
METHODS ARTICLE
published: 22 April 2014

doi: 10.3389/fninf.2014.00043

Efficient generation of connectivity in neuronal networks
from simulator-independent descriptions
Mikael Djurfeldt1,2*, Andrew P. Davison3 and Jochen M. Eppler4

1 PDC Center for High-Performance Computing, KTH Royal Institute of Technology, Stockholm, Sweden
2 International Neuroinformatics Coordinating Facility, Stockholm, Sweden
3 CNRS, Unité de Neurosciences, Information et Complexité, Gif sur Yvette, France
4 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre and JARA, Jülich, Germany

Edited by:

Eilif B. Muller, EPFL, Switzerland

Reviewed by:

James Kozloski, Thomas J. Watson
Research Center, USA
Thomas Wennekers, University of
Plymouth, UK

*Correspondence:

Mikael Djurfeldt, International
Neuroinformatics Coordinating
Facility, Nobels väg 15 A, Stockholm,
SE-17177, Sweden
e-mail: djurfeldt@incf.org

Simulator-independent descriptions of connectivity in neuronal networks promise greater
ease of model sharing, improved reproducibility of simulation results, and reduced
programming effort for computational neuroscientists. However, until now, enabling the
use of such descriptions in a given simulator in a computationally efficient way has
entailed considerable work for simulator developers, which must be repeated for each new
connectivity-generating library that is developed. We have developed a generic connection
generator interface that provides a standard way to connect a connectivity-generating
library to a simulator, such that one library can easily be replaced by another, according
to the modeler’s needs. We have used the connection generator interface to connect
C++ and Python implementations of the previously described connection-set algebra
to the NEST simulator. We also demonstrate how the simulator-independent modeling
framework PyNN can transparently take advantage of this, passing a connection
description through to the simulator layer for rapid processing in C++ where a simulator
supports the connection generator interface and falling-back to slower iteration in Python
otherwise. A set of benchmarks demonstrates the good performance of the interface.

Keywords: model description, connectivity, neural simulation, CSA, NEST, PyNN, Python, large-scale modeling

1. INTRODUCTION
The central nervous systems of vertebrates and many inver-
tebrates have complex patterns of connections. In developing
neuronal network models of such systems, there are two main
tasks related to connection patterns. The first is to express the
connectivity in a machine-readable format, e.g., in code or in
a configuration file. The second is to explain the connectivity
unambiguously in prose in an article or book, so that the model
can be understood and reproduced by someone else (Nordlie
et al., 2009).

For expressing connectivity in code, three methods are com-
monly used: (1) procedural code written by the modeler, using
low-level operations such as connecting pairs of neurons or con-
necting a single neuron to a group; (2) a library of pre-defined,
parameterized connection routines; (3) an explicit list of connec-
tions. Each of these have their limitations. Procedural code and
libraries limit the connectivity descriptions to a single language
and often a single simulator, making it hard to port models from
one simulator to another. Procedural code takes time to write, and
will have more bugs than a library, since library code is likely
to be more thoroughly tested and reused. On the other hand,
the connectivity patterns available from a library are inevitably
more limited than those that can be achieved with user-written
code. Using an explicit list of connections is largely indepen-
dent of a particular simulator or programming language, but may
cause problems of storage and input/output efficiency, and does
not enable conceptual descriptions of connectivity. All of these

methods make it difficult to explain the connectivity in a scien-
tific text. For a fuller discussion of these issues see Crook et al.
(2012).

These problems can be reduced or avoided by using a gen-
eral purpose connectivity-generating software library such as the
connection-set algebra (CSA; Djurfeldt, 2012) or the NineML
graph library (Raikov and De Schutter, 2010). Such libraries
allow simulator-independent specification of connectivity and
enable high-level, declarative descriptions which do not constrain
how the connectivity should be realized in code and hence give
scope for optimization and parallelization within the simulator
software. The CSA in addition supports succinct, unambigu-
ous descriptions of connectivity in text, using a mathematical
notation.

The adoption of new, simulator-independent methods for
expressing connectivity, such as CSA, is hindered by the effort
needed to add support for a given connectivity-generating library
to a simulator. This effort must, in general, be repeated for
each simulator that aims to support the library. The exception
to this is if using a simulator-independent modeling interface
such as PyNN (http://www.neuralensemble.org/PyNN; Davison
et al., 2009), which supports multiple simulators, and could also
support multiple connectivity-generating libraries without the
need to support it in each simulator. PyNN, however, is writ-
ten in Python, which means that processing the CSA description
will be slower than if using C/C++ (the languages in which
many simulators are written). Furthermore, whether using a

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 43 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00043/abstract
http://community.frontiersin.org/people/u/984
http://community.frontiersin.org/people/u/937
http://community.frontiersin.org/people/u/2466
mailto:djurfeldt@incf.org
http://www.neuralensemble.org/PyNN
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Djurfeldt et al. The connection generator API

simulator-independent interface or not, a new programming
effort is needed if another new method for expressing connec-
tivity is developed.

To minimize the effort required of simulator software develop-
ers, and allow modelers to flexibly choose among simulators and
libraries which generate connectivity, we have developed a generic
connection generator interface, which enables the use of CSA
and similar libraries in different neuronal simulators. The inter-
face makes both the simulator and the connectivity-generating
library replaceable and therefore gives maximum flexibility to the
modeler.

In this article we first describe the connection generator inter-
face. As an example of a connectivity-generating library, we then
give a brief overview of CSA and of different software libraries
that support it using CSA in Python and C++ code. We show
how the connection generator interface has been integrated in the
NEST simulator (http://www.nest-simulator.org; Gewaltig and
Diesmann, 2007), enabling the use of connection libraries such
as CSA, before describing its use from higher software layers,
such as the PyNN framework. Finally, we provide benchmarks for
different use case scenarios of the interface.

2. THE CONNECTION GENERATOR INTERFACE
To allow users to flexibly choose among simulators and libraries
which generate connectivity, we have developed an interface that
abstracts the simulator and the connectivity-generating library
from each other, making both the simulator and the connectivity
description library replaceable.

A connectivity-generating library, such as csa or libcsa of
section 3.3, is used to create an object, a connection generator, rep-
resenting network connectivity. In the case of a CSA library, this
object is a connection-set, but it could also be a graph constructed
from graph primitives. The connection generator interface pro-
vides a C++ level interface to such objects which allows software
external to the connectivity-generating library to efficiently iter-
ate through connections represented by the object. In the example
shown in Figure 1, the connection generator interface is used
to combine a Python-scripted simulator with a Python-scripted
connectivity-generating library. A connectivity generating object
is assembled at the Python level. If libcsa is used, the result-
ing object will be a C++ object with a Python wrapper (see
lower two boxes to the right in the figure). The object is used

by a C++ simulator kernel (lower box to the left) to specify net-
work connectivity. By providing connectivity-generating software
that implements the connection generator interface as dynami-
cally linked libraries, multiple such libraries can be loaded into the
Python runtime environment and used simultaneously without a
need to recompile the simulator.

2.1. THE INTERFACE
In neuronal network simulations we often want to spec-
ify a “projection” between a source population of neurons
and a target population. A projection consists of many indi-
vidual connections between the populations. In nature, one
such connection corresponds to an axon forming a synap-
tic contact on the spine/dendrite of a receiving neuron. A
ConnectionGenerator object is modeled on the concept
of a projection. The neurons in the source and target pop-
ulations are enumerated using consecutive, non-negative inte-
ger indices starting from 0. These indices are used to specify
source and target neuron identity for a connection and con-
stitute an abstraction barrier between the actual elements of a
population and the connection generator. This allows the ele-
ments to be either neurons (appropriate for networks of point
neurons) or individual synapses (appropriate for networks with
morphologically-detailed neurons).

The principle of operation of the connection generator inter-
face is an iteration over connections represented by the object. A
simulator, or other software using a connection generator, repeat-
edly calls a function next() until Boolean false is returned.
Connections are represented by source and target index, together
with zero or more connection parameters. The number of
parameters is called the arity of the ConnectionGenerator.

Connection generators can be flexible with regard to the sizes
of the source and target populations. The source and target index
sets that should be iterated over for the populations at hand
are each specified through the interface as a mask. In the case
of a parallel simulator, a specific mask is given per MPI rank.
Typically, the source index set is the same in all such masks
while the target index sets are unique for each rank and non-
overlapping. Each rank should provide all masks (i.e., the set of
masks for all ranks). Some connection generators can use such
information to avoid the need for communication with other
ranks.

FIGURE 1 | Block diagram of the connection generator interface and the

components involved in a typical usage scenario. The central component
is the ConnectionGenerator class itself. It can connect to different

simulators (e.g., NEST) and to different connectivity-generating libraries (e.g.,
CSA). In this example, Python is used as scripting language for both simulator
and connectivity- generating library.

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 43 | 2

http://www.nest-simulator.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Djurfeldt et al. The connection generator API

The interface is designed as an abstract base class in C++ and
consists of the following virtual functions:

int arity(): Return the number of per-connection values
associated with this generator. Values can be parameters like
weight, delay, time constants, or others.

int size(): Return the number of connections represented by
this generator.

void setMask(Mask& mask): Inform the generator about
which source and target indices are available. A Mask represents
the available nodes in the network for which to create connections.

void setMask(std::vector<Mask>& masks, int
local): This version of setMask is used by parallel simulators
and informs the connection generator on the local rank about
the masks of all ranks. Different ranks usually have different
masks since they are responsible for different subsets of the
connections of the network. Some connection generators can
use such information to avoid the need for communication with
other ranks.

void start(): Start an iteration. This function must be called
before the first call to next().

bool next(int& source, int& target, double*
value): Advance to the next connection or return

false, if no more connections are available from the

ConnectionGenerator. Source and target indices of

the connection as well as associated parameters are written

into source, target and the array pointed to by value,

respectively. The order of iteration is according to increasing

index, with all sources iterated over per target.

2.2. LIBNEUROSIM
If the C++ header file for the connection generator interface
definition and its supporting code were placed in the simu-
lator or connectivity-generating library source trees, it would
be duplicated over simulators or libraries. As new versions of
the interface are developed, the situation would quickly become
unmanageable. The connection generator interface has the desir-
able property that it is a symmetric abstraction barrier: it both
allows a given simulator to use any library supporting the API and
allows the same library to be used from any simulator supporting
the API.

To create a space in which to put interfaces and other
code of generic use for neuronal network simulation software,
we have developed the neurosim library (http://software.incf.
org/software/libneurosim). More precisely, libneurosim is a soft-
ware package which currently consists of two main component
libraries: libneurosim, providing C++ level support code
and libpyneurosim, providing Python support code.

libneurosim provides the ConnectionGenerator
interface (Figure 1, bottom). It also contains a registry for XML
parser functions. Different types of connection generators can
be described by different XML-based languages. For example,
the csa library can serialize connection-set expressions using a
MathML-based language. A connectivity-generating library may
provide a parser for one or more such languages. Conversely,
the same XML-based language might be used by one or more

connectivity-generating libraries. The XML parser registry maps
XML tags identifying specific languages to specific connection
libraries. The interface to the registry consists of three static
methods in the connection generator interface:

void selectCGImplementation (std::string tag,
std::string library): Associate the parent node tag tag
with the library library. The library named library will be
dynamically loaded and will invoke the libneurosim function
registerConnection GeneratorLibrary to register its
XML parser.

ConnectionGenerator* fromXML (std::string xml):
Parse the XML representation xml of a connection generator and
return it. The function dispatches to parsers of different libraries
depending on previous calls to selectCGImplementation.

ConnectionGenerator* fromXMLFile (std:: string

fname): Same as previous function, but read the XML stream

from the file with pathname fname.

libpyneurosim currently contains generic support for regis-
tering new Python connection generator types and unwrapping
instances of such objects:

voidregisterConnectionGeneratorType(CheckFuncT,
UnpackFuncT): Register a new type checking and unwrapping
function.

isConnectionGenerator(PyObject*pObj): Check if
pObj is a known connection generator type (as identified by
previously registered checking functions).

ConnectionGenerator* unpackConnectionGenerator

(PyObject* pObj): Unwrap the connection generator in

pObj and return it.

3. THE CONNECTION-SET ALGEBRA
The connection-set algebra1 (CSA) is a declarative formalism
for the specification of network connectivity which can be used
both when describing a network to a fellow researcher and when
implementing a model for a simulator. CSA expressions define
connection-sets. A connection-set is the set of edges in a network
graph, together with parameters associated with those edges. The
abstract nature of CSA creates a clean separation between CSA
and other aspects of model or simulator infrastructure. CSA
expressions consist of pre-defined elementary connection-sets
and operators such that new connection-sets can be defined in
terms of existing ones. It enables a succinct and precise descrip-
tion and definition of connectivity in terms of such expressions.
By allowing connection-sets to be infinite, they can represent con-
nectivity patterns of arbitrary size in addition to connectivity of
specific networks. There are ways to implement CSA on a com-
puter which are both efficient and scalable on a parallel computer.
The parallelization is transparent to the user since intersection

1CSA is an algebra in the sense of the word as used in “linear algebra” or
“elementary algebra,” i.e., there exists a set of rules for how to manipulate
connection-sets.

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 43 | 3

http://software.incf.org/software/libneurosim
http://software.incf.org/software/libneurosim
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Djurfeldt et al. The connection generator API

operators in the algebra can efficiently subdivide a connection-set
among processes.

CSA is currently focused on the description of synthetic con-
nectivity as opposed to connectivity obtained through data acqui-
sition, but it can also be used when all network connections
are given explicitly or in cases where only some elements of the
connectivity are explicitly specified.

3.1. CONNECTION-SETS
To give a flavor of CSA, we will now further introduce some of
its concepts. Given source and target neuron (or other object)
populations Ps and Pt of fixed, finite size, a CSA connection-
set is defined as the set of connections between Ps and Pt along
with zero or more per-connection parameters such as weight or
delay. As for connection generators, elements of populations are
enumerated using non-negative integers. Thus, a population P is
enumerated and represented by an index set I . One connection
from Ps to Pt is represented by the pair (i, j), where i ∈ Is, j ∈ It .
Such indices are similar to the GIDs (Global IDentifiers) of the
NEURON and NEST simulators but normally start at 0 and run
consecutively for each population. Introducing this abstraction,

in the form of a mapping from objects in the simulation domain
to integers, gives at least two major advantages: 1. The CSA need
not be aware of the nature of the objects in P—they could just
as well be synaptic boutons as neurons. 2. The index set I can
be chosen to be infinite. This is useful when generically specify-
ing a connectivity pattern independent of the sizes of the specific
source and target populations for which it will later be used. This
is further discussed in section 3.2.

A connection-set with zero parameters is called a mask. A
mask states which connections exist. In the example of the mask2

M = {(0, 1), (1, 1), (1, 2), (3, 2), (2, 3), (0, 4)} it can be regarded
either as a connection matrix (see Figure 2A) or as a Boolean
indicator function:

M : Is × It → {F ,T }

In the example M(0, 0) = F while M(1, 1) = T (T stands
for true, F for false). If the mask is combined with a source

2In CSA notation, masks are marked with a bar.

FIGURE 2 | (A) The mask M = {(0, 1), (1, 1), (1, 2), (3, 2), (2, 3), (0, 4)} shown
as a connection matrix. Gray squares represent existing connections. (B)

Network connectivity when the mask in (A) is applied to source population Ps

and target population Pt . (C) The one-to-one mask δ̄. The mask is infinite, but

finite portions can be cut out when applied to finite source and target
populations. This is illustrated by the solid square for source and target size 7.
When source and target population is the same, δ̄ represents self-connections.
(D) The mask ρ̄(0.5) − δ̄ = random connectivity without self-connections.

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 43 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Djurfeldt et al. The connection generator API

population Ps and a target population Pt , the result is the network
(Ps, Pt, M) shown in Figure 2B.

In CSA, connections can be parameterized through functions
mapping connections to values:

V : Is × It → V

where V is some codomain, e.g., real numbers. In Djurfeldt
(2012), such a function is called a value set. An example of a value
set is distance dependent delays with added noise drawn from a
clipped random normal distribution. A value set is typically used
to assign a weight or delay to connections.

A CSA connection-set, C, is a tuple of a mask and zero or more
value sets:

C = (M, V0, V1, . . .)

The number of value sets of a connection-set, i.e., the number
of values associated with each connection, is called its arity. A
connection-set with arity 0, (M), is for all purposes equivalent
to a mask, M, and the two can be used interchangeably.

3.2. AN ALGEBRA FOR CONNECTIVITY STRUCTURE
In CSA, the concepts defined in the previous section have been
developed into a formalism for describing connectivity structure.
Assume that a mask specifies connectivity for a single population
such that Ps = Pt = P and that we are interested in describing
self-connections, i.e., every neuron in P should be connected to
itself. If the size of P is 4, the mask {(0, 0), (1, 1), (2, 2), (3, 3)}
could be used. If the size is 2, the mask {(0, 0), (1, 1)} would
be appropriate. Such masks contain not only information about
connectivity structure but also about population size. We can
generalize by stripping off the population size information and
allowing the index set I and mask to be infinite, defining the
one-to-one mask δ̄:

δ̄(i, j) =
{
T if i = j,

F otherwise.
i, j ∈ I = N0

Now δ̄ only encapsulates the concept of self- or one-to-one
connectivity structure (depending on whether the source and tar-
get populations are the same or different) without reference to
size, i.e., we can describe a connectivity pattern independently
of any specific network. Finite portions can be cut out of such
infinite connection-sets when applied to finite populations (see
Figure 2C).

CSA provides a set of elementary connection-sets such as
δ̄. Another example is the random mask ρ̄(p), a parameterized
connection-set which captures the concept of Erdős-Rényi con-
nectivity. ρ̄(p) can be regarded an infinite matrix of independent,
Bernouilli distributed, random variables with parameter p, such
that their realizations form an infinite mask. Thus, for R̄ = ρ̄(p)
(where the interpretation is that R̄ is the mask formed from
realizations)

R̄(i, j) =
{
T with probability p,

F otherwise.
i, j ∈ N0

By using CSA operators such as intersection (∩), union (∪), and
set difference (−), connection-sets can be combined into expres-
sions. For example, the idea of “random Erdős-Rényi connectivity
without self-connections” can be represented by the CSA expres-
sion ρ̄(p) − δ̄ (see Figure 2D). A mask representing all possible
connections between two finite populations can be formed by tak-
ing the Cartesian product of their index sets, Is × It . Intersecting
with this mask can turn an infinite connection-set, representing
connectivity structure, into a connection matrix between the pop-
ulations. For example, the finite part of the matrix in Figure 2C
is {0, . . . , 6} × {0, . . . , 6} ∩ δ̄. For a more in-depth description of
the CSA and principles of implementation see Djurfeldt (2012).

3.3. IMPLEMENTATIONS
There currently exist three implementations of CSA. They inter-
nally represent connection-sets as iterators and CSA expressions
as trees of such iterators. The original implementation is written
in C++ and is part of the SPLIT simulation library (Djurfeldt
et al., 2005). It was used to specify the connectivity of the KTH
cortex model (Djurfeldt et al., 2008)—a model with three hierar-
chical levels of structure. The second implementation is written in
Python and is available as the Python library csa. Here, the aims
were 1. to get an easily usable and extensible demonstration of
CSA and 2. to experiment with new ways to implement CSA. This
implementation has been released as free software under the GPL
and is available at the INCF software center (http://software.incf.
org/software/csa). A third implementation in C++, libcsa, is
currently under development and will also be released under the
GPL. It provides Python bindings such that CSA objects can be
formed by Python level expressions with similar syntax as used
with the csa library. For further information about this syn-
tax, the reader is referred to the tutorial in the csa package.
The benchmarks in this article (section 6) were performed using
the latter two implementations in Python and C++, csa and
libcsa.

4. USING CONNECTION GENERATORS IN NEST
NEST is a simulator for large networks of point neurons or
neuron models with few electrical compartments (http://www.

nest-simulator.org; Gewaltig and Diesmann, 2007). It is suited
for a broad range of neuronal network modeling approaches and
runs on a large variety of computer architectures. NEST is par-
allelized using OpenMP (OpenMP Architecture Review Board,
2008) and MPI (Message Passing Interface Forum, 1994) and
scales well on ordinary desktop computers to large clusters of
multi-core processors and supercomputers (Helias et al., 2012).

The network description is a script, written either in SLI,
NEST’s built-in simulation language, or in Python, using the
Python interface to NEST (PyNEST; Eppler et al., 2009). To build
a network in NEST, the user first creates the neurons of the net-
work and devices for stimulation and measurement using the
Create function and then connects the elements with each
other.

4.1. NATIVE CONNECTION FUNCTIONS
The most basic way to set up connections is using the Connect
function, which takes a list of pre-synaptic neurons (or devices)

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 43 | 5

http://software.incf.org/software/csa
http://software.incf.org/software/csa
http://www.nest-simulator.org
http://www.nest-simulator.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Djurfeldt et al. The connection generator API

and a list of the same amount of post-synaptic neurons (or
devices) and connects the corresponding elements in a one-to-
one fashion. Because of the function call overhead, this function
is not very efficient to use when creating large networks.

To avoid such overhead, the functions Convergent
Connect and DivergentConnect can be used to create
multiple connections with a single call. In addition, randomized
variants for both of these functions exist to support the user in
creating networks on the basis of knowledge of connectivity statis-
tics. However, random connection parameters (e.g., weight, delay,
or time constants) need to be specified by user code and supplied
to NEST after the creation of connections.

4.2. TOPOLOGY MODULE
To ease the creation of complex networks with spatial structure,
NEST provides the Topology Module (Plesser and Enger, 2013). It
supports the user in connecting neurons and initializing synapse
parameters based on their topological relationships in the net-
work. In contrast to the CSA, the topology module is very much
tailored to building structured networks consisting of layers in
NEST with minimal overhead. The CSA has a wider focus in that
it is simulator-independent and supports arbitrary connectivity
patterns that can also include repetitive elements. We are cur-
rently investigating if future versions of the Topology Module can
be based on the CSA.

4.3. SUPPORTING CONNECTIVITY-GENERATING LIBRARIES
As detailed above, NEST provides multiple methods for connect-
ing neurons into a network. However, while the native routines
scale very well (Helias et al., 2012), they are only suitable for cre-
ating simple patterns such as convergent/divergent connectivity
without looping over them in user code. On the other hand, the
topology module (Plesser and Enger, 2013) allows the creation of
more complex structures, but requires neurons to be organized in
special data structures (e.g., layers).

To support the connection generator interface in NEST and
thus make more connectivity-generating libraries available to
users, we created the ConnectionGeneratorModule. It is
implemented as a plugin for NEST which extends both user
interfaces, SLI and PyNEST, and builds on libneurosim (see
section 2.2).

All neurons and devices in NEST are identified uniquely by an
integer number, their global id (GID). As all existing connection
routines in NEST work either on single GIDs or on lists of GIDs,
we decided to also use this convention when a user specifies cells
for a connection generator. These GIDs are internally mapped to
contiguous ranges of integer indices starting at zero, for use by
the connection generator. Our new interface for using connection
generators in NEST consists of the following functions:

CGConnect takes a ConnectionGenerator cg, lists of GIDs for
pre- and post-synaptic populations, and a param_map. It creates
the connections between neurons in pre and post as prescribed by
the rules in cg. The parameter map param_map maps parameter
names (e.g., weight, delay) to their index for the parameter value
vector created by the call to next() in the connection genera-
tor interface (see section 2.1). In the current implementation, only
arities 0 and 2 are supported.

CGParse takes a serialized version of a connection gener-
ator in the string xml and returns the corresponding
ConnectionGenerator object. A special use of this function
exists on supercomputers, where Python is often not available
on the compute nodes, or where the memory and performance
penalty would not be acceptable and a pure SLI-based solution is
preferable.

CGParseFile takes a file name fname and parses the serialized
version of a connection generator contained therein.

CGSelectImplementation takes an XML tag tag representing

the parent node of a serialized connection generator and the name

of a library library to provide a parser for such an XML file. This

information determines which library should carry out the parsing

for CGParse and CGParseFile.

In order to use the new interface in NEST, the user first has
to construct a ConnectionGenerator object. This can be
done at the Python level by either using csa or the Python
bindings of libcsa (see section 3.3). When PyNEST is used,
this object can be directly given to CGConnect, which wraps
the ConnectionGenerator object into a SLI Datum of type
connectiongeneratortype that can be handed over to
NEST’s simulation kernel. It is then iterated at the C++ level in
case of libcsa, or by calling back into Python in case of csa.

Another way to construct a ConnectionGenerator
object is by parsing an XML serialization of the object. Such a
serialization could be created at the Python level, created by an
external tool, or written by hand. At the SLI level this serializa-
tion can then be given to one of the SLI functions CGParse or
CGParseFile, which reinstantiate the original object using the
functions fromXML or fromXMLFile in the connection gener-
ator API. This object (of type connectiongeneratortype)
can be given to SLI’s version of the CGConnect func-
tion. Note that the step of creating the serialization of the
ConnectionGenerator can also be carried out on another
machine. In this way, simulations using CSA can be run on
machines where Python is not available.

Figure 3 shows the different entities in NEST involved in a
user call to CGConnect in PyNEST. After setting the masks for
the connection generator to tell it which neurons are local and
which are remote (see section 2.1), the NEST kernel iteratively
calls next(). This function returns source and target indices,
and values for weight and delay if the arity of the connection
generator is 2, until there are no more connections. The connec-
tions are internally established one by one calling NEST’s basic
Network::connect() function at the C++ level.

5. USING CONNECTION GENERATORS IN PyNN
PyNN (http://www.neuralensemble.org/PyNN; Davison et al.,
2009) is a simulator-independent API for describing neuronal
networks in Python. Given a PyNN/Python model description,
the user can choose which simulator to use without needing to
change the model script. This is achieved through a set of simula-
tor backends. Each backend is a Python module that implements
the API for a specific simulator, for example by providing a
mapping from standard model names and units in PyNN to
simulator-specific ones.

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 43 | 6

http://www.neuralensemble.org/PyNN
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Djurfeldt et al. The connection generator API

FIGURE 3 | Sequence diagram showing the function calls during the use

of the connection generator interface in NEST. The user first creates a
ConnectionGenerator object cg. She then calls PyNEST’s CGConnect()
function. ① The function cg_get_ranges() returns all contiguous ranges of
global IDs (GIDs) in the given list as a vector of closed intervals, still using the
GID representation. ② At this point in time, the ConnectionGenerator

Module needs to translate the GIDs to connection generator indices, which

run from 0 and enumerate the elements of the given pre- and post-synaptic
populations. The result of the translation (pre_mask and post_mask) is used
to set the masks on cg. ③ The NEST kernel iterates the connection generator
by calling next() until there are no more connections. For each received
connection, it creates the connection by calling Network::connect(). If a
non-empty param_map was given to CGConnect, the connection’s weight
and delay are taken from the value-set in cg.

In PyNN, a neuronal network is built from Populations of
neurons and Projections between them. Each Projection
is created by a Connector, which knows how to set up the
individual connections. Different Connectors exist and allow
to set up a variety of different deterministic and probabilistic
connection patterns.

To enable them to be simulator-independent, each
Connector is implemented in terms of lower-level com-
mands, typically one-to-one or convergent connect functions,
available in all simulators. However, because these commands are
low-level this approach entails a certain performance penalty due
to transfer of source/target lists and connection parameters and
function call overhead.

To overcome the problem of excessive data transfers between
PyNN and the simulator, a backend can supply customized
Connector implementations that are more efficient than using
the default, simulator-independent implementations. Such cus-
tom implementations can be iterated and expanded at the simu-
lator level and thus avoid overhead. Moreover, they allow efficient
parallelization at the lower software layers. Prior to the creation
of the connection generator interface, however, the limitation of
this was that a separate custom implementation had to be written
for each PyNN Connector.

Since version 0.7, PyNN has provided the generic
CSAConnector, which can iterate a CSA connection-set
and issue one by one connect calls to the different simulators
through their backends. Internally, the Connector executes the
following two steps:

1. Form a finite connection-set adapted to the actual sizes of the
populations by intersecting the given connection set with the
Cartesian product of the neuron indices of the pre- and post-
synaptic populations.

2. Connect the neurons. The weight, delay and any other synaptic
parameters are taken from the connection set, if supplied as
value sets (see section 3), or from the parameterization of the
synapse type otherwise.

During this study, we extended the NEST backend for PyNN with
a new and specialized CSAConnector which passes the com-
plete ConnectionGenerator object down to the simulator
(by calling PyNEST’s CGConnect function). The iteration over
the connections can then take place at the C++ level in NEST
using the connection generator interface (see section 4). This
greatly reduces the overhead and thus improves the runtime and
scalability of connection generation (see section 6).

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 43 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Djurfeldt et al. The connection generator API

6. BENCHMARKS
We ran a series of benchmarks in order to assess the performance
of and compare two implementations of CSA (see section 3.3) and
the two implementations of the CSAConnector for PyNN (see
section 5). Grouped by the software layer in which the iteration
of the connection generator happens (either in Python by PyNN
or in C++ by NEST, see section 4) and the CSA implementation
used (csa is the Python version, libcsa the C++ version), the
following scenarios were measured:

• Python, csa used PyNN’s original CSAConnector that is
available for all backends in combination with the Python
CSA implementation. The CSAConnector intersects the
csa object with a mask representing the actual source and
target nodes available and iterates the csa object entirely
at the Python level. It connects the neurons by issuing
ConvergentConnect() calls to PyNEST.

• C++, csa used the new CSAConnector for PyNN’s NEST
backend, which is available in the development version of

PyNN, and the Python CSA implementation. The csa
object is passed down to NEST through CGConnect().
The ConnectionGeneratorModule then iterates it at
the C++ level by repeatedly calling its Python level iterator
through the C++ connection generator interface.

• Python, libcsa used the generic CSAConnector in
PyNN and the C++ CSA implementation libcsa. The
CSAConnector iterates the libcsa object at the Python
level, repeatedly calling its wrapped C++ iterator.

• C++, libcsa used the new CSAConnector for PyNN’s
NEST backend and the C++ CSA implementation libcsa.
The libcsa object is passed down to NEST through
CGConnect(). All iterations happen in C++ in the
ConnectionGeneratorModule through the connection
generator interface.

The population size benchmarks (Figures 4A,B) used one MPI
process and varied the number of neurons from 102 to 105

with about one sample per order of magnitude. All tested

FIGURE 4 | Benchmark results for the use of CSA in NEST through

PyNN, comparing the two CSAConnector implementations explained

in section 5 and two of the CSA implementations mentioned in

section 3. Color and dash codes are given in the legends. Slope is the
ratio of logarithms of the last and first data point shown. Pale lines denote
the expected scaling. (A) Shows the run time for connecting a network
using CSAs random mask with a probability of 0.1 for different numbers of
neurons. This connector creates O(n2) connections for n neurons. The
expected slope is thus 2. (B) Shows the same as in (A), but using CSAs

oneToOne mask, which creates O(n) connections for n neurons and has an
expected slope of 1. (C) Shows a strong scaling experiment, wiring a
network of 48,000 neurons using CSAs random mask with a probability of
0.1 and varying the number of MPI processes from 1 to 48. The expected
slope is −1, meaning that the run time drops linearly with the number of
processes. (D) Shows the results of a weak scaling experiment, increasing
the number of connections by approx. 4.8 · 106 per additional MPI process
for 1 to 48 processes. The expected slope is 0, as the load increases
linearly with the number of processes.

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 43 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Djurfeldt et al. The connection generator API

implementations of CSA (csa, libcsa) scale excellently with
slopes around 2 for the random mask, independent of the soft-
ware layer (C++ or Python) at which the iteration was car-
ried out. However, in Figure 4, the vertical offsets and the
increasing slopes of the curves for the generic CSAConnector
which iterates at the Python/PyNN level suggest that the cur-
rent implementation of this connector together with calls
through different software layers to setup individual connec-
tions adds a significant overhead to the process of connection
generation.

To demonstrate the scalability of the implementations, we car-
ried out both strong and weak scaling benchmarks, using CSA’s
random mask ρ̄(p) with a probability p = 0.1 (Figures 4C,D).
For each of these, the number of MPI processes was varied from
1 to 48.

In the strong scaling benchmark (Figure 4C), the number of
MPI processes was varied while keeping the total number of neu-
rons in the network fixed at 48,000. This resulted in approx. 230
million connections being created. It is easily visible that iteration
of the CSA object at the Python level in the current PyNN imple-
mentation of the original CSAConnector is detrimental to the
scalability. In contrast, it is possible to obtain near perfect scaling
if the iteration of the CSA object is carried out from the C++
layer. Using the C++ implementation of CSA, it is, however, pos-
sible to gain another order of magnitude compared to the Python
version.

During the weak scaling benchmark (Figure 4C), the number
of MPI processes was varied while the work load was increased
by a fixed number of connections per additional process. The
number of connections grows quadratically with the number of
neurons when using CSA’s random mask with a fixed probal-
ity. The number of neurons per process was thus increased
with the square root of the desired number of connections.

In the realm of natural numbers, this leads to a slight error,
which was, however, acceptable, with values between −1.42�
and +1.08�.

6.1. COMPARISON TO NATIVE INTERFACES
To compare the performance of the connection generator inter-
face to more traditional ways of setting up connectivity, we also
performed performance and scaling benchmarks of the native
interfaces for random connectivity in PyNN and NEST. Figure 5
contrasts CSA’s random mask with a probability of 0.1 with
PyNN’s FixedProbabilityConnector (FPC) and NEST’s
function RandomConvergentConnect (RCC).

Note that NEST does not provide a Bernoulli trial based
connection scheme such as used by FPC in PyNN and the
random mask in CSA (see section 3.2) and RCC was chosen
because it is the function that most closely resembles such a
method. The use of RCC results, however, in a bias toward the
other methods over NEST, as it requires iterative calls to RCC
from the Python level, which entail a certain overhead in SLI,
PyNEST and the C++ implementation of RCC itself (data not
shown).

The population size benchmark (Figure 5A) again used one
MPI process and varied the number of neurons from 102 to 105

with about one sample per order of magnitude. It shows that all
tested variants for setting up the connectivity scale equally well
with slopes slightly below 2. The offset between NEST’s RCC
(written in C++, but called repeatedly from Python) to the CSA
object iterated in C++ can be attributed to overhead in the
additional software layers.

As in Figure 4C, the comparative strong scaling benchmark
shown in Figure 5B varied the number of MPI processes while
keeping the total number of neurons in the network fixed at
48,000, resulting in a total of approx. 230 million connections

FIGURE 5 | Benchmark results comparing the use of CSA in NEST

through PyNN and the native interfaces for random connectivity in

PyNN and NEST. Color and dash codes are given in the legends. Slope is
the ratio of logarithms of the last and first data point shown. Pale lines
denote the expected scaling. PyNN.FCC corresponds to PyNN’s
FixedProbabilityConnector, nest.RCC to NEST’s function
RandomConvergentConnect. (A) Shows the run time for connecting a
network of different numbers of neurons. The number of connections

scales with O(n2) for n neurons. The expected slope is thus 2. The data
for libcsa is the same as shown in Figure 4A. (B) Shows a strong scaling
experiment, wiring a network of 48,000 neurons using CSAs random mask
with a probability of 0.1 and the corresponding native functions of PyNN
and NEST. The experiment varies the number of MPI processes from 1 to
48. The expected slope is −1, meaning that the run time drops linearly
with the number of processes. The data for libcsa is the same as shown
in Figure 4C.

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 43 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Djurfeldt et al. The connection generator API

being created. The results are consistent with the data from
Figure 4C in that scalability is destroyed if additional interpreted
software layers are involved and that an iteration in C++ is
favorable. The effect is even stronger for RCC, because its use to
create a number of connections corresponding to that yielded by
a Bernoulli trial scheme entails even more iterations through the
additional software layers.

6.2. BENCHMARK ENVIRONMENT
The machine used for benchmarking was equipped with 4 12-core
AMD Operon 6174 (Magny Cours) processors, organized into 8
NUMA domains with 6 cores each. Other than the choice of the
number of MPI processes in a NUMA-friendly way, no measures
(like pinning of processes to cores, altering the affinity of threads
to cores, etc.) were taken to avoid distortions of the results. Users
are, however, free to benefit from such techniques to improve the
performance of their simulations.

6.3. SOFTWARE VERSIONS AND BENCHMARK SCRIPTS
All benchmarks were using csa revision 119 from http://svn.incf.
org/svn/csa, libcsa from an internal git repository (git@wand.

pdc.kth.se:libcsa.git, version 3ef2db519a), the development ver-
sion of PyNN from https://github.com/NeuralEnsemble/PyNN/
(version db76c748cd) and NEST revision r10722 from the inter-
nal Subversion repository. The LATEX sources of this article, the
benchmark scripts and all data we obtained are available from
https://github.com/mdjurfeldt/pns2csa.

7. DISCUSSION AND OUTLOOK
We have developed and demonstrated a novel way to connect a
simulator and external connectivity-generating software through
the connection generator interface. It supports dynamic load-
ing of connection generators without the need for recompilation
of either simulator or generators. Benchmarks show good scal-
ing when using connection-set algebra libraries from NEST and
PyNN through the connection generator interface. The avail-
ability of this and associated interfaces lets users flexibly choose
a connectivity-generating library independently of the simu-
lator used, and thereby grants greater freedom for describing
models.

The first version of the interface presented here was inten-
tionally made simple, as a proof of concept, and there are
several possible directions of development for its functional-
ity. Currently, parameters are passed as doubles. This could
be generalized to other data types. For parallel simulators, con-
nection generators may need access to the MPI communicator
in which case it needs to be passed through the connection
generator interface. Instead of using a fixed iteration order,
the order could be specified by the simulator. Iteration order
could also be unspecified, giving opportunities for optimiz-
ing iteration on the part of the connectivity-generating library.
In order to maintain backward compatibility as new revisions
of the interface are developed, interface versioning could be
introduced.

One temporary limitation in the current implementations of
the NEST ConnectionGeneratorModule and the PyNN
CSAConnector is that value sets for the connection generator

can only be used if their arity is 0 (no parameters) or 2 (weight
and delay). We are currently working on the infrastructure in
NEST to support arbitrary arities, as it would be beneficial for
many synapse models, to also set time constants, concentra-
tions and other parameters based on rules in the connection
generator.

At the moment, libneurosim only contains the connec-
tion generator interface and some auxiliary code. For the future,
we are planning to turn this into a community based effort
to share common interfaces and make it a generally useful
library also for the developers of other simulators than PyNN
and NEST.

The differences in run time and scalability between an itera-
tion of the connection description in Python on the one hand and
the CSA object iterated at the C++ level on the other suggests
that a compact description of connectivity iterated solely at the
level of the simulator indeed has a huge impact. NEST and other
simulators can thus greatly benefit from the availability of com-
pact descriptions such as enabled by the connection generator
interface.

ACKNOWLEDGMENTS
This work was partially done under the INCF Multiscale
Modeling Program. It is partially supported by the Helmholtz
Association: HASB and portfolio theme SMHB, the Jülich Aachen
Research Alliance (JARA), the VSR computation time grant
JINB33 on the JUQUEEN supercomputer in Jülich, and EU Grant
269921 (BrainScaleS). The authors would like to thank Randall
Munroe of http://www.xkcd.org for granting the permission to
use one of his drawings in Figure 3.

REFERENCES
Crook, S. M., Bednar, J. A., Berger, S., Cannon, R., Davison, A. P., Djurfeldt, M.,

et al. (2012). Creating, documenting and sharing network models. Network 23,
131–149. doi: 10.3109/0954898X.2012.722743

Davison, A., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D., et
al. (2009). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Djurfeldt, M. (2012). The connection-set algebra—a novel formalism
for the representation of connectivity structure in neuronal net-
work models. Neuroinformatics 10, 287–304. doi: 10.1007/s12021-012-
9146-1

Djurfeldt, M., Johansson, C., Ekeberg, Ö., Rehn, M., Lundqvist, M., and Lansner,
A. (2005). Massively Parallel Simulation of Brain-Scale Neuronal Network Models.
Technical Report TRITA-NA-P0513, CSC, KTH, Stockholm.

Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, O., and
Lansner, A. (2008). Brain-scale simulation of the neocortex on the IBM
Blue Gene/L supercomputer. IBM J. Res. Dev. 52, 31–41. doi: 10.1147/rd.52
1.0031

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M. (2009).
PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.
2:12. doi: 10.3389/neuro.11.012.2008

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J. M., Ishii, S., et al.
(2012). Supercomputers ready for use as discovery machines for neuroscience.
Front. Neuroinform. 6:26. doi: 10.3389/fninf.2012.00026

Message Passing Interface Forum. (1994). MPI: A Message-Passing Interface
Standard. Technical Report UT-CS-94-230.

Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible
descriptions of neuronal network models. PLoS Comput. Biol. 5:e1000456. doi:
10.1371/journal.pcbi.1000456

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 43 | 10

http://svn.incf.org/svn/csa
http://svn.incf.org/svn/csa
git@wand.pdc.kth.se:libcsa.git
git@wand.pdc.kth.se:libcsa.git
https://github.com/NeuralEnsemble/PyNN/
https://github.com/mdjurfeldt/pns2csa
http://www.xkcd.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Djurfeldt et al. The connection generator API

OpenMP Architecture Review Board (2008). OpenMP Application Program
Interface. Available online at: http://www.openmp.org/mp-documents/
spec30.pdf

Plesser, H. E., and Enger, H. (2013). NEST Topology User Manual 2.2.0.
Available online at: http://www.nest-initiative.org/images/e/e7/Topology_
UserManual.pdf

Raikov, I., and De Schutter, E. (2010). A modeling language for large-scale neural
network description. FENS Abstr. 5, 059.26.

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 November 2013; accepted: 28 March 2014; published online: 22 April
2014.
Citation: Djurfeldt M, Davison AP and Eppler JM (2014) Efficient generation of
connectivity in neuronal networks from simulator-independent descriptions. Front.
Neuroinform. 8:43. doi: 10.3389/fninf.2014.00043
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Djurfeldt, Davison and Eppler. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this jour-
nal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 43 | 11

http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.nest-initiative.org/images/e/e7/Topology_UserManual.pdf
http://www.nest-initiative.org/images/e/e7/Topology_UserManual.pdf
http://dx.doi.org/10.3389/fninf.2014.00043
http://dx.doi.org/10.3389/fninf.2014.00043
http://dx.doi.org/10.3389/fninf.2014.00043
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Efficient generation of connectivity in neuronal networks from simulator-independent descriptions
	Introduction
	The Connection Generator Interface
	The Interface
	Libneurosim

	The Connection-Set Algebra
	Connection-Sets
	An Algebra for Connectivity Structure
	Implementations

	Using Connection Generators in Nest
	Native Connection Functions
	Topology Module
	Supporting Connectivity-Generating Libraries

	Using Connection Generators IN PyNN
	Benchmarks
	Comparison to Native Interfaces
	Benchmark Environment
	Software Versions and Benchmark Scripts

	Discussion and Outlook
	Acknowledgments
	References

