity and NO, NOS and MIF. The high correlation (correlation coefficient: 0.824–0.901) was
detected between the HOS test, TUNEL assay and HOS/AB test. The normal spermatozoa in
HOS test and HOS/AB test were membrane integrity and vitality, DNA integrity and chroma-
tin not damaged. If the test only performed by one of the tests such as HOS or AB, some dam-
aged spermatozoa may be as the normal sperm. The AB staining specifies sperm residual
histones and indicates anomalies in sperm chromatin condensation. In earlier studies an asso-
ciation was reported between sperm developmental arrest, as demonstrated by aniline blue
staining of persistent histones, and the number of chromosomal aberrations in semen samples
[47–50]. These data lead us to a more detailed study regarding the relationship between sperm
nuclear maturity and sperm membrane integrity and vitality as we pursued aniline blue stain-
ing and HOS within the same spermatozoon.

Nitric oxide (NO) is a free radical produced by most cells including the human male and
female reproductive tracts and a well-known oxidative stress agent that directly inhibits mito-
chondrial respiration and the synthesis of DNA. Previous studies showed that human mature
spermatozoa synthesize nitric oxide (NO) by the NO synthase (NOS) which exists as three
isoforms—neural NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS)–and
localize in sperm head and midpiece [51, 52]. Increased NO synthesis through up-regulation of
iNOS has been implicated in cellular injury and apoptosis in various cell systems [53–56]. MIF
is a well-known proinflammatory mediator and may have important functions in human
reproduction and prostatic physiology. Interestingly, it also suggested that there is a negative
correlation between the amount of sperm-associated MIF and the percentage of motility in dif-
ferent semen samples [57]. Although several studies have proposed the co-relationship between
infertility and semen NO and MIF concentrations, no study on the effects of scrotal heat stress
(SHS) has been reported.

In summary, our current study evaluated the changes in semen parameters, sperm DNA
integrity, sperm chromatin condensation, and sperm Caspase-3, seminal levels of NO, NOS,
MIF in men after SHS. Our data showed that in men with the treatment of SHS, the semen
quality was significantly decreased and sperm membrane, DNA and sperm chromatin conden-
sation were damaged. These may be contributed to high levels of NO, NOS, MIF and Caspase-
3 in seminal plasmas.
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