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Hypertrophic scars (HS) arise from traumatic or surgical injuries and the subsequent

abnormal wound healing, which is characterized by continuous and histologically

localized inflammation. Therefore, inhibiting local inflammation is an effective method

of treating HS. Recent insight into the role of interleukin-10 (IL-10), an important

anti-inflammatory cytokine, in fibrosis has increased our understanding of the

pathophysiology of HS and has suggested new therapeutic targets. This review

summarizes the recent progress in elucidating the role of IL-10 in the formation of HS

and its therapeutic potential based on current research. This knowledge will enhance our

understanding of the role of IL-10 in scar formation and shed new light on the regulation

and potential treatment of HS.
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INTRODUCTION

A hypertrophic scar (HS) is an inevitable fibrotic consequence that occurs following trauma,
surgery, burns, and inflammation (1, 2). Hypertrophic scar presents an abnormal healing process
characterized by excessive cellular proliferation and aberrant extracellularmatrix (ECM) deposition
(i.e., types I and III collagen) (3). Hypertrophic scar is also associated with the transformation of
fibroblasts into myofibroblasts. Moreover, the formation of scars can cause substantial obstacles
to tissue growth, function, movement, and aesthetics, which can cause severe psychological and
physiological problems in patients with HS. The incidence of HS is between 40 and 70% following
surgery and as high as 91% after burns (4, 5). Although HS has been studied extensively in
recent years, no practical or specific therapeutic approaches are currently available for HS, partially
because the underlying mechanism remains poorly understood (6, 7).

In a skin injury, wound healing mechanisms are typically preceded by a local robust
inflammatory response, which is crucial for resisting potential infection at the site where the barrier
is destroyed (8). Abnormal wound repair can cause the formation of HS upon wound healing (9).
Recent studies indicate that the chronic inflammatory response may be at least partially responsible
for aberrant tissue repair and development of fibrosis at sites of tissue injury (10). Moreover,
chronic inflammation causes the release of a large number of inflammatory mediators, which may
contribute to the stimulation (profibrosis) or inhibition (antifibrosis) of fibrosis by targeting the
activation of myofibroblasts, the main effector cells of HS (1, 11, 12). It is now widely believed that
transforming growth factor β (TGF-β) is a central element in promoting organ fibrosis, including
the skin (13), because it has a more profound effect on wound healing, which is not limited to the
regulation of inflammation. In addition, reticular fibroblasts and papillary fibroblasts are present
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in the dermis. Only reticular fibroblasts participate in the
differentiation into myofibroblasts, which is regulated by
biochemical and mechanical factors. Among these factors, TGF-
β1 is the main prodifferentiation mediator. Myofibroblasts
represent a specific fibroblast phenotype that express α-SMA and
promote the production of ECM. Myofibroblasts also induce
changes to the macrophage phenotype by producing TGF-β,
thereby affecting ECM degradation. Ultimately, the survival,
apoptosis, and aging of myofibroblasts can directly affect scar
formation (14). Similar to TGF-β, other inflammatory cytokines,
such as interleukins (ILs) IL-13, IL-4, and tumor necrosis
factor α (TNF-α), can indirectly regulate fibrosis, which involves
macrophages as the major inflammatory cells (15). The number
of myofibroblasts that differentiate from their precursors is
increased in response to the activation of such TGF-β-mediated
signaling pathways (16). Moreover, several inflammatory factors
have been discussed as possible pathogenic mechanisms in the
development of fibrosis, for example, ILs (e.g., IL-1, IL-4, IL-6,
and IL-17) (17).

In contrast to TGF-β and some inflammatory mediators,
other factors (e.g., IL-10) have been shown to inhibit fibrosis,
including HS (18). Indeed, recent research has revealed
that IL-10 can reduce skin scarring across various stages
of cellular development and differentiation by inhibiting
proinflammatory cytokine secretion, ECM production, and
myofibroblast transdifferentiation (5, 19). Although IL-10 has
been demonstrated to play a significant role in the regulation of
HS formation, most IL-10 functions in scar-forming fibroblast
biology have been poorly characterized. Thus, we conducted a
review of the current literature on the role of IL-10 in skin
scar formation, with a focus on novel findings regarding IL-
10–mediated regulation of fibroblasts and myofibroblasts. This
review provides novel insight into the modulation and treatment
of HS.

BIOLOGICAL FUNCTIONS OF IL-10/IL-10R

As one of the three subgroups of the IL-10 family cytokines
classified by function, IL-10 is a pleiotropic candidate gene in
the pathophysiological mechanism of various immune disorders
(20). The IL-10 gene is located on chromosome 1 at 1q31–
32, spans ∼4.7 kb, and contains four introns and five exons
(21). Moreover, IL-10 is a 35-kDa polypeptide cytokine that was
initially purified from activated CD4+ T helper 2 (TH2) cells and
was found to play a pivotal role in suppressing proinflammatory
cytokine production (22, 23).

Interleukin 10 is primarily produced by CD4+ T cells, but
also secreted by various leukocytes like macrophages, natural
killer cells, B cells, dendritic cells, and neutrophils. In myeloid
cells and T cells, downstream signaling is driven by various
pattern recognition receptors (e.g., Toll-like receptor ligands),
which regulate phosphatidylinositol-3-kinase-protein kinase B
[PI (3)K-AKT], nuclear factor κB (NF-κB), tumor progression
locus 2 (TPL-2)/extracellular signal–regulated kinase, and other
pathways via the adaptormoleculesmyeloid differentiation factor
88 and TIR-domain–containing adaptor-inducing interferon β to

induce IL-10 production (24, 25). In addition, IL-10 inhibits the
ability of monocytes and macrophages to present antigen to T
cells primarily by inhibiting the expression of histocompatibility
complex class II and costimulatory molecules [e.g., CD80 (B7.1)
and CD86 (B7.2)]; therefore, the expressions of other ILs (e.g.,
IL-1, IL-6, IL-8, and IL-12) and TNF-α are down-regulated (26–
28). In addition to directly stimulating T cells, and immune-
stimulating mast cells, thymocytes, and B cells, IL-10 also has
an inhibitory effect on TH17 and TH2 cells due to the release
of proinflammatory factors [e.g., IL-3, IL-6, and interferon γ2
(28–31)]. During bacterial infection, the antibiotic effect of IL-
10 appears to be completely different. For non-MDR infections
caused by highly proinflammatory bacteria, the high level of IL-
10 production promotes pathogen clearance and protects the
host because IL-10 regulates an excessive immune response. In
contrast, IL-10 does not have a similar effect in MDR bacterial
infections (32) (Figure 1).

Within the class II cytokine receptor family, as a tetramer
receptor complex, the IL-10 receptor (IL-10R) consists of the
IL-10α chain (IL-10Rα) and collateral IL-10β chain (IL-10Rβ)
(33). Immunostaining revealed that IL-10Rα was localized and
distributed on both the surface and cytoplasm of HS and HS
fibroblasts (34). In addition, IL-10Rα is a high-affinity chain
binding to the IL-10, whereas IL-10Rβ is involved in diverse
signaling pathways related to other cytokines in the IL-10
family (e.g., IL-22, IL-26, and IL-29) (5, 35). Binding of the
IL-10R complex to dimerized IL-10 results in the preferential
phosphorylation of Janus kinase or tyrosine kinase, followed
by activation of signal transducer and activator of transcription
3 (STAT3) and PI3K/AKT/mammalian target of rapamycin
(mTOR) transcription factor pathway-mediated downstream
signaling (5, 27) (Figure 2).

IL-10 AND HS

Interleukin 10 is a type of anti-inflammatory cytokine that has
been demonstrated to play an essential role in scar formation
(36) and other fibrosis-associated diseases (17). However, the
antifibrosis molecular mechanisms of IL-10 in skin scarring
remain unclear. Initially, Liechty et al. (37, 38) found that IL-
10–deficient mice displayed fetal wound healing with obvious
inflammation and scar formation. This suggested that IL-10
may be involved by down-regulating the expression of IL-
6 and IL-8. Moreover, the wounds of IL-10–deficient mice
healed faster than that of normal mice (39). Another study by
Gordon et al. (40) confirmed that IL-10 is highly expressed
in midgestation human fetal skin in contrast to a lack of
expression in post-natal human skin. The authors treated the
wounds with adenoviral-mediated overexpression of IL-10 (Ad-
IL-10). The results showed that the repaired Ad-IL-10–treated
wounds approximated the normal dermal architecture regarding
the biomechanical parameters with a reduced inflammatory
response. During the same year, Peranteau et al. (41) similarly
concluded that the lentivirus-mediated overexpression of IL-
10 promoted wound regeneration in an adult scar formation
model without abnormal collagen deposition by decreasing
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FIGURE 1 | Immune-promoting and suppressing mechanisms of IL-10.

inflammatory mediators. More recently, a study proposed that
IL-10 encoded by an orf virus contributed to skin repair in
a murine full-thickness wound model (42), thereby limiting
scarring. This demonstrates that purified orf virus IL-10 (ovIL-
10) could promote scarless wound healing. Several studies
have tried to explain the antiscarring mechanisms of IL-10.
By comparing the functional differences between murine fetal
and adult fibroblasts, Balaji et al. (43) demonstrated that IL-
10 enhanced the migration and invasion properties of fetal
fibroblasts by mediating hyaluronan synthesis. In addition, the
PI3K/AKT and STAT3 signaling pathways were found to be
associated with the anti-HS effects of IL-10. The results showed
that IL-10 could activate AKT and STAT3 phosphorylation
downstream of the IL-10, thereby accelerating the crosstalk
between the PI3K/AKT and STAT3 signal transduction pathways
to significantly inhibit skin fibrosis (5). Moreover, another
study demonstrated that IL-10 inhibited autophagy in starved
HS fibroblasts via crosstalk between the IL-10–IL-10R–STAT3
and IL-10–AKT–mTOR pathways, suggesting the therapeutic
potential of IL-10 in HS (34). Recently, some studies have
shown that elevated levels of IL-10 expression activated vascular
endothelial growth factor (VEGF) receptor 2 (44), resulting in
decreased wound inflammation and fibrosis, thereby indicating
that IL-10 may mediate the antiscarring effect of VEGF receptor
2. Indeed, a study aiming to explore the antifibrosis mechanism
of IL-10 in dermal fibroblasts found that IL-10 exhibited
the prominent effects on increased collagen expression while

decreasing the expression of matrix metalloproteinase 1 (MMP-
1) and MMP-8, which inhibited the transformation of fibroblasts
to myofibroblasts (18). However, the results appear to be too
general and involve the use of single-cell in vitro experiments. In
addition, there is a lack of a more wound-like model to confirm
the IL-10–mediated regulation of other MMPs and ultimately
whether collagen formation is affected. In conclusion, research
to date has shown that the antiscarring mechanism of IL-10
may include reducing the inflammatory response; avoiding ECM
overproduction (45); and regulating the migration, invasion,
transformation, and apoptosis of fibroblasts (25). These diverse
functions make IL-10 an indispensable component of scarless
skin wound healing (Figure 3).

IL-10–TARGETING TREATMENT FOR
WOUND SCARRING

With an increasing number of studies on the relationship
between IL-10 and scarring, a growing number of therapies have
been developed and applied in both human and animal models.
In addition, two preclinical and phase II randomized control
studies (46) proved the effectiveness of IL-10 on human wound
healing. Moreover, Kieran et al. (46) created an IL-10 and IL-4
double-knockoutmouse woundmodel, which showed skin repair
with enhanced inflammation and scarring. They also studied
the effect of different concentrations of recombinant human
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FIGURE 2 | Regulation of IL-10 expression in T cells and the potential mechanism of IL-10 in hypertrophic scars.
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FIGURE 3 | Schematic diagram of the effects of IL-10 on scarring.

IL-10 (rhIL-10) on wound healing in both rats and humans.
As a result, rhIL-10–treated rats displayed improved healing
with a low inflammatory response and evident improvement
of scar appearance. Similarly, human wounds treated with
low concentrations of rhIL-10 exhibited the greatest recovery.
Interestingly, a study on the reinnervation and revascularization
of wounds treated with IL-10 observed that IL-10 increased
the organization of dermal collagen, similar to that of normal
skin, which suggested that IL-10 is involved in preventing HS
formation (47).

Moreover, Shi et al. designed a new hybrid protein that
combined human IL-10 with RGD (Arg-Gly-Asp), termed
rhIL10-RGD, in an attempt to identify a more efficient
antiscarring therapy. The recombinant fusion protein, IL10-
RGD, which was encoded by the DNA sequence, was subcloned
into a pET22b (+) vector, thereby expressing the protein in
Escherichia coli strain BL21 (DE3). Their results showed that
the antifibrotic effects of rhIL-10–RGD involved reduced ECM
deposition, which may represent an effective treatment strategy
for HS, with expected clinical applications (48). Furthermore, an
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innovative treatment was provided for scarless skin regeneration
using coacervates, a tertiary complex of poly(ethylene arginyl
aspartate diglyceride) (PEAD) polycation, heparin, as well as the
loading of TGF-β3 and IL-10, which improved the half-lives of
the growth factors, effectively increased bioactivity, and finally
accelerated wound closure along with reduced scar formation
(18, 49). Recent research shows that IL-10 combined with VEGF-
A can promote wound closure, re-epithelialization, and collagen
remodeling. However, compared with mammalian proteins,
the viral proteins from the Orf virus, VEGF-E, and ovIL-10
treatment appear to cause less scarring, which was associated
with greater therapeutic advantages (50). While treatment with
IL-10 was primarily administered by injection, the dosage,
concentration, loading approach, and combination with other
drugs require additional systematic in vivo and in vitro studies.
Thus, the therapeutic potential of IL-10 for HS is continuously
being confirmed.

CONCLUSION AND PERSPECTIVES

Despite the unmet medical need, there is currently no effective
method to treat or inhibit skin HS, primarily due to changes
in appearance and function, impairing the quality of life of
patients, both physically and psychologically. Thus, the recently
available treatments for HS are insufficient, and new therapeutic
approaches are needed. Because IL-10 exhibits an antiscar
formation response in skin tissue, therapeutic avenues to block
the IL-10/receptor in HS-associated diseases may be tailored
to target this pathway. Several studies have confirmed that the
application of IL-10 causes the wound edge to narrow and
makes the collagen fibers in the regenerated tissue align with
the collagen bundles in a more parallel orientation, without
the presence of dense haphazardly arranged collagen fibers, and
less red scarring. However, different methods of carrying IL-
10 have mixed toxicity, while some research has confirmed
that the administration of a high dose of recombinant IL-10
caused side effects, including fever, headache, malaise, and even
promoted inflammation (51, 52). Because of the limitations
of the wound area, most therapies are delivered by local
injection, and thus the delivery of IL-10 using other methods
requires further investigation. Interestingly, a method of genetic
modification of rat mesenchymal stem cells to promote IL-10
delivery has been reported (53). In the future, the delivery of
IL-10 through cell lines to reduce local scarring of wounds
may also become a reality. Several studies have shown that

M2 macrophages are also a primary target cell of IL-10 and
the source of the profibrosis factor, TGF-β. M2 macrophages
are associated with TGF-β-mediated fibroblast recruitment and
activation and can also indirectly affect matrix proliferation
and remodeling. Therefore, in addition to considering the
effect of IL-10 on myofibroblasts, more attention should be
paid to other cells associated with scar formation, such as
reticular fibroblasts and macrophages (54, 55). Because most
of the mentioned studies were performed in wound-related
animal models, and not in HS models, the fibrosis-associated
effects of IL-10 should be elucidated. The existing data also
suggest that IL-10 may impact the antifibrotic activity in the
airways through decreasing endotoxin (lipopolysaccharide)–
induced inflammation and airway remodeling (56). In this
review, we highlight the distinctive role of IL-10/receptor
signaling in the pathophysiology of skin HS. The IL-10/receptor
axis widely participates in the process of HS, demonstrating
apparent direct and indirect effects on wound healing and
remodeling. Generally, the IL-10/receptor signaling pathway
primarily has anti-inflammatory and antiproliferative effects
in the development of HS. Recently, some ILs have been
approved for the clinical application in immune-related diseases.
However, to date, no clinical trials have been reported on
the use of IL-10 biological agents for the treatment of HS.
Therefore, further studies are required to successfully translate
these promising findings from in vitro studies and animal models
into clinical practice.
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