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Abstract: In this study, the photonic crystal structure is employed to increase both the light extraction
efficiency and the modulation bandwidth of flip-chip GaN-based light-emitting diodes (LEDs).
The finite difference time domain method is utilized to investigate the influence of structure of
photonic crystals on the Purcell factor and light extraction efficiency of flip-chip GaN-based LEDs.
Simulation results show that the modulation bandwidth is estimated to be 202 MHz at current
densities of 1000 A/cm2. The experimental result of modulation bandwidth is in accord with the
simulation. The optical f-3dB of the device achieves 212 MHz at current densities of 1000 A/cm2 and
up to 285 MHz at current densities of 2000 A/cm2. This design of photonic crystal flip-chip LED has
the potential for applications in high-frequency visible light communication.

Keywords: visible light communication; photonic crystals; flip-chip LED; Purcell effect; light
extraction efficiency

1. Introduction

Visible light communication, as a communication solution to alleviate the shortage of spectrum
resources, is at the frontier of technology and the hotspot of research. GaN-based light-emitting diode
(LED) chips are key devices for visible light communications. However, the narrow bandwidth of
commercial LED chips, which is in the range of 20–30 MHz, limits the overall bandwidth of visible
light communication systems [1,2]. The modulation bandwidth of an LED chip is limited by the
resistance–capacitance (RC) time constant and carrier spontaneous emission rate [3]. Therefore, the
methods to increase the modulation bandwidth mainly include decreasing the RC time constant [4–6]
and the carrier lifetime [7,8]. Many studies have shown that the wavelength-sized cavity can change the
local density of optical states (LDOS) and increase the spontaneous emission rate [9]. In 1946, Purcell
proved that the spontaneous radiation rate of the cavity can be changed by the Purcell factor [10].
Nanostructures, such as resonant cavities, surface plasmon, and photonic crystals, can affect the Purcell
factor, thereby increasing the spontaneous emission rate of carrier and the modulation bandwidth.
Although there are many literatures studying photonic crystal structure to improve the modulation
bandwidth of common LED [7,11,12], the literature about flip-chip LEDs with photonic crystals on the
bottom is still rarely explored.
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In this work, both modulation bandwidth and light extraction efficiency (LEE) of flip-chip LEDs
with photonic crystals are numerically investigated by using a 3D finite-difference time-domain (FDTD)
method based on Yee’s algorithm with a perfectly matched layer (PML) boundary condition [13]. Three
structural parameters of photonic crystals including period, height, and duty cycle were compared
to study the effect of photonic crystals on the modulation bandwidth and LEE of a flip-chip LED.
By optimizing the photonic crystal structure, we designed a structure that could simultaneously
improve the modulation bandwidth and light extraction efficiency of the flip-chip GaN-based LEDs.
The experimental result shows that photonic crystal structure can improve the modulation bandwidth
due to the enhancement of the Purcell factor and the reduction of nonradiative lifetime.

2. Materials and Methods

Figure 1 shows the model of a conventional planar flip-chip LED (FCLED) and flip-chip LED
with photonic crystals (PC-FCLED). The lateral dimensions of the computational domain were set
to 7 µm × 7 µm × 7 µm with a mesh of 2 nm × 2 nm × 2 nm. In FCLED, the structure consisted of
3 mm sapphire substrate (extending beyond the simulation volume), a 5000 nm n-GaN layer, a 120 nm
multiple quantum wells (MQWs) layer, a 20 nm p-AlGaN layer, a 110 nm p-GaN layer, and a 100 nm
Ag mirror layer. The material parameters in the simulation were mostly from reference [14]. Because
the radiation in the quantum well was mainly in transverse electric (TE) mode, the light source was set
to the TE mode dipole source [15]. The dipole source was placed in the center of the MQWs layer of the
plane of the sectional view. The wavelength of the light source was 460 nm. Six power monitors were
placed near the light source on the six faces for detecting total power from the dipole. Considering the
large thickness of the sapphire substrate, a monitor was placed in the sapphire substrate 1 µm from
n-GaN layer, and the power exiting in the air that far away from the source was calculated by way of
far-field projection. The boundary conditions were set as a perfectly matched layer (PML). The top of
the FDTD simulation area was located inside the sapphire substrate, and the bottom was placed inside
the mirror to ignore the cavity effect it generated [16]. As for PC-FCLED, the model was similar to
FCLED except for the photonic crystals. The square lattice photonic crystals with an array of SiO2

rods were placed in p-GaN of PC-FCLED, as shown in Figure 1b. The period, height, and radius of
photonic crystals were defined as a, h, and r, respectively. The duty cycle of photonic crystals was 2r/a.
The LEE was defined as the ratio of the power exiting the structure (flux calculated by way of far-field
projection) to the total power generated by the dipole inside the active region (flux through the small
box in Figure 1).
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In 2009, Lau et al. deduced the approximate bandwidth of a nanocavity LED [17]:
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where τe f f is the spontaneous radiation lifetime reduced by the Purcell effect, and τp is the photon
lifetime. For cavities with quality factors less than a few hundred, τp is much lower than the overall
lifetime, and f3dB mainly depends on τe f f [18]. The relationship between f3dB and τe f f is as follows:
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where F is the Purcell factor. Then,
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1
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]
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For polar c-plane InGaN/GaN LEDs at current densities of 1000 A/cm2, David et al. derived the
carrier lifetime [19]: τr = 3 ns; τnr = 1.5 ns.

Thus, the modulation bandwidth of the LED can be approximated by simulating the Purcell factor.

3. Results and Discussion

Figure 2 shows the effect of p-GaN layer thickness on the Purcell factor and LEE for FCLED.
Both the Purcell factor and LEE show a trend of sinusoidal function oscillating when the p-GaN layer
thickness increases. Moreover, the Purcell factor tends to oscillate and attenuate, and the LEE exhibits
a perfect periodic oscillation. The trends of the Purcell factor and the LEE are almost the same, which
is expected to increase the LEE and the modulation bandwidth at the same time. The Purcell factor
takes a peak point of 1.48 when the p-GaN thickness is 45 nm, and then takes a peak point at 140 nm
and 230 nm. The periodicity of the Purcell factor with p-GaN thickness is 90 nm, which is almost the
same as half the wavelength of the light source inside the p-GaN material. When the p-GaN thickness
is 140 nm, the Purcell factor is 1.32 and the LEE is 51.4%.
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flip-chip LED (FCLED).

Figure 3 shows the trend of the Purcell factor and LEE varying with the period and height of
the photonic crystals when the duty cycle is 0.5. When the period of photonic crystals is greater than
200 nm, the Purcell factor is above 1.2. When the period and height of photonic crystals are both 500 nm,
the Purcell factor is 1.8, which is better than the results of similar simulations [14,16]. Because the small
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period photonic crystal structure (the period 100 and 200 nm) cannot provide enough mode volume
to the lower-order mode for affecting the radiative recombination, the large period photonic crystal
structure in the proper duty cycle has a chance to couple with the lower-order mode with a higher
spontaneous emission rate, which leads to the high Purcell factor [20]. Photonic crystal structures with
different heights have a larger Purcell factor in the photonic crystal period of 400–600 nm. When the
photonic crystals period is greater than 250 nm, the LEE is above 40%. The small period photonic
crystal structure cannot maintain enough emission light in the extraction cone, and the emission light
is almost too hard to go through the surface [21].
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Figure 4a shows the tendency of the Purcell factor and LEE to change with the duty cycle and
height of the photonic crystals when the photonic crystal period is fixed at 400 nm. The Purcell factor
increases first and then decreases with the duty cycle increasing. The Purcell factor is 1.81 when the
height and duty cycle of photonic crystals is 400 nm and 0.3, respectively. When the duty cycle is
in the range of 0.1–0.6, the Purcell factors with different photonic crystal heights are all greater than
1.2. This is because photonic crystal height cannot strongly change mode volume, compared with
duty cycle and period of photonic crystals. When the duty cycle is larger than 0.8, there is not enough
mode volume for the lower-order mode to achieve a high Purcell factor due to the reduction of the
active region area. As shown in Figure 4b, when the photonic crystal period is fixed at 400 nm, the LEE
varies with the duty cycle and height of the photonic crystals. When the photonic crystals are deep
into the active region, optical modes interact with the photonic crystals and are diffracted to escape,
which increases the LEE [22]. When the photonic crystal height is 400 nm and the duty cycle is 0.3,
the Purcell factor and LEE of PC-FCLED are 1.81 and 68%, which is 37% and 32.3% higher than those
of a conventional planar FCLED, respectively.
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These results show that the PC-FCLED has a better LEE and Purcell factor than FCLED. When the
photonic crystals are deep into the active region, the influence of the height of the photonic crystals on
the Purcell factor decreases. When the photonic crystal period is more than 300 nm, the Purcell factor
and LEE are better. The duty cycle, which is between 0.1–0.6, is more conducive to the improvement
of the overall performance. With the decrease of the radiation carrier lifetime and the fast photon
accumulation effect in the specific photonic band gap, the PC-FCLED obtains both high output optical
power and large modulation bandwidth [20]. Therefore, the modulation bandwidth and LEE are
increased simultaneously due to the Purcell effect in PC-FCLED. According to the above derivation
and results, the trend of the modulation bandwidth of PC-FCLED changing with the Purcell factor can
be obtained. When the Purcell factor is 1.81, the bandwidth is about 202 MHz at current densities of
1000 A/cm2.

The optimized photonic crystal structure of the simulation was obtained for subsequent
experimentation. The studied PC-FCLEDs were prepared by using the epitaxial wafers with a
peak wavelength of 460 nm in the experiment. The LED structure consisted of a 3 µm-thick undoped
GaN layer, a 1.8 µm-thick n-type GaN layer, 9 periods of InGaN/GaN MQWs, and a 140 nm-thick
p-GaN layer. Then, the square lattice photonic crystal was formed in the p-GaN layer and MQWs by
nanoimprint lithography and inductively coupled plasma (ICP). Figure 5a shows the scanning electron
microscopy (SEM) images of the photonic crystal structure after the patterns were etched with a
photonic crystal period of 400 nm, hole depths of 400 nm, and duty cycle, which is 0.3. A Spin-On-Glass
(SOG) layer was deposited on the surface of p-GaN and then annealed at 400 ◦C for 30 min by
rapid thermal annealing to fill in the hole. Subsequently, the mesa regions with a depth of 1.3 µm
were transferred to the LED wafer using ICP etching. Ag and TiW metal layers were deposited on
the top surface of the LED wafer, and a 1 µm-thick SiN layer was deposited to mesa sidewalls by
plasma-enhanced chemical vapor deposition. Finally, Cr/Al/Ti/Au (50/800/200/200 nm) multilayer
metals were sequentially deposited on the top of Ag and TiW layers and the n-GaN layer to act as
the p- and n-electrodes by electron beam evaporation, respectively. The nomenclature of PC-FCLEDs
with different mesa radii were PC30, PC60, and PC90. FCLEDs were also fabricated using the same
procedure as the PC-FCLEDs, but without photonic crystals.

Micromachines 2019, 10, x 5 of 8 

 

Figure 4. The tendency of (a) the Purcell factor and (b) LEE changing with the duty cycle and height 
of the photonic crystals when the photonic crystal period is fixed at 400 nm. 

These results show that the PC-FCLED has a better LEE and Purcell factor than FCLED. When 
the photonic crystals are deep into the active region, the influence of the height of the photonic 
crystals on the Purcell factor decreases. When the photonic crystal period is more than 300 nm, the 
Purcell factor and LEE are better. The duty cycle, which is between 0.1–0.6, is more conducive to the 
improvement of the overall performance. With the decrease of the radiation carrier lifetime and the 
fast photon accumulation effect in the specific photonic band gap, the PC-FCLED obtains both high 
output optical power and large modulation bandwidth [20]. Therefore, the modulation bandwidth 
and LEE are increased simultaneously due to the Purcell effect in PC-FCLED. According to the 
above derivation and results, the trend of the modulation bandwidth of PC-FCLED changing with 
the Purcell factor can be obtained. When the Purcell factor is 1.81, the bandwidth is about 202 MHz 
at current densities of 1000 A/cm2. 

The optimized photonic crystal structure of the simulation was obtained for subsequent 
experimentation. The studied PC-FCLEDs were prepared by using the epitaxial wafers with a peak 
wavelength of 460 nm in the experiment. The LED structure consisted of a 3 µm-thick undoped 
GaN layer, a 1.8 µm-thick n-type GaN layer, 9 periods of InGaN/GaN MQWs, and a 140 nm-thick 
p-GaN layer. Then, the square lattice photonic crystal was formed in the p-GaN layer and MQWs 
by nanoimprint lithography and inductively coupled plasma (ICP). Figure 5a shows the scanning 
electron microscopy (SEM) images of the photonic crystal structure after the patterns were etched 
with a photonic crystal period of 400 nm, hole depths of 400 nm, and duty cycle, which is 0.3. A 
Spin-On-Glass (SOG) layer was deposited on the surface of p-GaN and then annealed at 400 °C for 
30 min by rapid thermal annealing to fill in the hole. Subsequently, the mesa regions with a depth 
of 1.3 µm were transferred to the LED wafer using ICP etching. Ag and TiW metal layers were 
deposited on the top surface of the LED wafer, and a 1 µm-thick SiN layer was deposited to mesa 
sidewalls by plasma-enhanced chemical vapor deposition. Finally, Cr/Al/Ti/Au (50/800/200/200 nm) 
multilayer metals were sequentially deposited on the top of Ag and TiW layers and the n-GaN layer 
to act as the p- and n-electrodes by electron beam evaporation, respectively. The nomenclature of 
PC-FCLEDs with different mesa radii were PC30, PC60, and PC90. FCLEDs were also fabricated 
using the same procedure as the PC-FCLEDs, but without photonic crystals. 

 
Figure 5. (a) The scanning electron microscopy (SEM) images of the hole-patterned photonic crystal 
structure. (b) Top view of PC90 LED chip with mesa radius of 90 µm. 

Figure 6 represents the optical output power and forward current–voltage (P-I-V) 
characteristics of the PC-FCLEDs and the FCLEDs. The P-I curves show that the optical output 
power of PC-FCLED is smaller than that of the FCLED with the same mesa size. This is because, 
even though the photonic crystal helps light extraction, the effective light emitting area of the 

Figure 5. (a) The scanning electron microscopy (SEM) images of the hole-patterned photonic crystal
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Figure 6 represents the optical output power and forward current–voltage (P-I-V) characteristics
of the PC-FCLEDs and the FCLEDs. The P-I curves show that the optical output power of PC-FCLED
is smaller than that of the FCLED with the same mesa size. This is because, even though the
photonic crystal helps light extraction, the effective light emitting area of the PC-FCLED is smaller
than the FCLED, and the damage of p-GaN from the ICP procedure will strongly reduce carrier
recombination efficiency.
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The optical modulation bandwidth (f-3dB) versus current density relation of the PC-FCLEDs and
FCLEDs with three different radii are shown in Figure 7. The optical f-3dB in PC-FCLEDs is much
higher than that of the FCLEDs due to the smaller carrier lifetime. At a 1000 A/cm2 injected current
density, the optical f-3dB of PC60 is 212 MHz, which is almost in accord with the simulation result of
202 MHz. As the mesa size of the device decreases, the current density can be improved to achieve a
higher modulation bandwidth. When the injected current density is 2000 A/cm2, the optical f−3dB of
PC30 increases up to 285 MHz. However, at a 1000 A/cm2 injected current density, the optical f−3dB of
C30 is 90 MHz, which is lower than the simulation result of 176 MHz. This means that carrier lifetimes
of FCLEDs are lower than the carrier lifetimes quoted, and there is another mechanism here that leads
to the decrease of the carrier lifetimes of PC-FCLEDs. Therefore, the Purcell factor plays a certain role
in the increase of modulation bandwidth, but cannot completely determine its implementation. In the
ICP procedure for etching photonic crystal structure, many defect sites are produced in the p-GaN
layer and MQWs. The increase of defect density causes a reduction of the radiative efficiency and
nonradiative lifetime [23], which leads to further increasing the modulation bandwidth and reducing
optical output power.
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4. Conclusions

We investigated the Purcell factor and LEE of PC-FCLED using the FDTD method. Compared with
the FCLED, the PC-FCLED shows great enhancement in the Purcell factor and LEE. When the height
and duty cycle of photonic crystals is 400 nm and 0.3, the Purcell factor and LEE of PC-FCLED are 1.81
and 68%, which is 37% and 68% higher than that of FCLED, respectively. When the Purcell factor is 1.81,
the modulation bandwidth is 202 MHz at current densities of 1000 A/cm2. We constructed the devices,
and the experiment results of the modulation bandwidth achieved the desired level of simulation



Micromachines 2019, 10, 767 7 of 8

because of the reduction of nonradiative lifetime and increase of the Purcell factor. An optical f-3dB
of 285 MHz was obtained in the PC-FCLED with a mesa radius of 30 µm at a current density of
2000 A/cm2. The PC-FCLED revealed the potential for visible light communication due to its high
modulation bandwidth.
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